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SUMMARY

gdecause of excessive computation time, solving the
parapolic equation in nigner dimensions by means of
implicit finite difference schemes seems to be
impractical even if the scheme is unconditionally
stable. To economize the computation time and computer
storage, a stable explicit finite difference scheme is
introduced for the solution of the parabolic equation of
the Schridinger type. Tnis explicit scheme involes five
spatial points and is conditionally stable by
introducing an additional dissipative term. The
complete theory with respect to the stability is
provea. An application to a three-dimensional ocean
acoustic propagation problem is included to demonstrate
its valiaity.

LUTRUDUCT 10N

vany physical problems result in the real
application of pdrabolic equations. A familiar
regresentative parabolic equation is the heat equation
witn real coefficients. A nunber of applications (other
than neat conduction) arise in the area of quantum
mecnanics, plasm physics, optics, seismology, ocean
acuustics, etc. [1], ana result in a form of parabolic
equation with complex coefficients. A familiar
representative parabolic equation with complex
coefficients is the Schrudinger equation. For
discussion, the theory of a new stable explicit finite
gitference scneme as well as a real application are
cnosen to deal with the Schridinger equation of
multi-dimensions in the Torm

* Tnis research was jointly supported by Uffice of Naval
Kesearcn Grant NUUUl4-84d-WK-24184, NUOU14-82-K-Uld4,
ilaval Underwater Systems Lenter [ndependent Research
Project hobulU.

< (1)
u, 6 = i u .
r ;;; 9 %!5

For a more general expression, we can include the low
order terms to give
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As an application, a one-way ocean acoustic sound
propagation in three dimensions is represented by

where ko is a reference wavenumber and n(r,e,z) is the
three-dimensional index of refraction, which is defined
as a ratio of a reference sound speed to a
three-dimensional sound speed. Eq. (3) is in
three-dimensional cylindrical coordinates [2].

A solution exists [3] for Eq. (3) that uses an
unconditonally stable implicit finite difference scheme,
which discretizes Eq. (3) by means of central finite
differences for both z and e derivatives. Then the
Crank -Nicolson scheme is applied to formulate a large
system of sparea matrix. This system was solved by a
Yale University [3] preconditioning sparse technique.
Results, produced by the Crank-Nicolson scheme [2] are
reasonably accurate. However, due to the step-by-step




iteration to solve the system, excessive computer time
was required. This motivated us to develop a more
economical, stable explicit finite difference scheme.
In the sections to follow, the main discussion is on the
introduction of a conditionally stable explicit finite
difference thoroughly examining its consistency,
stability, and convergence. A theorem to describe the
stability of this new scheme is developed and proved.
Following the theoretical section, we use a
three-dimensional acoustic wave equation arising from
the application of underwater wave propagations as a
test case to examine the validity of the theory. We
examine the accuracy and speed of the theory by
comparing it with the solution produced by the
Crank-Nicolson scheme. As a physical illustration of
the three-dimensional problem, a plot is included to
describe intensity effects of the three-dimensional
ocean wave propagation.

A STABLE EXPLICIT SCHEME FOR HIGH DIMENSIONS

Chan, Shen, and Lee [4] discussed the solution to a
model Schrodinger equation, i.e.,

u. = i Uyps (4)
by the finite difference scheme
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which is UNSTABLE where k = ar, h = 8Z.

As a consequence, a number of stable explicit
schemes were introduced [4] to solve the parabolic
equation of the Schridinger type. In this paper, a
scheme is selected for application and replaces scheme
(5) by introducing a dissipative term, which is added to
scneme (5) to give

n*l _.n NNy 0
u:i u;1 o "3‘+1 ?.uJ u‘]._‘1
Kk h2

n n n
us ., = dui .y T obul -

+(a* ia)( A 3+14 J i-1
h

(6)

where a« and g are determined to be a = -1/4, 8 = 1/4 for
least resitrictive stability condition. As a
generalization of the scheme (6) to the Schridinger
equation of hign order [1], consider the
multi-dimensional Schridinger equation
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where the b's are assumed to have the same sign.
Without loss of generality, we assume b > 0 for =1,
2, ..., m. We consider the natural extension of scCheme
(6) takes the form
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In Eq. (8), j represents a multi-index (jl. Jps wees
p)s -.Dg" is the second-order centered difference
operator with respect to j, and h‘is the corresponding
mesh size.

THEOREM: If scheme (8) is used to solve Eq. (7), the
scheme is stable if and only if a < 0 and
k < min .
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The least restrictive stability constraint is

k < 1
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and is obtained when a = ~1/4 and 8 = 1/4.

The proof appears in its entirety in reference 1
and is outlined below.

PROOF : For economy in writing, define
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The amplification factor R can be determined to be
]
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The stability requires that ”R" < 1. After some
simplification, the stability condition can be written as
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let p = (nl. Ngs «ees n,) and define
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Clearly, D = D} U D2.




We consider two cases: 8 > 1/4 and g < 1/4.

CASE 1: 8 > 1/4.

Ia: In D1, n
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Ip: In Dp,
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From Egs. (10) and (11), it can be verified that for g >
1/4, the stability condition is
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CASE I1: 8 < 1/4.
Clearly D] is empty and D » D2. It is seen that
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The general stability condition is therefore (12).
Clearly, we must have a < U. To choose e« and g such
that the stability condition is the least restrictive,
we must take g = 1/4 so that
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To maximize the right-hand side above, we take o= -1/4,
which gives

k < ""iflﬁ_’ ,» establishing the result.
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AN APPLICATION

In the three-dimensional ocean, a class of sound
wave propagation problems can be represented by a
parabolic equation of the Schridinger type [2]. For
prescribed environmental conditions, an application of a
three-dimensional problem in sector can be shown as in
Figure 1 for its sector region of progagation, where
ro<r<rm 0 <ec<s5, and0<z< Wom In
actual Simulation the sector is Taken to pe -20° < @ <
20°. :
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Figure 1: Sector Region of Propagation

An exact solution u(r,e,z) has been obtained [2] -
and takes the form

i n’ (10)
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Yh;Ch satisfies the three-dimensional parabolic equation
3).

The computation speed among explicit finite schemes
[1] and an implicit finite scheme [2] using
two-dimensional as well as three-dimensional examples
has been examined by Chan et al. [5]. The same
three-dimensional problem with known exact solution was
used by Chan et al. [5) to examine, in particular, the
computation speed between each explicit scheme, as
described in [1], against the implicit finite difference
scheme, as described in [2]. Their findings show a more
favorable compuation speed for the explicit scheme than
the implicit scheme. We extend their study to some
three -dimensional effects using the explicit scheme,
expressed by Eq. (6).

In the application, the 8 is assigned to be w/100
and the modal index m is taken to be 3. The source is
placed at 50m below the surface and propagates the sound
in a regular three-dimensional cylindrical region. The
propagation is required to reach the maximum range at
550m where we can see three-dimensional effects. We
1imit the propagation to a sector of 40° (i.e., from
-20° to +20°) and centered at the origin (0,0,0). For
simplicity, the three-dimensional sound speed c(r,e,z)
is taken as a constant and the medium is assumed
nomogeneous. Initial boundary values are generated from
the exact solution.

Since our numerical results produce field intensity
information at all receiver depths, we can output
contour plots for each angle e. Figure 2 presents a
contour plot of energy flow at @ = 0°.
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Figure 2: Contour plot of Field Intensity

The plot was produced by the existing three-dimensional
Crank-Nicolson scheme in conjunction with a Yale sparse
technique. The accuracy of the results have been
discussed in [2]. The same calculation was performed by
the explicit scheme (Eq. (8)) using the same range step
size (0.00ln) as used by the Crank-Nicolson scheme. The
explicit scheme solution produced results very close to
Crank-iicolson's, thus, generated the same plot curves
as described in Figure 2. However, the advantage of the
explicit scheme is the CPU time required for the
complete computation, which is approximately 3.5 times
faster than the Crank-Nicoloson scheme for achieving the
same accuracy.

CONCLUSION

We have introduced an explicit finite difference
scheme to solve the Schrodinger equation. This scheme
was developed to be conditionally stable. Numerical
results demonstrated its accuracy and agreement not only
with the Crank-Nicolson scheme but also with the known:
exact solution. It is expected that if this scheme is
implemented in a vectorized computer, its storage,
implementation, and computation time advantages would
become evident. We showed only one of the explicit
scheimes we nave developed, we believe other explicit
schemes we have introduced [4] may have equal advantages
over implicit schemes.
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