
The Sentinel Algorithm: Distributed Dynamic Coverage

John Corwin, Ana Cerejo, and Diego Montenegro
{john.corwin,ana.cerejo,diego.montenegro}@yale.edu

Abstract

Sensor networks are predicted to revolutionize the world
as they draw us increasingly closer to the Holy Grail
of ubiquitous computing. However, sensor networks also
introduce new challenges. In our project we will focus
on addressing the fundamental issue of coverage. The
coverage problem deals with how well a target region
is monitored or tracked by sensors. To date work in this
field has focused on algorithms for node deployment to
statically cover an area. We introduce the concept of
dynamic coverage, based on the ideas of exploration and
achieving a blanket coverage over time. We then present
the Sentinel algorithm for dynamic coverage, which allows
a limited number of nodes to efficiently explore and provide
coverage of an unknown environment.

I. Introduction

This paper considers the deployment of a mobile sensor
network into an unexplored environment. This is of great
use in many applications, like search and rescue, manipula-
tion in hazardous environments, and others. Our algorithm,
inspired by the work of Francesco Bullo [1], is an emergent
process which guarantees that when a group of nodes
are deployed in an unknown region, they will be able to
explore and track every point in a monitorable region over
time. Moreover, when possible, these nodes will create
a static coverage of the environment. In contrast, in [1],
exploration is of secondary importance to static coverage
of the environment. Even when there exist sufficient nodes
to entirely cover a monitorable area, large portions of
the map may be unexplored at the convergence of the
algorithm. The limitation of this approach is that it can
neither guarantee that all areas of an environment will be
discovered nor guarantee that they will be monitored by a
deployed network.

Our algorithm is emergent, because the combination of
each node’s information is what gives us the global view
of the environment. This shared information also allows

each node to compute its new goals which allow it to
reach new unexplored regions or regions that have not been
explored for some time. For these goals, each node creates
an optimal path that does not hinder other nodes. In other
words, they act as if they were synchronized.

Coverage can be considered as the measure of quality
of service of a sensor network. There are three basic types
of coverage:

1) Blanket coverage, where the objective is to achieve a
static arrangement of nodes that maximizes the total
detection area.

2) Barrier coverage, where the objective is to minimize
the probability of undetected penetration through the
barrier.

3) Sweep coverage, which is essentially equivalent to a
moving barrier.

Our paper focuses on the first kind. We try to maximize
coverage by deploying dynamic nodes that gather informa-
tion about the environment, and if it is determined that the
environment can be covered statically, the nodes arrange
themselves to do so. If not, a dynamic coverage is achieved
by the moving nodes.

Our paper is designed as follows: we start by dis-
cussing some related work that has been done in both
static coverage and collaborative multi-robot exploration.
We proceed to describe our algorithm: the model, sim-
ulation environment, single-node case, multi-node case
and switching to static coverage. We then show several
simulations, and discuss how our protocol outperforms
the previous algorithms. Finally, we look at some open
problems and future work in the field.

II. Related Work

A. Collaborative Exploration

In recent years, significant research efforts have focused
on both motion planning and coordination problems for
multi-vehicle systems. Below we discuss two approaches
to the problems.



Simmons et al. [4] present a technique for coordinating
multiple robots in their task of exploring and mapping
unknown indoor environments. Their approach consists of
distributing the computation among the individual robots
and asynchronously integrating their results by performing
some global computation over the data. A central mapper
is in charge of integrating the individual maps to create
a consistent global map. Similarly, each individual robot
constructs ”bids”, which describe their estimates of the
expected information gain and costs of traveling to various
locations. The central authority receives the bids and
assigns tasks in an attempt to maximize overall utility,
while trying to minimize overlap in coverage by the robots.
The problem with this approach is the need of a central
authority to assign tasks to each robot and perform global
computations, a problem that our design does not confront.

Burgard et al. [5] consider the problem of collabora-
tive exploration of an unknown environment by multiple
robots. The proposed technique uses a map which is
built based on the data sensed by the individual robots.
During the path selection phase of the algorithm, the utility
of unexplored positions are considered along with travel
costs. The utility of any unexplored position is reduced
as soon as any robot chooses a target position in its
visibility range. By trading off the utility and costs of
unexplored positions, the proposed approach achieves the
coordination of the robot group during exploration. Our
algorithm relates to this algorithm in the sense that regions
are also given utility values, and the higher utility, the more
likely a sensor will move toward the target coverage area.

B. Static Coverage

Howard et al. [2] address the mobile sensor network
deployment problem by using potential fields. Their goal
is to have sensors spread into an unknown environment
from an initial compact configuration in a manner that
maximizes the total area covered by the network. The
potential-field-based approach assumes that each node in
the network has sensing, communication, computation, and
locomotion capabilities. Each node is treated as a virtual
particle which is subject to virtual forces, repulsive and
viscous friction forces. The repulsive forces repel the nodes
from each other and from obstacles, and enable nodes to
quickly spread from their initial configuration. The viscous
friction force ensures that the network will eventually reach
a state of static equilibrium, thereby enabling nodes to
conserve energy. Blanket coverage is an emergent property
of this algorithm.

Bullo et al. propose an asynchronous, distributed, and
convergent algorithm to address the coverage optimization
problem. Their approach requires that each node compute
its Voronoi region as well as the centroid of the Voronoi

cell, and to then move toward the centroid. A Voronoi
region V f associated with a featuref of a polyhedron
P is a set of points exterior toP which are closer to
that feature than to any other. If a pointp on objectPA
lies inside the Voronoi region offB on objectPB, then
fB is a closest feature to the pointP and vice versa for
a Voronoi region offA. This approach further requires
that nodes have sensing and communication capabilities.
Although the algorithm is guaranteed to converge, the state
to which it converges is not guaranteed to be the optimal
blanket cover achievable by the network’s nodes. Unlike
our algorithm, this approach does not guarantee that all
points in a region will be covered.

Bullo et al. state that their algorithm is adaptive, dis-
tributed, asynchronous, and verifiably correct.

1) Adaptive: since they provide the network with the
ability to address changing environments, sensing
task, and network topology.

2) Distributed: in the sense that the behavior of each
vehicle depends only on the location of its neighbors.
Also, the algorithm does not require a fixed-topology
communication graph, i.e., the neighborhood rela-
tionships do change as the network evolves.

3) Asynchronous: because the algorithms can be imple-
mented in a network composed of agents evolving
at different speeds, with different computation and
communication capabilities.

4) Verifiable Asymptotically Correct: because the al-
gorithms guarantee monotonic descent of the cost
function encoding sensing task.

The basic outline of the algorithm is as follows:

Each node that is deployed in the environment computes
its own Voronoi region and the centroid of this region. An
ordinary Voronoi diagram is formed by a set of points in
the plane called the generators or generating points. Every
point in the plane is identified with the generator which is
closest to it by some metric. The common choice is to use
the Euclidean distance metric:

‖X1 −X2‖2 = (x1−x2)2 + (y1−y2)2

whereX1 = (x1,y1)andX2 = (x2,y2) and are any two
points in the plane. The set of points in the plane identified
with a particular generator form that generator’s Voronoi
region, and the set of Voronoi regions covers the entire
plane. Figure 1 illustrates a set of generating points and
their associated Voronoi regions.

For all i, node i performs the following:

1) Determine Voronoi cell Vi

2) Determine the centroid CV i of V i

3) Set u i = sat(CV i - p i)



Fig. 1. Voronoi diagram with generators (large
dots) and centroids (small dots)[6]

node identifier A unique integer identifying the node
region boundaries boundaries of the sensing environment

starting location starting location in the sensing
environment

movement speed maximum movement speed
sense range maximum sensing range

communication range maximum node-to-node
communication range

max-steps number of steps to move along
current path before recomputing

Fig. 2. Node initial configuration parameters

III. Sentinel Algorithm

We first describe our model and simulation environ-
ment. We then describe the Sentinel algorithm for the case
of a single node, and then extend this algorithm to multiple
nodes. Finally, we give criteria for switching to a static
coverage algorithm when it is appropriate to do so.

A. Model and simulation environment

Our simulation environment consists of a bounded two-
dimensional area containing some open space and poten-
tially many obstacles. Nodes are placed at a particular
starting location and are given the bounds of the entire
area, but the topology of the area is initially unknown. We
assume that nodes are able to move in two dimensions
at up to a given maximum speed and have a laser or
IR range finder to detect obstacles. Nodes also have a
sense range, the range at which the node can perform its
sensing functions, and acommunication range, specifying
the range of communication with other nodes. Sensing and

communication are both line-of-sight — nodes can not
sense or communicate through obstacles. Points within a
node’s sensing range that are not otherwise blocked by an
obstacle are considered “covered” by that node. Figure III-
A shows the parameters for a node’s initial configuration.

We chose to implement our algorithm and simulation
environment in a discrete (non-continuous) manner. Thus,
the entire sensing area is divided into a matrix of uniformly
sized regions. If an obstacle covers only part of a discrete
region, we consider the entire region to be obscured. We
feel that this approach is not only easier to implement in
a simulation environment, compared to a geometry-based
continuous implementation, but may also be more practical
for actual sensor network deployments as well, as it re-
lieves each node of the burden of computing the geometry
of an unexplored area. Selecting an appropriate granularity
involves a trade-off between accuracy and computational
complexity, and is an interesting problem in its own right.
Key selection criteria are complexity of obstacles in the
sensing environment, computational resources available to
each node, and the relative size of targets or features being
sensed.

B. Single node algorithm

A node keeps two matrices to represent the state of the
outside world: atopology matrixand autility matrix. In
each matrix, the entry(i, j) contains a piece of information
about the(i, j)th region of discretized space.

The topology matrix keeps track of which areas of the
map have been explored and the location of obstacles. Each
element in the matrix has one of three values:

• REACHABLE – the region has been explored and
does not contain an obstacle

• OBSTACLE – the region has been explored and does
contain an obstacle

• UNKNOWN – the region has not been explored
Since nodes do not initially have any information about
the environment, each entry of the matrix is initialized to
UNKNOWN. When a node moves, the node updates its
topology matrix with the status of newly explored areas. In
our simulation environment, we assume a node can detect
obstacles within its coverage range that are not otherwise
blocked — a node can sense the presence of walls, but can
not sense the area behind a wall.

The node’s utility matrix keeps track of the utility or
value of covering a particular area in the environment.
At each time step in the algorithm, the utility matrix is
updated with the following function:

Ui,j =
{

0 if (i, j) is covered
Ui,j + 1 otherwise

This states that areas currently covered have zero utility,
while areas that are not covered become increasingly



At each time step, execute the following
phases:

Update phase
for each region(i, j) in the environmentdo

update topology matrix entryTi,j according to the
topology update function

update utility matrix entryUi,j according to the
utility update function

end for
if path-step> max-steps

or we have reached the current targetthen
compute a new path using the single-node path algorithm
set path-step← 0

end if

Movement phase
move one step along the current path
set path-step← path-step+1

Fig. 3. Single-node sentinel algorithm

valuable. The increasing utility of non-covered areas are a
key component of the desired “patrolling” behavior of a
node.

The value of a node covering a particular area is equal
to the utility of covering the area, discounted by the cost
of moving to this area. The following formula gives the
discounted value of covering an area(i, j) for a node at
position (x, y):

Vi,j =
Ui,j

path[(x, y), (i, j)]

wherepath[(x, y), (i, j)] is the minimum length path from
region (x, y) to region(i, j).

The node must compute the maximalVi,j while taking
path length and obstacles into account. To accomplish this,
the node performs a breadth-first search over all regions
marked REACHABLE or UNKNOWN in its topology
matrix, starting with its current position. The search does
not progress through regions marked OBSTACLE. The
node then selects the region and associated path of greatest
value as its next destination. By treating UNKNOWN
regions as potentially being REACHABLE, the node will
attempt all paths to reach an unknown area with high
utility.

After the maximalVi,j is found, the path used in the
computation,path[(x, y), (i, j)], is stored as the node’s
current path. The last step on this path is region(i, j),
which we will refer to as the node’s current target. Figure
3 shows the Sentinel algorithm for a single node.

One important property of the Sentinel algorithm is that
every reachable area will eventually be covered by a node.
This is easily shown in the single-node case. Let(i, j)
be any region in the environment that is reachable from
the node’s starting location. The minimum length path to
(i, j) from any other reachable area in the environment

is bounded by the total number of regions. However, the
utility of (i, j) is unbounded — as long as(i, j) is not
covered,Ui,j will continue to increase. Thus,Vi,j will
eventually have the greatest value, and will thus be chosen
as the node’s next destination.

C. Multi-node algorithm

We now consider multiple nodes simultaneously oper-
ating within the same environment. Ideally, nodes should
coordinate their efforts in order to more rapidly explore and
provide greater simultaneous coverage of the environment.
To achieve this goal, we add a communication phase to
the single-node algorithm, which occurs at each time step
before the update and movement phases take place.

The communication phase proceeds as follows: For
each nodes with neighborsn ∈ N , s and n exchange
compressed representations of their topology and utility
matrices, as well as their current paths being traversed.

s then updates its topology matrix with the following
function:

Tsi,j =

 Tni,j if Tsi,j = UNKNOWN and
∃n∈NTni,j 6= UNKNOWN

Tsi,j otherwise

s updates its utility matrix as follows:

Usi,j = min[∀n∈NUni,j ∪ {Usi,j}]

This merging of topology matrices allows nodes to
obtain information about the environment through other
nodes’ exploration. Merging the utility matrices encapsu-
lates the logic that if a neighbor of nodes has covered a
particular region, it is equivalent tos covering that region
itself.

The coverage area of each sensor node would not be
well-used if multiple nodes choose the same region as
their next target. Thus, we need a mechanism for nodes
to divide the task of providing a dynamic cover. The goal
is for nodes to defer to other nodes when selecting the next
target.

To accomplish this, we make use of the node identifiers
to assign a priority level to each node, by assigning higher
priorities to nodes with lower ID numbers. This gives us
a total ordering of the nodes. We then use a modified
definition of the node’s value functionV si,j . For node
s with neighborsN ,

V si,j =

{
0 if ncovered(s,N, i, j)

Usi,j

path[(x,y),(i,j)] otherwise

where

ncovered(s,N, i, j) =

∃n∈N ∃(x,y)∈n.path

[
(n.id < s.id) ∧
n covers(i, j) when at(x, y)

]



position node’s current position
topology matrix node’s exploration status

utility matrix node’s coverage status
current path current path to follow

path list paths of neighboring nodes

Fig. 4. Node state (in addition to configuration
parameters)

Each node s executes the following phases at each time
step:

Communication phase
for each neighborn of s do

exchange and merge topology matrices withn
exchange and merge utility matrices withn
if n has a lower ID, storen’s path

end for

Update phase
for each region(i, j) in the environmentdo

update topology matrix entryTi,j according to the
topology update function

update utility matrix entryUi,j according to the
utility update function

end for
if path-step> max-steps

or s has reached the current targetthen
compute a new path using the multi-node path algorithm
set path-step← 0

end if

Movement phase
move one step along the current path
set path-step← path-step+1

Fig. 5. Multi-node sentinel algorithm

Figure 5 shows the sentinel algorithm for multiple
nodes.

Having multiple nodes does not affect the guarantee
that every reachable point will eventually be covered. Let
L be the node with highest priority (lowest ID number).
Thus, the test(n.id < L.id) in ncovered(L,N, i, d) will
never succeed, soL will not take any other nodes’ paths
into account when selecting a target. Let(i, j) be a region
reachable byL. One of the following must occur:

1) Usi,j will grow large enough such that(i, j) is
selected as a target, thus(i, j) will be covered by
L, or

2) the value ofUsi,j decreases as a result of a merge
operation with a neighboring node. SinceUsi,j has
decreased, it follows that another node has covered
(i, j).

D. Switching to static coverage

In many situations, a static cover may be more desirable
than a dynamic cover. For example, if nodes have limited

energy, a static cover would be more energy-efficient as
nodes would not have to move after their positions have
converged. However, we only want to switch to a static
cover if the nodes can provide a reasonably good static
cover of the current environment.

We designate the node with ID 0 as the leader node
L. L determines if the network of nodes should switch
to a static coverage algorithm by checking to see that the
following criteria are met:

1) The reachable environment has been fully explored
from L’s perspective. This is satisfied if a breadth-
first search onL’s topology map reveals no regions
marked UNKNOWN.

2) L is part of a connected subgraph of nodesG, based
on the ability of nodes to communicate with each
other, such that the sum of the maximum coverage
of each node inG is at least as large as the size of
the reachable area.∑

n∈G

π ∗ (n.coverage)2 >= reachable-area∗ oc

whereoc is a constant representing the over-coverage
factor.

If the above criteria are met,L broadcasts a message that
directs all other nodes to switch to a voronoi-region based
static coverage algorithm.

IV. Experimental Results

In each of the following demonstrations of the Sentinel
algorithm, red (darker) areas represent regions of high
utility, and lighter areas represent lower utility. The utility
shown is a global merge of each individual node’s utility
matrix using the merge function from the multi-node
sentinel algorithm. Obstacles are drawn in black, and each
node’s coverage area is shaded with a different color. Note
that the utility values shown do not represent the state of
any particular node, but are useful as a visualization of the
coverage of the entire environment.

Figure 6 shows a simple demonstration of a single node
running the Sentinel algorithm in a moderately complex
office environment. Each of the six images shows the node
position, coverage area, and utility levels at a particular
time step while executing the algorithm. The images show
the node’s coverage over time when read left to right, top
to bottom.

We next show a more complex environment where a
complete static cover is difficult to achieve without using a
very large number of nodes. Figure 7 shows node positions
and coverage area of 10, 50, 100, and 200 nodes after
convergence of a Voronoi-region based static coverage
algorithm.



Fig. 6. Sample run of the Sentinel algorithm
with a single node.

Fig. 7. Placement and coverage of 10, 50, 100,
and 200 nodes using a Voronoi-region based
static coverage algorithm.

We now show how the Sentinel algorithm handles the
same environment. Figures 8 and 9 show the single-node
Sentinel algorithm with a single node and the multi-node
Sentinel algorithm with 10 nodes, respectively.

Next, we demonstrate switching from dynamic coverage
to static coverage. Figure 10 shows the simulation of 25
nodes in a moderately-complex environment. The nodes
provide a dynamic cover using the multi-node Sentinel
algorithm until the reachable environment has been fully
explored and the node graph becomes connected based
on the ability of nodes to communicate with each other.
The nodes then switch to Voronoi-region based static
coverage algorithm, which after convergence is able to
almost completely cover the reachable environment.

Finally, we show that the collaboration between nodes

Fig. 8. Single-node Sentinel algorithm, com-
plex environment.

Fig. 9. Sentinel algorithm, 10 nodes, complex
environment.

when determining paths allows for fairly efficient explo-
ration. Figure 11 shows explored area over time with
1, 3, 5, and 10 nodes in the moderately-complex office
environment.

Videos of the above demos are available online at
http://www.pantheon.yale.edu/˜jjc72/sentinel/

V. Future work

Modifying several of the parameters and update func-
tions within the Sentinel algorithm could produce interest-
ing behavior. One such case would be having an alternate
method for nodes to update their utility matrices. The
current implementation adds1 to each entry that does
not represent a region that is currently covered. Better



Fig. 10. 25 nodes in a moderately-complex
environment. The first three images show
the nodes running the Sentinel algorithm.
Once the environment has been explored, the
nodes switch to a Voronoi-region based static
coverage algorithm, shown in the bottom
three images. Lines between two nodes show
when nodes are able to communicate with
each other.

coverage could be achieved by instead using an exponential
function of the prior utility value. Furthermore, the update
function could operate differently on different regions. For
example, the update function could be used to indicate
that certain regions are especially important by using a
greater increment on those regions. Likewise, the behavior
of using different path functions could be explored, for
example computing the value of an entire path instead of
just the value at the end point, as done in [5].

The algorithm presented is a distributed, synchronous
algorithm, where computation occurs at fixed time steps.
We believe the algorithm could be extended to work
with nodes operating asynchronously. The difficulty lies
in merging the utility matrices between nodes that are at
different time steps.

Another extension of our algorithm would be to handle
node failure and unreliable sensor information.

Finally, an analytical analysis of using discrete algo-
rithms and simulation environments in this setting could
give an expression for the error generated by the de-
scretizing process. Such an error analysis would be useful
in determining an appropriate granularity to divide the
sensing environment.

Fig. 11. Total exploration over time with 1, 3,
5, and 10 nodes

VI. Conclusion

We have discussed different types of coverage in mobile
sensor networks, an we introduced the Sentinel algo-
rithm which implements a dynamic cover. The Sentinel
algorithm is a distributed algorithm that guarantees every
reachable region in an environment will eventually be
covered. We described the sentinel algorithm for single
nodes and multiple nodes, and gave criteria for switching
to a static coverage algorithm when it is appropriate to do
so.

Our experiments within our simulation environment
have shown the Sentinel algorithm achieves its goals of
allowing a limited number of nodes to efficiently explore
and provide coverage of an unknown area. We have also
shown that collaboration among nodes allows for more
efficient exploration as the number of nodes increases.

VII. Acknowledgements

We would like to thank Richard Yang, David Golden-
berg, and Stephen Morse for their valuable feedback and
advice on our work. We would also like to thank Francesco
Bullo for giving an inspiring talk on emergent behavior and
coverage.

References

[1] Jorge Cortes, Sonia Martinez, Timur Karatas, Francesco Bullo”Cov-
erage Control for Mobile Sensor Networks”,IEEE transactions on
Robotics and Automation, June 16, 2003.

[2] Andrew Howard, Maja J Mataric and Gaurav Sukhatme”Mobile
Sensor Network Deployment Using Potential Fields: A Distributed,
Scalable Solution to the Area Coverage Problem”,In Proceedings of
the 6th International Symposium on Distributed Autonomus Robotics
Systems, June 2002



[3] Aram Galstyan, Bhaskar Krishnamachari, Kristina Lerman and Sun-
deep Pattern”Distributed Online Localization in Sensor Networks
Using a Moving Target”,

[4] Reid Simmons, David Apfelbaum, Wolfram Burgard, Dieter Fox,
Mark Moors, Sebastian Thrum and Hakan Younes”Coordination for
Multi-Robot Exploration and Mapping”,American Association for
Artificial Intelligence, 2000

[5] Wolfram Burgard, Dieter Fox, Mark Moors, Reid Simmons and
Sebastian Thrun”Collaborative Multi-Robot Exploration”, In Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, 2000

[6] Adrian Secord, Voronoi Diagrams
”http://stippling.org/npar2002/html/stipples-node2.html”


