Yale University
Department of Computer Science

Multiparty Secret Key Exchange
Using a Random Deal of Cards!

Michael J. Fischer Rebecca N. Wright

YALEU/DCS/TR-855
June 1991

1This research was supported in part by National Science Foundation grant IRI-9015570.




Multiparty Secret Key Exchange
Using a Random Deal of Cards*

Michael J. Fischer Rebecca N. Wright

Computer Science Department
Yale University
New Haven, CT 06520-2158

Abstract

We consider the problem of secret key exchange. A “team” of players P; through P;
wishes to determine an n-bit secret key in the presence of a computationally unlimited
eavesdropper, Eve. Following the example of Fischer, Paterson and Rackoff [5], the
team players are dealt hands of cards of prespecified sizes from a deck of d distinct
cards; any remaining cards are dealt to Eve. We explore how the team can use the
information contained in their hands of cards to determine an n-bit key that is secret
from Eve, that is, an n bit string which each team player knows exactly but for which
Eve’s probability of guessing even one bit correctly is the same before and after she
hears the communication between the team players. We describe randomized protocols
for secret key exchange that work for certain classes of deals, and we present some
conditions on the deal for such a protocol to exist.

1 Introduction

" An important problem of cryptography is the problem of multiparty secret key ezchange.
This can be viewed as a multiparty protocol between a group of players. At some point, a
subset of k > 2 players P; through P; form a “team”. The rest of the players are considered
eavesdroppers. The team players carry out randomized algorithms. Each player’s random
choices are private to that player. All communication is by public broadcast and is overheard
by the eavesdroppers. The following scenario demonstrates a situation in which the need
for secret key exchange might arise.

A certain government agency handles security of information on a “community of inter-
est” basis. For each project within the agency, a group of people are chosen to work on the
project. We call this group a team. Teams form and dissolve as various projects are started
and completed. All communication regarding the project is intended to be shared with
those on the team, and to be kept secret from those outside the team. However, the secu-
rity of the various communication channels—the telephone, interoffice mail, electronic mail,
and face-to-face communication—is not guaranteed. Hence, each time a team forms, they
would like to exchange a secret key, which they can then use as a part of some cryptographic
protocol to securely send all further communication regarding the project.

*This research was supported in part by National Science Foundation grant IRI-9015570.




1 INTRODUCTION 2

Another place where this problem may arise is in a distributed system, for example a
computer network linking a corporation’s headquarters and branch offices.

Formally, the team wishes to determine a random n-bit sequence § satisfying agreement,
secrecy, and uniformity. Agreement is met if each team player knows S. Secrecy is met if the
eavesdroppers’ probability of guessing S correctly is the same before and after hearing the
communication between the team players. Uniformity requires that S has equal probability
of being any one of the 2" possible n-bit sequences. Such a secret key is said to be shared by
the team. Each team player has an output tape that is physically protected from the other
players. An n-bit secret key exchange protocol is one in which each team player outputs
the same n-bit sequence satisfying the secrecy and uniformity conditions. The output can
then be used for a variety of cryptographic purposes, for example, as the key in private key
cryptosystems. (Cf. [4].)

We allow the eavesdroppers to be computationally unlimited, so standard cryptographic
techniques based on computational difficulty cannot be used. In fact, a secret key exchange
protocol is not possible without any further assumptions, for an eavesdropper can simulate
any team player and thereby learn S. Hence, we give the players secret initial information in
the form of correlated random variables. While the value of each player’s random variable is
unknown to the other players, the distribution from which the random variables are chosen
is publically known. For any team that forms, the remaining players are assumed to col-
laborate against the team, possibly communicating among themselves via private channels.
Thus we treat them as a single eavesdropper, Eve, who is given the initial information of all
of the non-team players. Note that because the initial information is given before the team
forms, it is not possible to deny Eve all initial information. We would like to distribute the
initial information in such a way that any team that forms can obtain a secret key.

Our framework is very general and admits the trivial solution in which each player is
given a priori a secret key for each team to which the player might eventually belong. Any
team that forms can use the corresponding preassigned secret key, but since there is an
exponential number of possible teams, the amount of initial information is quite high. Also,
the structure of the initial random information is rather complicated.

We desire instead correlated random variables that have a simple structure and a small
amount of initial information. A familiar example of such correlated random variables is
provided by ordinary card games in which players are dealt hands from a randomly shuffled
deck of cards. By looking at her own cards, a player gains some information about the other
players’ hands. Namely, she learns a set of cards that appear in no other player’s hand.
Peter Winkler developed bidding conventions for the game of bridge whereby one player
could send her partner secret information about her hand that was totally unrelated to the
actual bid and completely undecipherable to the opponents, even though the protocol was
known to them [7, 9, 10, 11]. Fischer, Paterson and Rackoff [5] carried this idea further,
using deals of cards for secret bit transmission between two players. We consider secret key
exchange protocols based on such card games in the remainder of this paper.

In Section 2, we describe a simple 1-bit secret key exchange protocol that succeeds for
all deals in which the team players’ hands are sufficiently large relative to the size of the
team and the size of Eve’s hand. In Section 3, we present a protocol that improves on the
first protocol in two ways. First, it establishes an n-bit secret key for arbitrary n. Second, it
requires only that each team player hold an arbitrarily small fraction of the cards (assuming
that the deck is sufficiently large). We present our formal model in Section 4. In Sections 5
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and 6, we present some necessary conditions on the deal for a secret key exchange protocol
to exist. In Section 7, we show that the protocol presented in Section 2 is optimal for a
natural class of related protocols.

We introduce some terminology used in the remainder of the paper. A deck D is a finite
set, whose elements we call cards; a hand is subset of D. Let d be the size of the deck.
The cards in the deck are known to all the players, as is the size of each player’s hand,
but the cards in each player’s hand are private to that player. In an (h1,ha, ..., hi; €)-deal,
each team player P; is given a hand H; such that H; C D and |H;| = h;. Eveis dealt a
hand E such that E C D and e = |E| = d = ¥, h;. The deal é = (Hy, Hy, ..., Hy; E)
is legal if Hy, Hy,..., Hy, E partition D. We call the description of the sizes of the hands,
€ = (ha,ha, ..., hi;e), the signature! of the deal, and call a deal having signature £ a £-deal.
If all k team players have the same hand size & in a signature, we write (h*; e).

An n-bit secret key exchange protocol that always succeeds in obtaining an n-bit secret
key for all legal {-deals is said to work for £. We also say such a protocol performs n-bit
secret key exchange for €.

2 A One-Bit Secret Key Exchange Protocol

We first consider a simple 1-bit secret key exchange protocol. We use the notion of a key
set defined in [5]. A key set K consists of two cards, one held by a team player P, the other
held by a different team player Q. A key set K = {z,y} is opague if, given the information
available to Eve, it is equally likely that P holds = and Q holds y or that P holds y and Q
holds z.

Once P and @ determine a opaque key set K that they hold, they can use it to obtain
a bit 7 that is secret to Eve. Namely, they agree that r = 0 if P holds z and r = 1 if P
holds y, or vice versa. Thus K acts as a 1-bit secret channel; that is, it allows P and Q to
communicate a single bit secretly.

The structure of our protocol is as follows. We think of the team players as nodes of
a graph. We connect two team players by an edge if the team players have a 1-bit secret
channel between them. The goal of the protocol is to connect the team players. We obtain
1-bit secret channels by finding opaque key sets between pairs of team players until the team
is connected. Then a designated player, say P;, chooses a bit s randomly. Using flooding
on the 1-bit secret channels, s is propagated to all the team players. Hence, s is a 1-bit
secret key. Clearly s satisfies agreement and uniformity. Secrecy is satisfied because each
1-bit channel preserves secrecy.

We define the notion of a feasible player. Let each team player P; hold h; cards and let
Eve hold e cards. Then P; is feasible if h; > l,orif h; =1,e =0, and h; > 1 for all 7 # i.
In the protocol that follows, we say a card z is discarded from the deck if all team players
agree to play as if z is no longer part of the deck. Similarly, we say a team player P drops
out of the protocol if the team players agree to play as if P were no longer part of the team.
The protocol follows. All ties are broken by choosing the lower numbered player.

1. Let P be the feasible player holding the smallest hand. (Ties are broken in favor of
the lower-numbered player.) If no player is feasible, then P is the lowest-numbered
player holding a non-empty hand, if any.

This term is borrowed from algebra, and is not intended to have any connection to digital signatures.
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2. P chooses a random card z contained in her hand and a random card y not in her
hand and proposes K = {z,y} as a key set by asking, “Does any team player hold a
card in K772

3. If another team player Q holds y, she knows that K is a key set, so she accepts K by
announcing that she holds a card in K. The cards z and y are discarded. Whichever
player of P and @ holds fewer cards announces the remaining cards in her hand, which
are discarded, and drops out of the protocol. The remaining team players go back to
step 1 with the “new” deal.

4. If none of the team players holds y, then K is rejected. In this case, z and y are
discarded, and the players go back to step 1.

The execution of the protocol continues in this manner until either there are not enough
cards left to complete step 1 or until only one team player is left. In the first case, the
protocol fails. In the second case, all the team players are connected by opaque key sets.
To see this, note that every key set K = {z,y} accepted in step 3 is opaque because it
is equally likely to be proposed by P in the symmetric deal where everything is the same
except that P holds y and Q holds z. Hence the team can obtain a 1-bit secret key by
flooding as previously described.

We call this protocol the SFP key set protocol (for smallest feasible player).

Theorem 1 Let £ = (hy,...,hx;e). Leth; > 1 for1 < i<k, and max h; + minh; > k + e.
Then the SFP key set protocol performs 1-bit secret key ezchange for €.

Proof: Define the function size((hy,...,hk;€)) = k + e. We show by induction on size(€)
that the SFP key set protocol succeeds in connecting the team if ¢ satisfies the conditions
of the theorem. Recall that by assumption, k¥ > 2. :

If size({) = 2 then, since k > 2, we have ¥ = 2 and e = 0, and thus the signature
is (h1, h2;0), for some hy,hy > 1. A proposed key set is guaranteed to be accepted, and
connects the team.

Inductively assume that the theorem holds for all £ such that size(§) = t, and consider
€ = (h1,...,h;e) satisfying the conditions of the theorem such that size(§) =t+1> 2.

Let M = maxh;, and m = min h;. To show that the protocol works for £, we first note
that since size(§) > 2, we have M + m > 2, and hence M > 2. After step 2 of the protocol,
execution goes to either step 3 or step 4.

If step 4 is taken, then the proposed key set cards are discarded and execution returns
to step 1 of the protocol with a “new” deal of some signature &'. The signature ¢ has the
same number of team players as &, and Eve has one fewer card. Hence size(§') = size(£)—1.
Let M’ and m’ denote the maximum and the minimum of the team players’ hand sizes in
€, respectively. In going from £ to ¢, only one team player’s hand, which is of size at least
2, changes size, and that hand loses only one card. Hence at most one of the maximum
or the minimum decreases, and if either decreases, it decreases by at most one. Hence
M'+m'> M +m—1>size(€) — 1 = size(¢') = t. By induction, we are done.

Suppose instead step 3 is taken. If k£ = 2, then this connects the team and the protocol
works. Otherwise, k¥ > 2, and execution returns to step 1 with a new deal of some signature

*In an abstract setting, {z,} is clearly the same as {y,z}. In an actual implementation, care must be
taken that the communication of {z, y} does not reveal which card came from P’s hand.
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¢'. In ¢, there are k — 1 team players, and Eve has the same number of cards, so size(¢') =
size({) — 1. As before let M’ and m' be the size of the largest and smallest hand in ¢. In
this case, in going from £ to ¢, one team player is entirely removed and one team player
loses a card. Furthermore, the team player who loses a card has a larger hand than the
player who is removed. Hence removing the player does not decrease the maximum, and
can only increase the minimum.

If all the h; are equal, then removing one card decreases the minimum by one and does
not change the maximum. Hence M = m > 2andso M'=M >2,and m' = M -1> 1, s0
M +m'=M+m-—12size() — 1 = size(¢'), and we are done. If the h; are not all equal,
then the maximum decreases by at most one, and the minimum does not decrease. Hence
M'> M —121,and m’ > m > 1. Thus again M’ + m' > size(¢), and we are done. ]

In Section 7 we consider protocols with different rules for choosing P in step 1. We show
there that the SFP key set protocol is optimal among all such protocols.

3 An n-Bit Secret Key Exchange Protocol

The SFP key set protocol has two limitations: it seems to require that the team hold more
than half the cards in the deck, and it only provides a 1-bit secret key. Moreover, it is
not obvious how to modify the protocol to overcome these limitations. For example, the
protocol cannot be repeated to obtain additional key bits since players drop out and expose
all of their remaining cards during execution.

The first limitation is overcome in [5] for a team of two players. A 1-bit secret key ex-
change protocol is presented there that works when each team player holds any fixed fraction
of the cards and the deck is sufficiently large. An analys’s of that protocol establishes the
following:

Theorem 2 (Fischer, Paterson, Rackoff) Let

16)= (5) 2.

There exists a 1-bit secret key ezchange protocol P such that for all 0 < B <1/2 and all
d 2 f(B), P works for (|8d],|8d];d -2 |Bd]).

We show how to use such a protocol to perform n-bit secret key exchange for teams
of size k and sufficiently large decks. Our construction is a general reduction of the n- -bit,
k-player problem for signature £* = (h¥;d — kh) to the 1-bit, 2-player problem for signature
€ = (|lh/(2n)],|h/(2n)];d — 2 |h/(2n)|). Thus, given a protocol P that performs 1-bit
secret key exchange for £, we construct a new protocol P* that performs n-bit secret key
exchange for £*.

Lemma 3 Letn > 1,k >2 andd > kh. Let P be a 1-bit secret key ezchange protocol that

works for . (lzf;J lth " [;J)

Then there is a protocol P* that perfoms n-bit secret key ezchange for

€ = (h¥;d — kh).
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Proof: Suppose n, k, d, h, P, £, and £* satisfy the conditions of the lemma. We construct
an n-bit secret key exchange protocol P* that works for £*.

Assume the players are linearly ordered, say, by their indices. Two team players are
said to be neighbors if they are adjacent in the ordering. P, is the leader and randomly
chooses an n-bit string S to be the secret key. Next, each pair of neighbors P; and Py
establishes an n-bit secret key B; that they share. They will use B; later as a one-time pad
for private communication between themselves. Finally, S is propagated secretly down the
chain of players as follows: P, sends S, encrypted by By, to Pz, then P, sends S, encrypted
by Bz, to P3, and so forth until all team players know S.

More specifically, P, chooses an n-bit string § at random. Each pair of neighbors P;
and P;4; uses P a total of n times, as described in detail below, to get an n-bit secret string
B; which they share. Later, when P; learns S, she sends E; = S & B; to P, publicly. Py,
recovers S by computing E; @ B;.

We now describe in detail how the one-time pads are established. Given a team player
P;, we say P;y, is the right neighbor of P; and P;_; is the left neighbor of P;. Each player
P; divides her hand into 2n parts, H} through H?", of size |h/(2n)] and a (possibly empty)
part containing her remaining cards. P; uses parts H} though H to establish B; with
her right neighbor, and she uses parts H*! through H?" to establish B;_; with her left
neighbor.

The j*B bit of the one-time pad B; is gotten as follows. P; plays the role of player 1 in
P, pretending that the only cards she holds are those in H. Pi41 plays the role of player 2
in P, pretending that the only cards she holds are those in H :_"_"i’ . The other team players
do not participate. We call the cards in H{ u H}I’ij the current cards. Both players pretend
that Eve holds all but the current cards. Thus P; and P, execute P as if the deal were
a {-deal. Since P is assumed to work for £, P; and P;y; obtain a shared secret bit, which
they use for the j*® bit of B;.

Note that whenever a card z not in the current cards is referenced, all players behave
as if Eve holds . If Eve does not hold z, she learns that z does not lie in the current cards,
but she learns nothing further about the location of z. Thus this process can be repeated,
using each part of each team player’s hand exactly once, to get all the one-time pads. |

We now apply Lemma 3 to families of 1-bit protocols.

Theorem 4 Let n > 1, k > 2, and let f be a function on the reals. Suppose for every
0 < B < 1/4 and every d > f(B) that there is a 1-bit secret key ezchange protocol P that
works for (|8d],|8d];d —2|Bd]). Let0 < a < 1/k, and let d > f(a/(2n)). Let P* be
the protocol constructed as in the proof of Lemma 3. Then P* performs n-bit secret key
ezchange for (|od| ked—k lad)).

Proof: Assume the hypotheses of the protocol, and assume we are given a deal of signature
€= (lad)¥;d -k lad]). Let h = |ad| and let 8 = a/(2n). Since a < 1/k, it follows
that d > k |ad| = kh and 8 < 1/4. Also, since n is an integer, [Bd] = |ad/(2n)| =
|[lad] /(2n)] = |h/(2n)]. Hence, P satisfies the conditions for Lemma 3. It follows from
Lemma 3 that P* performs n-bit secret key exchange for (hF;d — kh) = £ as desired. |

The following corollary to Theorem 4 is immediate using Theorem 2.
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Corollary 5 Let 0 < a < 1/k. Suppose
2
d>8 (1’-) g2n/a
- a

Then P* performs n-bit secret key exchange for (I_adjk; d—k|ad]).

Unfortunately, the required deck size here grows exponentially in n/a. Richard Beigel
[2] has suggested an improved 1-bit two-player protocol in which the deck size appears to
grow only polynomially in 1/a. Using such a protocol protocol, our construction yields an
n-bit team protocol for which the deck grows only polynomially in n/a.

4 The Formal Model

Before proceeding, we define our model more precisely. We look at a synchronous distributed
model of computation in which there is a team of k players P; through P, and a passive
eavesdropper, Eve. Let P be an n-bit secret key exchange protocol for P; through P;. In
each round of P, each of the team players simultaneously broadcasts a message to all of the
other players. All messages are overheard by Eve. Let Z be the set of possible messages, and
let z; € Z be the message that each P; sends in the round. The k-tuple (21, 22,...,2;) € ZF
is called a statement of P. A sequence 7 of statements is called a conversation of P, denoted
by 7p. If the conversation o is a prefix of the conversation T, we write ¢ < 7. We assume
each protocol P always terminates after some fixed number tp of rounds. A conversation 7,
is complete if |7p| = tp. Formally, cp = |J}2,(Z*)! is the set of conversations, ccp = (Z*)t»
is the set of complete conversations, and PCp = ¢p — ccp is the set of partial conversations.
As it will be clear from context which protocol is being discussed, we will omit the protocol
subscripts from t», 7, pc,, ccp, and cp. .

The protocol run by each player P, is a randomized algorithm that determines the
message for P; to send at each round based on her hand and the conversation so far.
Specifically, let H; be the set of possible hands for F;. Let H; € H;, 7 € cc and o € pec.
A protocol for P; is a pair (u;, 0;), where pi(H;,0) is a random variable over the message
space Z and O;(H;,7) € {0,1}" specifies an output value. Thus, Prob[u;(H;,0) = 2] is
the probability that P; sends message z at round r + 1 given that P; holds hand H; and
the conversation through round r is . While in general the output function is also be
a random variable, agreement can never be assured unless each player’s output value is
uniquely determined by her hand and the conversation. Hence without loss of generality,
we restrict the output function O; : H; X cc — {0,1}" to be a deterministic function.

A joint protocol for players P, through P consists of a set of protocols (p;, O;), where
each (pi, 0;) is a protocol for P;. All the protocols (y;, O;) are known to each team player,
as well as to Eve. Thus an n-bit secret key exchange protocol that works for ¢ is a joint
protocol {(p1,01),...,(uk, Ok)} for the team players such that for all possible runs on
each legal {-deal, if every team player P; plays according to (u;, O;), the team succeeds in
obtaining an n-bit secret key. It is a straightforward exercise to modify the protocols we
describe in English in this paper to fit this model.
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5 A Necessary Condition for Secret Key Exchange

Having seen some conditions under which a deal for a secret key exchange protocol exists,
we may wonder when such a protocol does not exist. We generalize a theorem of [5] that
shows secret key exchange is not possible if the deal does not provide sufficient shared
information.

We begin by exploring the correlation among hands in a legal deal. Throughout this
section, we fix a deck D and a signature £ = (hy, ha,.. ., hi;€) such that 35, h; +e = |D|.

Recall that a £-deal of a deck D is a collection of k + 1 hands (Hy, ..., Hg; E) such that
|Hi| = hi for i € {1,...,k} and |E| = ¢, and recall that a deal is legal if the hands partition
D. We sometimes use the term “general deal” to refer to a deal that is not necessarily legal.
Let A’ be the set of all (general) {-deals of D, and let A be the set of legal £-deals of D.
Note that A C A’ and that a general deal § is legal iff the hands in § are pairwise disjoint.
When speaking of deals, we will sometimes use the notation Hf to refer to the hand of
player P; and E? to refer to Eve’s hand in deal 6; thus, § = (Hf, HY, ..., H; E°).

A random legal deal is a uniformly distributed random variable over A. A random
general deal is a uniformly distributed random variable over A’. Note that in both a
random legal deal and in a random general deal, each hand H; is uniformly distributed over
Hi. The difference is that in a random general deal, the hands Hy, ..., Hy are independent
random variables, whereas in a random legal deal, they are correlated. Hence, only in a
random legal deal does player P; get any information about the cards in other player’s
hands.

Let 7 be the probability that a random general deal is also a legal deal. Intuitively, the
smaller 7 is, the more shared information the deal contains. The following theorem provides
an upper bound on 7 in order for n-bit secret exchange to be possible.

Theorem 6 Let{ and 7 be as defined above, and letn > 1. If ¥ > 1/2%~1, then no protocol
performs n-bit secret key ezchange for §.

For the proof of this theorem, we will need a lemma about real numbers.
Lemma 7 Let z1,Z2,...,%n,¥1,¥2,--.,Yn be nonnegative. Then
n n 1 n
min (H i, [1 ?li) S (H(wi + ?/i))
i=1 i=1 =1

The proof of Lemma 7 uses the theorem of the arithmetic and geometric means (AGM),
which says that if a; and a; are nonnegative, then \/aja; < (a1 + a2)/2.

Proof: (of Lemma 7) Assuming 1, Z2,...,%n, Y1, Y2, ..., Yn aTe nonnegative, we have

w(ols) s {{IE) o

=1 i=1
n

II vz (2)

i=1

< fi(=22)

i=1

IN
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1 n
= wl@i+w (4)
i=1
Here, line 1 holds because the square root of the product of two numbers is always at least
as big as the smaller of the two numbers. Line 3 is by the AGM. Lines 2 and 4 are direct
algebraic manipulation. ]

Proof: (of Theorem 6) Suppose P is an arbitrary protocol that performs 1-bit secret key
exchange for {. We show that % < 1/2%=1. This implies that no n-bit secret key exchange
protocol exists for any n > 1 when 5 > 1/2%-1, because in an n-bit protocol, each bit in
the sequence is a 1-bit secret key.

We begin by analyzing how a random conversation o € c is developed from the random
message functions u; of the players P;. Let H; € H; and let o = 0405 - -0, € ¢ be a (partial
or complete) conversation of P. Foreach 1 < £ < r,let of = (4, 45,. .., z£) be the collective
statement made by the players at round £ of o.

Let vf(H;,0,zf) be the event that p;(H;, o -- -0¢—1) = 2£, that is, the event that the
message which player P; sends at round £ is the one specified for it by o in a run in which
player P; holds hand H; and the partial conversation up through round £—1is o7+ -0p_;.
These events take the place of random private coins in our model and are assumed to be
independent.

Let (i(Hi,0) be the joint event v} (H;, A, z})& ... &vf (Hi, 01+ + 0,1, 27). Then (;(H;, o)
is the event that the behavior of player P; is consistent with ¢ at every round when P; holds
hand H; and receives messages at each round as specified by . Since Prob[v(H;, 0, 2f)] =
Prob(u;(H;,01 -+ 0¢-1) = 2{], it follows that

Prob{G:(Hi, )] = [] Problui(Hs, 01 - p_1) = 2]
=1

Now let o € cc be a complete conversation and H; € H;. Because P is assumed to be
a correct 1-bit secret key exchange protocol, each P; produces an output value O;(H;,0) €
{0,1}. For j € {0,1} we define

C!(H;,0)

Prob[(;(H;,0) & P; outputs j]
Prob[(i(H;,0)] if Oi(H;,0) = j
0 otherwise
Thus, Ci(H;,0) = C)(H;,0) + C}(Hi,0) = Prob[(;(H;, 0)).
A run of the joint protocol P given deal § results in conversation o iff each player P;
plays according to o when given hand Hf. Because the events G(HS,0),. .., C(H $,0) are

independent, the probability C(6, o) of this occurring is just the product of the probabilities
of each player playing according to o. Thus, we have

k
C(é,0) = [] Ci(H, 0). (5)

=1
Since always some complete conversation results, we have

> C(s,0)=1. (6)

oceCC
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Define ' .
cl(o) = Z C}(H;, o).
H;eH;
Then cf (o) is the probability that P; plays according to o and outputs value j given a
random hand in H;. We also define

k .
fio)=3_ [Ici(#!,0). (7)

f€A i=1

Then fi(c)/|A| is the probability that all team players play according to ¢ and output j
when given hands from a random legal deal in A.
We complete the proof by establishing

k
1= ¥ (£@+ @) < go T TS +0) = 5181 (®)
og€CC

oc€CC =1

It will follow immediately that
~_1al 1
¥= a1 < k-1
as desired.

Let é be any legal deal and let o be any conversation which is possible for §, that is,
for which C(é,0) > 0. Hence, for each i, at least one of C?(Hf,0) and C}(H, o) must be
non-zero. By the agreement condition, either C?(Hf, o) > 0 for all 4, or C}(Hf, o) > 0 for
all i. Moreover, also by agreement, C?(H¢, o) and C}(H?, o) cannot both be non-zero for
any player P;. It follows from these facts that

k k
[T, o)+ [I CH(H,0) = C(6,0) 9

=1 =1

Using lines 6, 7, and 9, we get

k k
2 (F@)+ 1) = X Y (TIc@! o)+ Cl(at,o)

o€CC og€eCCcA (i:l t=1 )

= Y. > C(0)

feAo€CC

= ZE: 1
seA
= |A] (10)

The following is immediate from the definitions and the fact that A C A’

ko k ‘ ko
Floys Y TICiE,0)=]] Y Ci(Hi,0)=[[ (o). (11)

S€Ai=1 i=1 H;eH; i=1
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The secrecy condition implies that fO(¢) = f1(o), since otherwise Eve could determine
from a complete conversation o which output was more likely to have occurred. Thus, by
line 11 and Lemma 7, we have

k k
P40 < 2omin ([T [Teko)
=1 =1
'k
<25 ([[ ($0)+ cz(a)))
k
= 5 (H (cdo) + cz(a)))
=1
Summing over all complete conversations, we get
k
> () + 110)) < g+ T TT (<0(0) + (o) (12)
o€cc o€CC i=1

The following is also immediate from the definitions:

k k
Y I(E@+ed@) = T I X (CoH:,0)+CHii, o))

o€CCi=1 o€CCi=1 H,eH;

k
= Y Y J]ce,0) (13)

SEA' ceCCi=1

Applying line 6 gives

k
> II (C?(a)+c,‘(a)) =y 1=|a (14)

o€CCi=1 s€A’
Combining lines 10, 12, and 14 yields line 8 as desired, completing the proof. [ ]

We remark that the above proof goes through even for protocols in which Eve is not
allowed to look at her hand. Thus, our proof applies to a larger class of protocols than
necessary. We do not know how to use Eve’s ability to see her cards to improve this result.

Corollary 8 Letn > 1 and2 < k < 8. Then no protocol performs n-bit secret key ezchange
for (1%;1).

Proof: In these cases, 7 = (k + 1)!/(k + 1)F > 1/2%-1 | n
For k > 8,7 = (k+1)!/(k + 1)¥ < 1/2%-1, 50 nothing can be concluded.

6 The impossibility of (1,1,1;0)

Theorem 6 says nothing about the (1%;0) case. However, it is possible to show the following.

Theorem 9 Letn > 1. Then no protocol performs n-bit secret key exchange for (1,1,1;0).
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In order to prove Theorem 9, we need only show that no protocol performs 1-bit
secret key exchange for (1,1,1;0). To prove this, we look at properties of the possi-
ble conversations of a 1-bit secret key exchange protocol on (1,1,1;0)-deals. Suppose
P = {(p1,01), (p2, 02), (13, O3)} performs 1-bit secret key exchange for (1,1,1;0). Let
the deck D = {0,1,2},let A be the set of legal (1,1, 1;0)-deals of deck D, and let cc be the
set of complete conversations of P on deals in A. We denote each of the three possible single
card hands by the card comprising the hand, and we denote each deal by the permutation
of (0,1,2) describing the deal.

Let 7 € cc. We say that 7 is realizable if there is some § € A such that r is a possible
conversation of the protocol when the deal is §, and in this case we say § is consistent with
7. An output v € {0, 1} is possible given r if there is some § = (H;, Hz, H3) € A consistent
with 7 such that v = O;(H;, 1) for each i.

For a realizable conversation 7, we define the function T, with range {0,1,-}.

R if Ci(H,7)=0
TT(R,H)—{ O(H,T) otherwise

For a given 7, we denote the matrix

T.(P1,0) T,(P;,0) T.(Ps,0)
TT(PI, 1) TT(P2, 1) T‘I‘(PS, 1)
TT(Pla 2) TT(P2,2) TT(P3’2)

by (T-(P;,7)). Lemma 10 says that for a realizable conversation 7, each row and column of
(T>(Pi,j)) has exactly one 0, one 1, and one —.

Lemma 10 If 7 € cc, then for each i € {1,2,3} and for each j € {0,1,2},
{T.,-(P,',O), TT(P%" 1)’ TT(P"’2)} = {0’ 1, "}
{TT(Plaj)a TT(P29j)7 TT(P3?j)} = {07 1, _}'

Proof: Suppose 7 is a realizable conversation. Then outputs 0 and 1 must both be possible
given 7. Otherwise, whenever Eve hears 7, she will know that the output value must be
the one possible value. Thus there are two disjoint deals 6 = (H?, HY, HY) and 6! =
(H}, H}, H3) such that T-(P;, H) = 0 and T,(P;, H}!) = 1. In order to satisfy agreement,
the remaining values of (T(P;, 7)) must all be —. n

Thus exactly two deals are consistent with each realizable conversation and there are
exactly 12 distinct possible matrices (T (P;, j)) for realizable conversations 7. We define the
parity of a deal to be the parity of the permutation describing the deal. Inspection shows
that both of the deals consistent with a realizable conversation have the same parity. We
say that the parity of a realizable conversation 7 is the parity of the two deals consistent
with 7. We are now ready to derive a contradiction.

Proof: (of Theorem 9) Suppose P performs 1-bit secret key exchange for (1,1,1;0). We
construct a tree of conversations as follows. The nodes of the tree are conversations, and
the edges out of a node are labeled by possible next statements. Thus the interior nodes
are partial conversations; leaf nodes are complete conversations. A conversation 7 passes
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through a node o if o0 < 7. We say a node is single valued if all conversations passing
through it have the same parity. It is multivalued otherwise.

By the correctness of P, all (1,1, 1;0)-deals must be possible initially. Thus the root
of the tree is multivalued. Because only one conversation passes through any leaf node,
all leaves are single valued. Hence there must be a multivalued node o having only single
valued children. Thus there exist complete conversations 7o and 7, passing through o such
that 7 has parity 0 and 7; has parity 1.

Then there exist ¢ and H such that T, (P;,H) = T,,(P;,H) = —. Without loss of

" generality, the two deals consistent with 7o are (0,1,2) and (1,2,0), and the two deals
consistent with 7 are (0,2,1) and (2,1,0).

Let Z°, Z' be statements such that 0Z* < 7, for i € {0,1}, where Z¢ = (24, 24, 24).
Then Z = (29,2}, 21) is a possible next statement for deals 6, = (0,2,1),and 6, = (1,2,0).

The two deals 6 and §; have opposite parity, so ¢Z is in fact a multivalued child of o,
contradicting the nonexistence of a multivalued child. n

This proof is highly dependent on the specific properties of the set of possible (Tr(P;, 7))
matrices of (1,1,1;0)-deals, and does not generalize easily to larger teams. However, using
an extension to the graph theoretical framework developed by Beaver, Haber and Winkler
[1] to represent shared knowledge between two players, it is possible [6] to prove that for
any n > 1 and k > 3, no protocol performs n-bit secret key exchange for (1%;0).

7 Key Set Protocols Revisited

Even for the simple case of n = 1, there is a large gap between signatures for which we have
a secret key exchange protocol and signatures for which we have shown that no protocol
exists. For example, (2,2, 2;2) falls into this gap.

One approach to closing the gap is to modify the SFP key set protocol presented in
Section 2. In step 1 of this protocol, a team player P, the proposer, is chosen. By considering
different rules for choosing the proposer, we get a class of protocols. We call such a rule a
- proposing rule. We require a proposing rule to be a deterministic function of the current
signature. We call the protocol that results from proposing rule R the R key set protocol.
We call the class of all such protocols the class of key set protocols. By this definition, the
SFP key set protocol results from the smallest feasible player proposing rule (SFP): If any
team player is feasible, the feasible player with the smallest hand is chosen. (Ties are broken
in favor of the lower-numbered player.) If no team player is feasible, the lowest-numbered
team player holding a non-empty hand is chosen, if any.

Theorem 1 holds for any R key set protocol where R always chooses a feasible player if
some team player is feasible. However, the converse does not in general hold. For example,
the signature { = (3,3,2,1;1) does not satisfy the conditions of the theorem, but the SFP
key set protocol works for £. We have been unable to find an exact characterization of the
signatures for which the SFP key set protocol works. Nevertheless, it is possible to show
that the SFP key set protocol is optimal for the class of key set protocols. By this we mean
that for a signature ¢, if the R key set protocol works for ¢ for some R, then the SFP key
set protocol also works for £. To prove this we look at a simple combinatorial stick game
between a team and an adversary. The stick game abstracts the important aspects of the
key set protocol.
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7.1 The Stick Game

A configuration of the stick game consists of k team piles P; through Py and a pile E. Pile
P; contains |P;| sticks, where |P;| > 0, and pile E contains e sticks. On the team’s turn,
the team designates a team pile, say P;, such that |P;| > 1. On the adversary’s turn, the
adversary either removes one stick from P; and one from E (this move is only allowed when
|E| > 1), or chooses another team pile P; such that |P;| > 1, removes the smaller of P; and
P; entirely, and removes one stick from the larger pile. Note that removing a pile is not the
same as removing all the sticks in the pile. The team always moves first.

A configuration of the stick game is described by the tuple (hy, ..., hx;e;I). I is called
the indez component. If it is the team’s turn, I has the value T'. If it is the adversary’s turn,
then I is the index of the pile designated by the team on its previous turn. We generally
talk about a team move as a choice of P;, and an adversary move as a match, either with
some P; or with E.

Play ends when there are one or zero team piles, in which case the team wins, or when
there is no move available (either to the team or to the adversary), in which case the team
loses. We call the stick game starting from configuration C the C stick game.

A strategy for the team, or team strategy, is a function that, given a configuration with
index component T, specifies the next team move. That is, it gives a P; (i € {1,...,k})
such that |P;| > 1. Similarly, an adversary strategy is a function that specifies the next
adversary move. That is, given a configuration with index component P; it returns either
E, or a P; such that j # i and |Pj| > 1.

We say a configuration C' is winning if there is some team strategy S such that if the
team plays the C stick game by strategy S, then the team wins regardless of the moves
chosen by the adversary. We say S is a successsful team strategy for C. We call S an
optimal team strategy if it is a successful team strategy for every winning configuration C.
Similarly, we say that C is losing if there is some adversary strategy A such that if the
adversary plays the C stick game by strategy A, then the team loses regardless of the team
moves chosen. The notions of A being a successful adversary strategy for C and an optimal
adversary strategy are defined similarly.

The stick game is a finite game, since every adversary turn decreases the total number
of sticks by at least two. Furthermore, it is a game of complete information, since the team
and the adversary take turns and all information about the state is known to both the team
and the adversary. Hence game theory tells us that every configuration is either winning or
losing, and an optimal team strategy S and an optimal adversary strategy .A both exist [3].

We define a feasible pile in a stick game configuration exactly as we defined a feasible
player in a signature, and we similarly define the SFP strategy for the team in the stick
game. A team pile P; is feasible if |P;| > 2 or if |Pi| = 1,|E| = 0 and for all j # i,|P;| > 1.
The SFP strategy for the team in the stick game chooses i such that P; is the feasible pile
with the smallest size. In the case of ties, the smallest such i is chosen. If no team pile is
feasible, then the lowest-numbered non-empty pile P; is chosen, if any. (Here, SFP stands
for smallest feasible pile). If all piles are empty, the game ends.

7.2 Correspondence between Key Set Protocols and the Stick Game

There is a close connection. between the stick game and key set protocols. N amely, a
configuration whose index component is T corresponds to a signature. A team’s strategy
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S in the stick game corresponds to a proposing rule R for the key set protocol. Namely,
the pile P; is chosen in the stick game iff player P; proposes in the R key set protocol. The
adversary’s response in the stick game corresponds to naming the holder of the second card
of the proposed key set. Finally, a winning end configuration in the stick game corresponds
to a signature in which the team has trivially achieved a shared secret key (since the team
is of size at most one), and a losing end configuration in the stick game corresponds a
configuration in which no key set is possible (since the team has size two or greater and all
but possibly one player has run out of cards).

We claim that a configuration in the stick game is winning for a given team strategy if
and only if the key set protocol works for the corresponding signature when the team plays
according to the corresponding proposing rule.

In the one direction, the claim is obvious: namely, if the team wins in the stick game, then
it wins in the corresponding key set protocol. In the other direction, there is a complication
in that the adversary in the stick game has complete control over which pile to match,
whereas in the key set protocol, the hand containing the matching card is determined by
the a priori deal. However, the matching card could be in any of the other hands since the
proposed key set consists of two cards not previously mentioned. This allows us to show
the following. ’

Lemma 11 (Stick Game Lemma) Let stick game strategy S correspond to proposing
rule R. Then S is a successful team strategy from configuration (h1,y...,hg;e;T) if and
only if the R key set protocol works for (hy,...,ky;e).

By Lemma 11, the optimality of the SFP stick game strategy implies the optimality of
the corresponding SFP key set protocol.

7.3 Optimality of the SFP Stick Game Strategy

For convenience, we define a size function size((hy, ..., ht;e;I)) = k + e. We prove several
lemmas by induction on the size of a configuration. Looking at the key exchange problem,
we noted that a team player holding no cards could never learn any secret information.
Lemma 12 makes this precise in regards to the stick game.

Lemma 12 Let C = (hy,...,h;e;T). Ifk > 2 and h; = 0 for some i, then C is a losing
configuration.

Proof: We prove this by induction on size(C). Without loss of generality, we assume 7 = 1.
If size(C) = 2, then since k¥ > 2, we have e = 0 and k = 2. Hence the configuration is
(0,h2;0;T). If hy = 0, then the team can not move, and so loses. If hy > 0, the team must
choose P;. At this point there is no adversary move, and so the team loses.

Inductively assume that the lemma holds when size(C) = m > 2. Consider a configura-
tion C' = (hy,...,hx; e;T) in which size(C) = m + 1, and suppose C satisfies the conditions
of the lemma. Because k > 2, the team must choose a team pile, say P; for which |P;| > 1.
Hence, j # i. The adversary must choose a nonempty pile to match with and also does not
choose P;. Hence, the resulting configuration C” still has a pile of size 0. Because any ad-
versary match lowers either the number of piles or the size of E by one, C’ has size(C) = m
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and is therefore losing by the induction hypothesis. |

Let C = (h1,...,ht;€;T) and C' = (hy/,...,h";€'; T) be two configurations. We say
C' dominates C if ¢’ < e and there is a permutation 7 such that R} > hq(i) for each i. We
write C' > C.

Lemma 13 and Lemmas 15-18 demonstrate various pairs of configurations C and C’ such
that if C is winning then C” is also winning. The proofs of these lemmas are examples of what
is known as a strategy stealing argument. These proofs are by induction on size(C). For the
inductive step, we assume the lemma holds when size(C') = m and consider configurations
Co and Cj that satisfy the conditions of the lemma and have size(C) = m+1. We construct
configurations Cy,...,C; and Cy,..., C? as shown in Figure 1. Generally i and j will be 1
or 2.

Co winning 0 winning
4 t
4 1l

Ci winning = C’ winning

Figure 1: The strategy stealing argument.

The configurations C},... are constructed by playing the Cp stick game. We assume
the team never makes a move that would take a winning configuration to a losing one,
and we specify the adversary moves. Since an adversary move cannot take a winning
configuration to a losing one, it follows that if Cp is winning, then every C; is winning.
Similarly, the configurations Cy,... are constructed by playing the Cj stick game. We
assume the adversary never makes a move on a losing configuration that results in a winning
configuration, and we specify the team moves. It follows that if Cj is losing, then every Cy
is losing, or conversely, if any C} is winning, then C{ is winning.

To avoid confusion, we call the Cy stick game G, and we refer to the G team and the
G adversary. Similarly, we have the G’ game, team and adversary. We will choose the G
adversary moves and the G’ team moves in such a way that we end up with a C; and C]'- that
either satisfy the induction hypothesis or such that some previous lemma says that if C; is
winning then C7 is. The main way we do this is mirroring. The G adversary mirrors the G’
adversary by matching with the same pile the G’ adversary previously matched with. The
G’ team mirrors the G team by choosing the same pile previously chosen by the G team.

Lemma 13 (Domination Lemma) If C is winning and C' > C, then C' is winning.

Proof: By the definition of domination, C and C’ have the same number of piles, say k. If
size(C) < 1, then there is at most one team pile in C and hence also in C’. Thus the team
has won in C”, so C’ is winning and we are done.

Inductively assume that the lemma holds when size(C) = m. We consider configurations
Co = (h1,...,hx;6;T) and C = (hY,..., h}; €’; T) such that Cg is winning, size(Cp) = m+1
and C() Z Co.
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If kK = 1, then Cj is winning and we are done. Otherwise, k¥ > 2, and so the G team
has not won in Cp, and must choose a pile, say P;. We let C; be the resulting configuration

(h1,...,hr;€;%). In game G’, we consider the corresponding team choice Pr-13;), which
must be possible because A/ _, G 2 hi, by the definition of domination. Hence, we choose
Ci = (hy, ..., h}; €';771(3)). The G’ adversary now makes a move, resulting in configuration

C;. We construct configuration C; by having the G adversary mirror the G’ adversary, if
possible. If the G’ adversary matches with E, then the G adversary can match with E, since
e > €, by the definition of domination. Then C} > C3, and so by the induction hypothesis,
C3 is winning, and hence C{ is winning.

Otherwise the G’ adversary matches with some P;. Because Cg is winning and k > 2,
Lemma 12 implies that |Pg| > 0 for every £. Hence the G adversary can match with Pr(5),
and again Cj > C3, so by the induction hypothesis, C} and hence C} are winning. n

A special case of the Domination Lemma is that if two configurations differ only by a
permutation of the pile sizes, they are either both winning or both losing. We sometimes
say two such configurations are equal up to permutation.

We call a team pile of size 1 a singleton. Lemma 14 says that whenever a singleton is
feasible in a given configuration, the configuration is winning.

Lemma 14 Let C = (hy,...,hi; &;T). If for some i, P; is feasible and h; = 1, then C is a
winning configuration.

Proof: We prove this by induction on k. Without loss of generality, assume i = 1. Then
P, is feasible and h; = 1. This implies that for every j > 2, h; > 1 and that e = 0. If P, is
the only team pile then C is winning.

Inductively assume that the lemma holds for all configurations C with k team piles.
Consider Co = (1, ha, ..., hk41;0; T). To show that Cp is winning, we show that there is a
team move that results in a winning configuration. If the team chooses Pj, the resulting
configuration is C; = (1,hs,...,hk41;0;1). Because e = 0, the adversary must match
with some P;. Without loss of generality, let j = 2. The new configuration is Cp =
(h2 = 1,h3,...,hr41;0;T). Cz dominates (1, hs,.. «yhk41;0; T), which is winning by the
induction hypothesis. Hence by domination, C; is winning, and so Cj is winning. n

Lemma 15 Let C = (hy,...,h,z;6;T) and C' = (hq,...,hy,z — ;e — L;T). IfC is
winning, e > 1, and each h; satisfies h; > z or h; = 1, then C' is winning.

Proof: If size(C) < 2, then C” is a win, since size(C"') = size(C) — 1 < 1.

Inductively assume that the lemma holds when size(C)) = m. Consider Cy and Cy that
satisfy the conditions of the lemma such that size(Cp) = m + 1 > 2. As shown in Figure 1,
we construct configurations C; and C} by playing the Cy stick game and the C}, stick game.

I k = 0, then C' is winning. Otherwise k¥ > 1, and so the G team has not won in Co,
and must choose a pile, say P;. The G team won’t choose a pile with |P;] = 1, because
by assumption, e > 1, so the G adversary can match with E. In this case C; is losing by
Lemma 12. Hence G chooses P; such that |Pi| > =.

If |P;| = z, we have the G’ adversary match with Eve. Then up to permutation, the
resulting configuration Cy = (ha,..., ks, z — 156 — 1;T) = Ch, so Cp is winning. Otherwise
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|P;| > z, and without loss of generality, i = 1. Then C) is (hy,...,hx, z;€; 1). We mirror
the G team move to G, so C] = (hy,...,hg,z — 15 — 151).

We then mirror the G’ adversary move to G. We consider three types of adversary moves
separately. In each case we show that Cj is winning. Hence, C}) is winning, as desired.

¢ G’ adversary matches with E. Then

C; (h1 = 1,hy,... kg, z — 16— 2;T)
C2 = (hl —1,h2,...,hk,$;€—1;T)

Furthermore, h; > x implies Ay —1 > z, so by the induction hypothesis, Cj is winning.

e G’ adversary matches with P; such that h; # z — 1. Without loss of generality j = 2,
SO

C; = (max(hy,hg)—1,hs,...,hk,z — ;e ~1;T)
C2 = (max(hi, hy) —1,hs,..., hi,z;6;T)

Since hy > z, we have that max(hy, h2)—1> hy—1 > z. By the induction hypothesis,
Cj is winning.

e G' adversary matches with P; such that |Pj| = z — 1. Without loss of generality,
J =k +1, and we have the G adversary match with Pyiy1. We have h; > z, so

Cé = (hl_lahZ,'--,hk;e-l;T)
C; = (hl"]-’h%'“ahk;e;T)

Then C3} > C,. Hence by domination, C} is winning. m

Lemma 16 Let C = (hy,...,ht;¢;T) and C' = (hy,..., hg,z;e — 1;T). If C is winning
andz > e > 1, then C' is winning.

Proof: If size(C) = 1, then C' = (hy,z;e — 1;T). Because C is winning and has at least
two piles, Lemma 12 implies that h; > 1. Hence by Theorem 1 and Lemma 11 (Stick Game
Lemma), C’ is a winning configuration.

Inductively assume that the lemma holds if size(C) = m. Consider Cy and C{ that
satisfy the conditions of the lemma such that size(Co) = m + 1. If k < 2, then by the above
argument Cj is a win and we are done. Otherwise there are at least 2 team piles in Cy, and
so the G team has not won, and must choose a pile, say P,. We mirror the G team move
to G'. In each case we show C} is winning.

* G' adversary matches with P; such that |P;| # z. Then we mirror the G adversary
move to G. Without loss of generality, j = 2, so

C; (max(hy, hg) — 1, hs,..., kg, z5e — 1;T)
Cy; = (ma'x(hhh?) - 1’h37“-ahk;e;T)

By the induction hypothesis, C} is winning.



7 KEY SET PROTOCOLS REVISITED 19

¢ G’ adversary matches with P; such that |P;| = z. Without loss of generality, j=k+1.
In this case, we have the G adversary match with E. Then

Cy = (max(z,h1)—1,hy,...,h;e—1;T)
Cy = (h1—1,hg,...,hx;e—1;T)

Hence Cj > C3, so C} is winning.

Note that it is not possible for the G’ adversary to match with E, since |E| = 0. ]

Lemma 17 Let C = (hy,...,hs,z,2;¢;T) and C' = (hy,...,hg,z — 1,2 — 1;e — 1;T). If
C is winning, e > 1, z > max(e, (e + 3)/2) and each h; satisfies h > z or h; = 1, then C'
is winning.

Proof: If size(C) = 2, then C' = (z — 1,z — 1;0; T), which by Theorem 1 and Lemma 11
(Stick Game Lemma), is winning.

Inductively assume that the lemma holds if size(Cp) = m. Consider Cy and C} that
satisfy the conditions of the lemma such that size(Cp) = m + 1. There are at least 2 team
piles in Co, so the G team has not won, and must choose a pile, say P;. It is not possible
that the G' team chooses P; such that |P;| = 1, because then the G adversary could match
with E, and by Lemma 12, the resulting C; is losing.

1. G team chooses P; such that |P;| = z: In this case the G adversary matches with
another pile P; with h; = z. Without loss of generality, i = k + 1 and j=k+2.
Then C; = (hy,...,hx,z— 1;¢;T), so Cy and Cp satisfy the conditions of Lemma 16,
and hence C} is winning.

2. G team chooses P; such that |P;| > z: We mirror the G team move to G’, and we
mirror the G’ adversary match to G. Without loss of generality, let ¢ = 1.

* G’ adversary matches with P; such that |P;| #  — 1. Without loss of generality,
j=2,s0
C; (max(hy, hg) = 1,ks,..., kg2 — 1,2 — 1;e — 1;T)
C; = (ma‘x(hl’ h2) -1, h3’ ey hk7 T,T;€; T)

By the induction hypothesis, C} is winning.

e G’ adversary matches with P; such that |P;| = z — 1. Then without loss of
generality, j = k + 1, and we have the G adversary match with Py4q. Since
|B| > =,

Cé = (hl—17h27°'°3hkam—1;e—1;T)
Ca = (h—1,hy... hy,z567T)

" Then C: and C;j satisfy the conditions of Lemma 15, so C} is winning. n

Lemma 18 Let C = (hy,...,hi,z, y; €; T) and C' = (hy,...,hi,y';¢;T). If C is winning,
Y+12>2y2>z, e>0, each h; satisfies h; 2z or h; =1, and either
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o (z,9,9) #(2,2,1)
e there is no feasible singleton in C,
then C' is winning.

Proof: If size(C) < 2, then C’ is winning.

Inductively assume that the lemma holds if size(Co) = m. Consider Cp and C} that
satisfy the conditions of the lemma such that size(Cp) = m + 1 > 2. Because there are at
least 2 team piles in Cp, Lemma 12 implies each pile must be of size at least 1. The G team
has not won, and must choose a pile P;.

1. G team chooses P; such that |P;| = z (or y): In this case the G adversary matches
with a pile P; with h; = y (or z). Without loss of generality, i = k+ 1 and j = k + 2.
Then C; = (h1,...,ht,y — 1;¢;T). Hence Cy > C§, so C} is winning.

2. G team chooses P; such that |P;| > z: Without loss of generality, let i = 1. We mirror
the G team move to G'.

o G’ adversary matches with E. If (z,y,y') # (2,2,1),0r if (z,9,%) = (2,2,1) and
e #1,orif (z,y,9) = (2,2,1), e = 1 and there is not exactly one singleton in
Co, we mirror the match with F back to G. Then

Cé = (hl - 1,h2,---,hk,y';€— I’T)
Cg = (h1 - l,hz,...,hk,x,y;e— 1;T)
By induction, C3 is winning. Otherwise, (z,y,¥’) = (2,2,1), e = 1 and there is
exactly one singleton, say Py, in Cp. In this case, instead of mirroring the match
with E, we have the G adversary match with P;. Then
Cé = (hl - l,hg, .o -,hk—l’ 1, I;O;T)
C; = (hl = 1,ho,.. vy hk-1,2,2; 11T)

Then hy — 1 > z, so C; and C} satisfy Lemma 17 and hence C} is winning.
o G’ adversary matches with P;, where |P;| # y'. In this case, we mirror the G’
adversary move to G. Without loss of generality j = 2, so
Cy; = (max(hy,hg)—1,hs,...,ht,4';e;T)
C2 = (max(hl, h‘?) -1, h3’ ceey hk) T,Y;6; T)
If (z,9,9') = (2,2,1) then we haven’t changed e or the number of singletons from

Co to Cy. Furthermore, h; > z implies max(hy,hy) — 1 > hy — 1 > z. Hence by
induction, Cj is winning.

o G' adversary matches with P; such that |P;| = 3. Without loss of generality,
J =k + 1. Then we have the G adversary match with Pryo, then
Cé = (h27 R ) hk,ma‘x(hlv yl) = 1ie; T)
CZ = (h27 sy hka x7ma‘x(h17 y) -1 €; T)

We have by > z, so max(hy,y’) > max(h;,y)— 1> z. Hence by induction, C} is
winning.
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3. G team chooses P; such that |P;| = 1: Without loss of generality, let i = 1. Suppose
(z,9,9') = (2,2,1). Then by assumption either e > 0 or there is a j # i such that
h;j = 1. In either case the G adversary can match to get a resulting configuration that
has a size 0 pile, and has at least two team piles, since Cy has at least three team
piles, a contradiction to Lemma 12. Hence (z,y,y’) # (2,2,1). Similarly, there can
not be any singleton other than P; in Co. This implies that P, is feasible in C}), so by
Lemma 14, C} is winning. . -

Lemma 19 says that for teams of size two, Theorem 1 is exact.
Lemma 19 If C = (hy,ho;e;T), then C is winning if and only if hy + he > 2 + €.

Proof: From Theorem 1 and Lemma 11 (Stick Game Lemma), we know that if Ay + hy >
2+ e. To show the converse, suppose that h; + h; < 2+ e. In order for the adversary to
force the team to lose, the adversary can never match with E, for this would immediately
result in a win for the team. This can be done until |E| = 0. Every match with E results
in exactly one stick being removed from the team piles, so after e matches with E, the
total number of sticks in the team piles is h; + hy — e. Since hy + hy < 2 + e, we have
hy + hy — e < 2. Hence after e matches with E, at least one team pile is of size 0. Since
there are still two piles, Lemma 12 implies that the configuration is losing. |

Thus SFP is optimal for configurations with only two team players, since SFP works
whenever the configuration is winning. We can now show the optimality of the SFP strategy.

Theorem 20 The SFP strategy is an optimal team strategy for the stick game.

Proof: By Lemma 19, it remains only to show that SFP is optimal for configurations with
at least 3 team piles. Suppose Cy = (hy,...,hi;¢€; T) is winning, but is not yet a win, such
that £ > 3. We show that C{ = (h,...,hx;e€;1), where i is chosen by SFP, is winning.
Because Cp is winning, there is some strategy OPT for the team such that the resulting
configuration C] = (hi,...,hk;e; ), where j is chosen by OPT, is winning. Also, since
k > 3, Lemma 12 implies h; > 1 for every I. If z; = z;, then up to permutation C} = (),
so C] is winning, and we are done. Hence we need only consider z; # ;. As before we
distinguish the C; stick game and the C stick game by calling them the G game and the
G’ game.

Let z; and z; be |P;| and |P;|, respectively. Suppose z; = 1. Then then P; is not
feasible, or it would have been chosen by SFP. Hence either |E| > 1 or there is another
pile P, such that |Py| = 1. In either case, the G' adversary can match to get a resulting
configuration C; with at least two team piles, one of which is of size 0. Thus by Lemma 12,
C: is losing, a contradiction. Hence z; > 1.

Then because z; is chosen according to the smallest feasible pile rule, it must be the
case that z; > z;. We consider possible G’ adversary moves from C}, and show that for
every possible G’ adversary move from C, the resulting C; is winning, and hence Cj is
winning.

If the G’ adversary matches with E, then the resulting configuration C4 = (hy,...,h; —
1,...,he;e—1;T). Hence Cp and C} satisfy the conditions of Lemma 15, so C} is winning.
Otherwise, the L adversary matches with some P,, where a # i. Let y = |P,|. Without
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loss of generality, say ¢ = 1, j = 2 and @ = 3. Then the resulting configuration Ch =
(max(zi,y) — 1,2, hay ..., hi; €;T).

We consider separately possibilities for y, and in each case consider a possible match
for the G adversary. Each match is with either P, or P,, so all resulting configurations C,
are of the form (p,q,hy,...;€;T), where only p and ¢ vary. C} is also of this form. We
abbreviate this (p,g,...). For example C} = (max(z;,y) — 1,zj,...). In each case we show
Cj is winning, so C} is winning, as desired.

¢ z; < y: G adversary matches with P,. Then C; = (z;, max(z;,y) - 1,...) = (z;,y —
1,...). Hence C} > C; (flip first two piles). By domination, C} is winning.

® z; = y: G adversary matches with P;. Then C; = (max(z;,z;) - 1,9,...) = (z; —
1,zj,...) = Cy, so C} is winning,.

* z; <y < z;: G adversary matches with P,. Then C; = (z;,y — 1,...) < C4 (flip first
two piles), so C4 is winning.

® y < z;: G adversary matches with P;. Then C; = (z; — 1,zj,...) = Cj, so C} is
winning.

e z; = y: Then Cj = (2; — 1,z;,...) and Cp = (zi,zi,2j,...). If z; = 1, then because
there are two piles of size 1, P; is not feasible. Since P; was chosen by SFP, it must be
the case that no pile is feasible, and hence all piles are of size 1. Thus z i =1, and so
T; = &;, a case previously handled. Otherwise, if z; = 2, then because P; was chosen
by SFP, Co has no feasible pile of size 1. Hence Cp and C} satisfy Lemma 18, so C}
is winning. Otherwise, z; > 2, and by Lemma 18, C} is winning. -

7.4 Optimality of the SFP Key Set Protocol
We are now able to show the optimality of the SFP proposing rule for the key set protocol.

Theorem 21 The SFP key set protocol is optimal for the class of key set protocols.

Proof: Suppose that the R key set protocol works for & = (h1,...,hk;€e). Then by
Lemma 11 (Stick Game Lemma), C = (hy,..., hg; e;T) is a winning configuration. Then
by Theorem 20, if the team uses the SFP strategy, it wins the C stick game. Finally, by
Lemma 11, the SFP key set protocol works for £. |

Theorem 21 indicates that changing the proposing rule is not a sufficient modification
to the key set protocol to close the gap described at the beginning of the section. However,
there are other possible modifications to the key set protocol to consider. For example, it
is possible to allow the players to communicate in order to choose the proposer. This also
does not close the gap, for we can show that the SFP key set protocol is optimal for the
larger class of protocols this gives rise to. However, the optimality may fail if the proposed
key set is allowed to be chosen non-randomly.

In the key set protocols described here, every time a key set is found, one of the team
players discards all the cards in her hand and drops out of the protocol, except to wait to
hear the secret bit. We do this in order to avoid getting more than one key set between any
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two players. It would be possible to consider key set protocols in which a team player only
drops out when a team player in the same connected component of the key set graph is
chosen to propose a key set. We suspect that this does not give the team additional power,
and conjecture that Theorem 21 holds for this larger class of protocols.

Another possible modification to the key set protocol is to allow team players to discard
only the key set cards and risk getting multiple key sets between two team players. It is an
open question whether multiple key sets can be used (for example to “send” some of the
cards in a player’s hand to another player) to achieve 1-bit secret key exchange where no
key set protocol of the class described in this paper succeeds.

8 Concluding Remarks

We have shown here some conditions on the signature of the deal that allow secret key
exchange to take place and some conditions under which secret key exchange is not possible.
However, there is a large gap. There are many signatures for which we can neither give a
secret key exchange protocol nor demonstrate the nonexistencc of such a protocol.

As a future direction for this work, we intend to look at the concept of shared secret
information between a team. We would like to develop a theory of shared secret information
which can be applied to arbitrary correlated random variables. Specifically, can we quantify
how many bits of shared secret information a deal contains for the team? How can we use
this information to develop better protocols and tighter lower bounds on the signatures
for which secret key exchange is possible? More generally, what other mechanisms besides
deals from a common deck of cards give correlated random variables that can be used for
secret key exchange?

Deals of cards have a small amount of initial information. However, deals of cards appear
somewhat inefficient for secret key exchange, in that the number of secret bits the team
can obtain is small in comparison to the number of cards they are dealt. Michael Rabin (8]
suggests a protocol that uses private correlated random variables to solve another classical
security problem, authentication. His method requires random variables that appear to
contain more initial information than a deal of cards, but also appear to contain more
shared secret information. We would like to use the theory of shared secret information
suggested above to quantify the ratio of initial information to shared secret information,
and to investigate upper and lower bounds on this ratio for secret key exchange protocols.
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