Whenever physical signals are measured .or generated, the locations of receivers or trans-
ducers have to be selected. Most of the time, this appears to be done on an ad hoc basis.
For example, when a string of geophones is used in the measurements of seismic data in
oil exploration, the receivers are located at equispaced points on an interval. When phased
array antennae are constructed, their shapes are determined by certain aperture consid-
erations; round and rectangular shapes are common. When antenna beams are steered
electronically, it is done by changing the phases (and sometimes, the amplitudes) of the
transducers. Again, these transducers are located in a region of predetermined geometry,
and their actual locations within that geometry are chosen via some heuristic procedure.
In all these (and many other) cases, the signals being received or generated are band-limited.
Optimal representation of such signals has been studied in detail by Slepian et. al. more
than 30 years ago, and some of the obtained results were applied by D. Rhodes to the
design of antenna patterns; further development of this line of research appears to have
been hindered by the absence at the time of necessary numerical tools. We combine these
classical results with the recently developed apparatus of Generalized Gaussian Quadratures
to construct optimal nodes for the measurement and generation of band-limited signals. In
this report, we describe the procedure based on these techniques for the design of such
receiver (and transducer) configurations in a variety of environments.
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1 Introduction

When measurements are performed, it often happens that the signal to be measured is
well approximated by linear combinations of oscillatory exponentials, i.e. functions of

the form
n .
Z a] . el~)\j~:1: (1)
Jj=1
in one dimension, of the form
n
Z ;- et (Xj-etuiy) 2)
Jj=1
in two dimensions, and of the form
n
Z o - ei-()\j-z-i-lij'y-i-l/j'z) (3)
J=1

in three dimensions. In most cases, the signal is band-limited, i.e. there exist such real
positive a that all 1 < j < m,
| Ajl<a (4)
in one dimension,
2 2 2
in two dimensions, and
2 2 2 2
Aj+ vt <at, (6)

in three dimensions.
As is well-known, most measurements of electromagnetic and acoustic data (espe-
cially at reasonably high frequencies) are of this form. Examples of such situations

include geophone and hydrophone strings in geophysics, phased array antennae in radar




systems, multiple transceivers in ultrasound imaging, and a number of other applications
in astrophysics, medical imaging, non-destructive testing, etc.

In this report, we describe a procedure for determining the optimal distribution of
sources and receivers that maximizes accuracy and resolution in measuring band-limited
data given a fixed number of receivers. Alternatively, the procedure can be used to
determine the optimal distribution of receivers that will minimize their number given
specified accuracy and resolution. While the techniques described in this note are fairly
general, we describe them in detail in the case of linear antenna arrays; the changes

needed to generalize the approach to other cases are summarized in Section 6.

Remark 1.1 One of principal issues in the design of antenna arrays is the treatment
(or avoidance) of the so-called supergain (or superdirectivity). Supergain is the con-
dition that occurs when an antenna design is attempted that is prohibited (or nearly
prohibited) by the Heisenberg principle; technically, it occurs in the form of very closely
spaced elements operating out of phaze, and leads to prbhibitive Ohmic losses in trans-
mitting antennae, loss of sensitivity in receiving ones, etc. Since the purpose of this
note is to introduce techniques for selecting the locations of elements for a prescribed
antenna pattern, we avoid the issue of choosing the antenna pattern altogether. Instead,
we observe design optimal element distributions for several standard far-field patterns
(see Section 5.1), and we observe that the scheme for choosing optimal distributions of

elements is virtually independent of the patterns being approximated.

Technically, the approach taken here is to observe that designing an antenna array
can be viewed as constructing a quadrature formula for the integration of certain special
classes of functions. Using recently developed techniques for the construction of so-called
Generalized Gaussian Quadratures, we obtain both nodes and weights that are optimal
(in a very strong sense) for the required antenna pattern.

The structure of this note is as follows. In Section 2, we summarize some of the math-

ematical apparatus to be used: Chebychev Systems, Generalized Gaussian Quadratures,
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etc. In Section 3, we recapitulate some of the standard antenna theory, primarily to
introduce the necessary notation. In Section 4, element distributions given a specific an-
tenna pattern. In Section 5, we illustrate our approach with several numerical examples,

and Section 6 contains a discussion of the generality of the schemes presented.

2 Analytical Preliminaries

In this section, we summarize several known facts about classical Special functions. All

of these facts can be found in the literature; detailed references are given in the text.

2.1 Chebyshev systems

Definition 2.1 A sequence of functions @1, ..., ¢, will be referred to as a Chebyshev
system on the interval [a,b] if each of them is continuous and the determinant
¢r(z1) - Bi(wn)
: : (7)

is nonzero for any sequence of points xy,...,%, such that a < 1 < x2... < zp < b.

An alternate definition of a Chebyshev system is that any linear combination of the
functions with nonzero coefficients must have no more than n zeros.
Examples of Chebyshev and extended Chebyshev systems include the following (ad-

ditional examples can be found in [8]).

Example 2.1 The powers 1,z,22,...,2" form an extended Chebyshev system on the

interval (—o0,00).

Example 2.2 The ezponentials e 1%, e722% .. e™*® form an extended Chebyshev sys-
tem for any Ai,..., A\, > 0 on the interval [0, 00).
Example 2.3 The functions 1, cos z,sin z, cos 2z,sin 2z, . . ., cos nz, sin nx form a Cheby-

shev system on the interval [0, 27].




Example 2.4 Suppose that ¢ > 0 is a real number, w is a positive function [-1,1] = R
such that w € c¢'[~1,1] and w(—z) = w(z) for all z € [-1,1], n is a natural number,

and the operators P,Q : L*[—1,1] — L*[—1,1] are defined by the formulae
1 )
P($)(@) = [ wlt)- =" g(t) db ®)

Q=P oP (9)

Suppose further that ¢1,¢s,... are the eigenfunctions of @, A1, Ag,... are the corre-
sponding eigenvalues, and Ay > Ay > A3.... Then all eigenfunctions of @ (also known
as the right singular vectors of P) can be chosen to be real. Furthermore, the functions

b1, P2, ..., bn constitute a Chebychev system on the interval (-1,1].

2.2 Generalized Gaussian quadratures

A quadrature rule is an expression of the form
> w;- ¢(x;), (10)
=1

where the points z; € R and coefficients w; € R are referred to as the nodes and weights

of the quadrature, respectively. They serve as approximations to integrals of the form

b
[ #(2) - w(z)de (11)
a
with w is an integrable non-negative function.
Quadratures are typically chosen so that the quadrature (10) is equal to the desired
integral (11) for some set of functions, commonly polynomials of some fixed order. Of
these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi-

als of order 2n — 1 exactly. In [13], the notion of a Gaussian quadrature was generalized

as follows:

Definition 2.2 A quadrature formula will be referred to as Gaussian with respect to a
set of 2n functions ¢y, ..., ¢ : [a,0] = R and a weight function w : [a,b] — R*, if it
consists of n weights and nodes, and integrates the functions ¢; exactly with the weight
function w for alli=1,...,2n. The weights and nodes of a Gaussian quadrature will be

referred to as Gaussian weights and nodes respectively.
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The following theorem appears to be due to Markov [15, 16]; proofs of it can also be

found in [10] and [8] (in a somewhat different form).

Theorem 2.1 Suppose that the functions ¢1,...,¢2, : [a,b] — R form a Chebyshev
system on [a,b]. Suppose in addition that w : [a,b] — R ds a non-negative integrable
function [a,b] — R. Then there ezists a unique Gaussian quadrature for the functions
G1,. .., bap on [a,b] with respect to the weight function w. The weights of this quadrature

are positive.

Remark 2.1 While the existence of Generalized Gaussian Quadratures was observed
more than 100 years ago, the constructions found in [15, 16], [3, 10], [7, 8] do not easily
yield numerical algorithms for the design of such quadrature formulae; such algorithms
have been constructed recently (see [13, 28, 2]). The version of the procedure found in
[2] was used to produce the results presented in the Examples 5.1, 5.2, 5.3 in Section 5.1;

the reader is referred to [2] for details.
Applying Theorem 2.1 to the Example 2.4, we obtain the following theorem.

Theorem 2.2 Suppose that under the conditions of Ezample 2.4, n s even. Then

there ezist n/2 points ti,ty,...,taj2 on the interval [—1,1] and positive real numbers
Wy, W, . . ., Wny2 such that
1 n/2
[w)-6:t) dt = Y w; - 6u(ty), (12)
-1 Jj=1

for alli = 1,2,...,n, with ¢1,¢,...,¢s the first n eigenfunctions of the operator Q
defined in (9).

Corollary 2.3 The above theorem provides a tool for the efficient approzimate evalua-

tion of integrals of the form (12), as follows. Given a positive real €, we construct the




Singular Value Decomposition of the operator P defined in (8). Choosing n to be the
smallest even integer such that
o
>oA< €2, (13)
j=n+1
we construct an n/2-point quadrature that integrates n first right singular functions ez-
actly (effective numerical schemes for the construction of such quadratures can be found

in [13, 28, 2]). Now, we observe that due to the triangle inequality combined with the

positivity of the obtained weights wy, wa, ..., W2,
n/2 . 1 .
1> w; - e — /w(x) cetert gt < e (14)
j=1 21

for any z € [-1,1].

Remark 2.2 The principal subject of this note is the fact that the pattern of an antenna
~array is formed by a physical process amounting to a hardware. implementation of a
quadrature formula for functions of the form (9). Thus, designing a configuration of
elements for such an antenna is equivalent to constructing a quadrature formula for

functions of the form( 9), and can be achieved via the techniques described in [13, 28, 2]).

3 Elements of Antenna Theory

In this section, we summarize certain facts about the theory of linear antenna arrays; all

of these facts are well-known, and can be found, for example, in [9].

3.1 Pattern of a linear array

A source distribution o on the interval [—1, 1] creates the far-field pattern f : [0,7] — C

given by the formula

1
10) = [ ou)- =@ du, (15)
-1




where k is the free-space wavenumber, u is the point on the interval [~1,1], and 6 is the
angle between the point on the horizon where the far field is being evaluated and the

z-axis. It is customary to introduce the notation

T = cos(h), (16)
and define the function F : [-1,1] — C by the formula

F(z) = f(acos(z)). (17)

Now, defining the operator A : L?[—1,1] — L*[—1,1] by the formula

A(o)(z) = / o(u) - €5 du, (18)
we observe that
F=A(0) = [ou) e+ du. | (19)

The function F is usually more convenient to work with than f, and the following obvious

lemma is the principal reason for this difference.

Lemma 3.1 Suppose that o € L*[—1,1], the function F € L*[—1,1] is defined by (19),

o is a real number, and the function & € L*[—1,1] is defined by the formula

G(u) = "™ - o(u). (20)
Then

A(G)(z) = Alo)(z - a) (21)

for all z € (—00,00). In other words, in order to translate the antenna pattern F (viewed
as a function of x = cos(f) ) by a, one has to multiply by etk the source distribution o

generating the pattern F'.




Observation 3.1 While the obvious physical considerations lead to the antenna pattern
F defined on the interval [—1,1], the formulae (15), (17) also define naturally the exten-
sion of F' to the function R — C; in a mild abuse of notation, we will be denoting by F
both the original mapping [—1,1] — C and its estension to the mapping R — C. Simi-
larly, we will be denoting by A both the operator L*|—1,1] — L?|—1,1] defined by (18)
and its natural extension mapping L*[—1,1] — ¢®(R). The restriction of F on R\[-1,1]
is referred to as the invisible spectrum of the source distribution o and plays an important
role in the antenna theory (this role is discussed briefly in the following subsection). By
the same token, the restriction of F on the interval [—1,1] is referred to as the visible

spectrum.

When an antenna array is implemented in hardware, it is (usually) constructed of
a finite collection of elements, as opposed to being a continuous source distribution.
Mathematically, it is equivalent to replacing the general function ¢ in (15), (19) with o

defined by the expression
n
o(x) =3B 6i(u), (22)
j=1

with @1, @, ..., ¢, the source distributions generated by individual elements, and the
coefficients i, fa, ..., B, the intensities of the elements. As a rule, the elements are
localized in space (i.e. the functions ¢;, @, ..., ¢, are supported on small subintervals
of [-1,1]), and very often, all of the elements are identical (i.e. the functions ¢; are

translates of each other), so that

¢5(u) = ¢(u —u;), (23)

with ¢ the source distribution of a single element located at the point u = 0, and u; the
location of the element number j. Obviously, the far-field pattern of ¢ is given by the

formula
1

Fy(e) = [ #(u) - ¢ du; (24)
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combining (24) with (22) and (23), we obtain the identity

1

o(z) = /qb(u) etk gy iﬂj etkuiT (25)

-1 Jj=1

known in the antenna theory as the principle of pattern multiplication.

Remark 3.2 The standard form of the principle of multiplication reads: “The field
pattern of an array of nonisotropic but similar point sources is the product of the pattern
of the individual source and the the pattern of an array of isotropic point sources, having
the same locations, relative amplitudes and phases as the nonisotropic point sources” (see
[9]). Needless to say, this is a special case of the well-known theorem from the theory of
the Fourier Transform, stating that the Fourier transform of the product of two functions

is the convolution of the Fourier Transforms of multiplicants.

4 Antenna Patterns and Corresponding Optimal El-
ement Distributions

4.1 Characteristics of an antenna pattern

Depending on the situation, the design of an antenna array attempts to optimize certain
characteristics of the resulting far-field pattern, subject to certain constraints on the
number, power, etc. of the elements. Since the principal purpose of this note is to
describe a technique for the selection of the locations of the elements that approximate a
user-specified pattern, we could use any reasonable far-field pattern to be approximated.
In subsection 4.2, 4.3, we construct optimal element distributions for the so-called sector
patterns and cosecant pattern, respectively; a detailed discussion of these (and several
other) pattern cans be found, for example in [14].

We will say that the antenna pattern has the e-bandwidth b if

IF(2)]? dz = - / |F(z)[? do (26)

b<|fel|<1




in other words, the proportion of the energy radiated outside the e-beamwidth from the
axis of the beam is equal to e. The supergain of an antenna is defined (see, for example,
[27]), as the ratio
FIP@)P do
o0
JIF@P dz "
The supergain (sometimes referred to as superdirectivity) measures the ratio of the en-
ergy associated with the total spectrum of the antenna to the energy in its visible spec-
trum; while detailed discussion of supergain and related issues is outside the scope of this
note, we will observe that antenna arrays with large degrees of supergain would violate
the uncertainty principle, and thus are physically impossible. Attempts to construct
supergain antennae result in rapidly (exponentially) growing Ohmic losses, prohibitive
accuracy requirements, extremely low bandwidth, etc. Thus, any potentially useful pro-

cedure for the design of antenna arrays has to limit the supergain of the resulting patterns.

4.2 Sector patterns

It is often desirable to construct antenna patterns that are as constant as possible within
the main beam, and as small as possible outside it; in other words, ideally, the pattern

would be defined by the formulae
Fy(z) =1 for |z| <), (28)
Fy(z) =0 for |z|>b, (29)

with b a real number such that 0 < b < k. Needless to say, the function Fj defined by
the formulae (28), (29) is not band-limited, and some approximation has to be used. A
standard procedure is to truncate the Fourier Transform of F;, approximating it by the

function F}, defined by the formula

F(e) = /—11 szn(:) 1) gkt (30)
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(see, for example, [26]). An important special case occurs when b = k, with (30) assuming
the form
Fi(z) = /_11 w ek, (31)
obviously, the latter expression is a band-limited approximation of the 4-function. An-
other frequently encountered situation is that of b = k/2, so that (30) assumes the form
Fu(z) = /_11 %ﬁ_ ikt (32)
which is a band-limited approximation to the beam that is equal to 1 for —1/2 < z < 1/2
and to zero elsewhere.
In Section 4.4 below, we demonstrate optimal element configurations that produce

approximations to the patterns (31), (32) with k = 20w, 107, 32.46767.

Remark 4.1 While (30) is by no means the only possible band-limited approximations
to to F}, it is quite satisfactory in most cases, in addition to being simple. Furthermore,
the principal purpose of this note is to describe a technique for the selection of locations
of the nodes, given a pattern to be approximated. Thus, we ignore the issue of the

optimal choice of Fy.

4.3 Cosecant patterns

Another standard far-field radiation pattern is the so-called cosecant pattern (see, for
example, [19]). Given two real numbers 0 < a < b < 1, the cosecant pattern Fyp is

defined by the formula
Foylz) = ~ (33)
a,b - T
for all z € [a, b], and

Fop(z) =0 (34)
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for all z € ([-1,1]\ [a, b]). Again, the function F,; defined by the formulae (33), (34) is
not band-limited, and can not be represented by the expression of the form (24). Before
the scheme of this note can be applied to F;, the latter has to be approximated with a
band-limited function; as discussed in Section 4.1 above, if such an approximation is to
be useful as an antenna pattern, its supergain factor has to be controlled. Fortunately,
a procedure for such an approximation has been in existence for more than 35 years
(see, [18]); the algorithm of [18] is a modification of the least-squares approach permitting
the user to limit the supergain factor of the obtained pattern explicitly. At the time, the
utility of the scheme of [18] was limited by the (perceived) difficulty in the numerical
evaluation of Prolate Spheroidal Wave functions; given the present state of numerical
analysis, this difficulty is non-existent, and it is this author’s impression that the insights

of [18], [19] deserve more attention than they have been receiving.

4.4 Optimal distributions of elements

In this subsection, we briefly describe an algorithm for the construction of optimal (in
the sense defined below) element configurations for the generation of antenna patterns
given by (15), of which the patterns (29)-(31) are special cases. As will be seen, the
procedure is in fact applicable to the design of element configurations for very general
far-field patterns.

We start with observing that (15) expresses the far-field pattern F' as an integral over

the interval [—1, 1] of functions of the form
o(u) - eFev (35)

with z = cos(f) determined by the direction 6 in which the far-field is being evaluated. In
other words, the problem of finding efficient antenna element distributions is equivalent

to that of constructing quadrature formulae for integrals of the form (8), with

w(t) = o(t). (36)
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In the cases when o is non-negative everywhere on the interval [—1,1], Theorem 2.2
guarantees the existence of Generalized Gaussian Quadratures, and [13, 28]) provide a
satisfactory numerical apparatus for the construction of such quadratures. Obviously, the
patterns given by the formula (28) are not generated by non-negative source distributions,

except when
b< . (37)

Thus, for these (and many other) patterns, the conditions of Theorem 2.2 are violated,
and the existence of Generalized Gaussian Quadratures is not guaranteed. In our numer-
ical experiments, the techniques of [2]) (after some tuning) have always been successful
in finding the Gaussian quadratures for integrals of the form (28); some of our results

are presented in Section 5 below.

5 Numerical Examples

In this section, we present examples of optimal element distributions generating the
patterns of the preceding Section; all of the results presented here have been obtained
numerically. Antenna patterns we present are compared to the antenna patterns given
by uniform source distributions; configurations of elements approximating these antenna
patterns are compared to equispaced distributions of elements generating the same an-

tenna patterns.

5.1 Optimal distributions of elements

In this section, we demonstrate the results of the application of the techniques of Sec-
tion 4.4 of this note to the types of antenna patterns described in the Sections 4.2, 4.3.

In all cases, we choose the size of an antenna array and a pattern to be reproduced, and
use the scheme outlined in Section 4.4 to design a distribution of antenna elements (both
the locations and the intensities) located within the chosen array that reproduces the

required pattern. For comparison, we also generate optimal (in the least squares sense)
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approximations to the desired pattern generated by equispaced elements located within
the same array. Since the number of equispaced nodes required to obtain a reasonable
approximation to the desired pattern is (in many cases) much greater than the number of
optimally chosen nodes, for each example we demonstrate patterns generated by several
such configurations. In this manner, the numbers of optimally chosen nodes necessary
to obtain reasonable approximations to the desired patterns can be compared to the

numbers of equispaced nodes required to obtain similar results.
5.1.1 Sector patterns

Example 5.1 The first ezample we consider is of the pattern defined by the formula (32),
with k = 62.8312, so that the size of the array is 20 wavelengths.

In Figure 5, we display an approzimation to the pattern obtained with 19 elements,
overlayed with the ezact pattern; the locations of the elements are displayed in Figure 5a;
the relative error of the obtained approzimation is 5.01%.

Similarly, in Figure 59, we display the approzimation to the pattern obtained with 21
elements, overlayed with the ezact pattern; the relative error of the obtained approrima-
tion is 0.443%; in Figure 5h, we display the the approzimation obtained with 17 elements.
In the latter case, the relative error of the obtained approzimation is 6.43%; Figure 5i
depicts the 17-node distribution producing the approzimation illustrated in Figure 5h.
Finally, Figure 55 contains a graph of the values of the sources located at the 17 nodes
depicted in Figure 51 and generating the pattern shown in Figure 5h.

For comparison, the optimal approzimation obtained with 19, 24, 29, 31, and 34
equispaced elements are displayed in Figures 5b, 5c, 5d, Se, 5f, respectively; these are

also overlayed with the exact pattern.

Example 5.2 Our second ezample is identical to the first one, with the exception that
k = 31.416, so that the size of the array is 10 wavelengths.

In Figure 6, we display an approrimation to the pattern obtained with 9 elements,
overlayed with the exact pattern; the locations of the elements are displayed in Figure 6a;

the relative error of the obtained approzimation is 11.2%.
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Similarly, in Figure 6f, we display the approzimation to the pattern obtained with 11
elements, overlayed with the exact pattern; the relative error of the obtained approrima-
tion 1s 0.600%.

For comparison, the optimal approzimation obtained with 9, 14, 16, and 18 equispaced
elements are displayed in Figures 6b, 6¢, 6d, 5e, respectively; these are also overlayed

with the exact pattern.

Example 5.3 Our third example is identical to the preceding two, with the exception
that k = 102, so that the size of the array is about 32.45 wavelengths.

In Figure 7a, we display an approzimation to the pattern obtained with 23 optimally
distributed elements, overlayed with the exact pattern and with the pattern obtained with
23 equispaced elements.

The relative error of the obtained approzimation is 5.4%; needless to say, the error of
the approzimation obtained with the equispaced nodes is more than 70%. As can be seen
from Figure 7c, the actual size of the obtained 23-element array is about 21 wavelengths;
in other words, in order to obtain this precision, the array needs to be about 2/3 of the
nominal (mazimum permitted) length.

In Figure 7b, we display the approzimation to the pattern obtained with 42 and 48
elements, overlayed with the exact pattern.

It is worth noting that with 33 optimally distributed elements, the pattern is approzi-
mated to the precision 0.12%; we do not display the obtained pattern since it is visually

indistinguishable from the pattern being approzimated.

Example 5.4 Our final ezample is somewhat different from the preceding ones, in that
instead of approzimating a sector pattern, we approzimate a cosecant pattern (see (33), (34)
in Subsection 4.8 above).

In this example, we set
a = sin(15°), (38)
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= sin(75°), (39)

and use the procedure of [18] to approzimate F,, with a band-limited function. The band-
limit has been more or less arbitrarily set to 110, resulting in an antenna array about 35
wavelengths in size, and the supergain factor of the approzimation was set to 1.1.

In Figure 8a, we display an approzimation to the pattern obtained with 53 optimally
distributed elements, overlayed with the ezact bandlimited pattern and with the pattern
obtained with 53 equispaced elements.

The relative error of the obtained approzimation is 1.79%; the error of the approzi-
mation obtained with the equispaced nodes is about 42%.

In Figure 8b, we display the approzimation to the pattern obtained with 47 optimally
distributed elements, overlayed with the exact pattern; the purpose of this final figure is
to demonstrate the behavior of the scheme when the number of elements is insufficient
(i.e. when the array is underresolved).

It is worth noting that it takes about 70 equispaced nodes to obtain the resolution

obtained with 47 optimally chosen ones.

The following observations can be made from Figures 5 - 8b, and from the more

detailed numerical experiments performed by the author.

1. In order to obtain reasonable precision, the scheme requires about 1 point per wave-
length in the antenna array; this is more or less independent from the structure of the
beam as long as the pattern is symmetric about the point x = 0. This fact is observed
numerically, even for modest numbers of nodes; for large-scale arrays, this statement
(interpreted asymptotically) can be proved rigorously. For certain beam structures, the
required number of nodes is even less (see Example 5.3). The reasons for these additional
savings are subtle, and have to do with the fact that the continuous source distribution
generating the pattern is relatively small on a large part of the antenna array; the al-
gorithm of [2] takes advantage of this fact to reduce the number of nodes. When the

beam is not symmetric about z = 0, the number of elements required does depend on
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the structure of the pattern, and the dependence is fairly complicated. Generally, the

improvement for non-symmetric beams is less than that for the symmetric ones.

2. The qualiative behavior of the scheme is similar to that of the Gaussian quadratures
in that it displays no convergence at all until a certain minimum number of nodes is
achieved; after that, the convergence is very fast. This behavior is not surprising, since

the scheme is based on a Generalized Gaussian quadrature.

3. For the sector pattern with the sector [—1/2,1/2], the scheme reduces the required
number of nodes by a factor of about 1.5 for small-scale problems, and roughly by a
factor of 2 for large-scale ones; again, for large-scale problems, an asymptotic version of

this statement can be proven rigorously.

4. For the cosecant pattern with the parameters specified by (38), (39), the number
of nodes required is reduced by approximately a factor of 1.4. As the sidelobe level is
reduced, the improvement obtained by going from the equispaced discretization to the

optimal one increases rapidly.

5. An examination of Figures 5a, 6a shows that while the optimal nodes are by no means

uniform, they display no clustering behavior.

6. An examination of Figure 5j shows that the intensities of individual elements do not
become large; this is confirmed by the more extensive numerical experiments performed

by the author.

7. The combination of the preceding two paragraphs (combined with additional numer-
ical experiments and analysis) provide evidence that configurations of this type should

pose no supergain problems.

6 Generalizations

The results described above admit radical generalizations in several directions; several

such directions are discussed below,
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1. Conformal one-dimensional arrays. The extension of the techniques of this note
to one-dimensional arrays located on curves in R? is completely straightforward, involving
only a modest increase of the CPU time requirements of the procedure. Improvement in
the number of nodes required to produce a prescribed pattern is similar to that in the

case of a linear array.

2. Planar two-dimensional arrays. A straightforward generalization of the results of
Sections 4, 5, is to rectangular planar arrays. Here, a tensor product quadrature can be
constructed from the quadratures of Sections 4, 5, possessing all of the desirable prop-
erties of the latter. Obviously, the advantage in the number of transducers is squared,
so that (for example) replacing 50 nodes in each of the two directions by 23 nodes (see
Example 5.3 above) will lead to a factor of (50/23)® ~ 4.7 savings in the number of
elements.

The theory of Section 4 has been extended for disk-shaped arrays, via (inter alia) the
techniques developed in [23]. The improvement in the number of nodes is comparable to
that obtained in the rectangular geometry, and the CPU time requirements do not differ
appreciably from those in the case of linear one-dimensional arrays.

The extension of the theory to more general geometries in the plane is in progress. At
the present time, our only numerical experiments have been with arrays on triangles; the
results are encouraging, but the CPU time requirements of the algorithms are excessive
(we have only been able to design triangular arrays about 6 wavelengths in size). We
are now in the process of constructing a more efficient numerical procedure for such

computations.

3. Conformal two-dimensional arrays. The only environment in which we have
a satisfactory theory is when the array is located on a surface of revolution; even in
this environment, no experiments have been performed. We have not investigated more

general conformal two-dimensional arrays in sufficient detail.
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Figure 5: The pattern created by the 19 optimal elements, depicted in Figure
5a as described in Example 5.1
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Figure 5a: The distribution of elements creating the pattern depicted in
Figure 5, as described in Example 5.1
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Figure 5b: The optimal approximation to the sector pattern generated by 19
equispaced nodes, as described in Example 5.1
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Figure 5¢c: The optimal approximation to the sector pattern generated by 24
equispaced nodes, as described in Example 5.1

20




Figure 5d: The optimal approximation to the sector pattern generated by 29
equispaced nodes, as described in Example 5.1
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Figure 5e: The optimal approximation to the sector pattern generated by 31
equispaced nodes, as described in Example 5.1
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Figure 5f: The optimal approximation to the sector pattern generated by 34
equispaced nodes, as described in Example 5.1
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Figure 5g: The optimal approximation to the sector pattern generated by 21
optimal nodes, as described in Example 5.1
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Figure 5h: The optimal approximation to the sector pattern generated by 17
optimal nodes, as described in Example 5.1
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Figure 5i: The distribution of 17 elements creating the pattern depicted in
Figure 5h, as described in Example 5.1
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Figure 5j: The values of the sources located at the nodes depicted in Figure 5i
and generating the pattern depicted in Figure 5h, as described in Example 5.1

24




Figure 6: The pattern created by the 9 optimal elements, depicted in Figure
6a as described in Example 5.2
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Figure 6a: The distribution of elements creating the pattern depicted in
Figure 6, as described in Example 5.2
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Figure 6b: The optimal approximation to the sector pattern generated by 9
equispaced nodes, as described in Example 5.2
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Figure 6c: The optimal approximation to the sector pattern generated by 14
equispaced nodes, as described in Example 5.2
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Figure 6d: The optimal approximation to the sector pattern generated by 16
equispaced nodes, as described in Example 5.2

Figure 6e: The optimal approximation to the sector pattern generated by 18
equispaced nodes, as described in Example 5.2
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Figure 6f: The pattern created by the 11 optimal elements, in Example 5.2
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Figure 7a: The approximation to the sector pattern generated by 23 optimal
elements, vs. optimal approximation by 23 equispaced nodes, as described in
Example 5.3
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Figure 7b: The optimal approximations to the sector pattern generated by 42
and 48 equispaced nodes, as described in Example 5.3
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Figure 8a: The approximation to the cosecant pattern generated by 53
optimal elements, vs. optimal approximation by 53 equispaced nodes, as
described in Example 5.4

Figure 8a: The approximation to the cosecant pattern generated by 47
optimal elements, as described in Example 5.4
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