Yale University
Department of Computer Science

Learning Meaning Before Syntax

Dana Angluin Leonor Becerra-Bonache

YALEU/DCS,/TR-1407
July 2008




Learning Meaning Before Syntax

Dana Angluin Leonor Becerra-Bonache

Department of Computer Science, Yale University
P.O.Box 208285, New Haven, CT, USA
{dana.angluin, leonor.becerra-bonache}@Qyale.edu

Abstract

We present a simple computational model that takes into account semantics for language
learning, as motivated by readings in the literature of children’s language acquisition and by a
desire to incorporate a robust notion of semantics in the field of Grammatical Inference. We
argue that not only is it more natural to take into account semantics, but also that semantic
information can make learning easier, and can give us a better understanding of the relation
between positive data and corrections. We propose a model of meaning and denotation using
finite-state transducers, motivated by an example domain of geometric shapes and their prop-
erties and relations. We give an algorithm to learn a meaning function and prove that it finitely
converges to a correct result under a specific set of assumptions about the transducer and ex-
amples. We present and analyze the results of empirical tests of our algorithm with natural
language samples in the example domain.

1 Introduction

In 1972, Feldman stated that some of the interesting remaining questions in Grammatical Inference
were: inference in the presence of noise, general strategies for interactive presemtation and the
inference of systems with semantics [7]. Thirty-six years later, we can state that some of these
questions remain still open. In this paper, we are going to focus on the last one: learning systems
with semantics.

Results obtained in the field of Grammatical Inference show that learning formal languages from
positive data is hard. Gold [9] proves that superfinite classes of languages (i.e., classes containing all
finite languages and at least one infinite language) cannot be learned from only positive data, which
implies that even the class of regular languages (the smallest one within the Chomsky Hierarchy)
cannot be learned from only positive examples. However, learnability results have been obtained
by restricting the class of languages to be learned [2, 25|, restricting the method for selecting
examples [6, 13], providing structural information [15,17] or making also available negative data
[9,16]. Surveys on this subject can be found in [5,18].

All these works tend to leave out the semantic information and reduce the learning problem
to syntax learning. However, in natural situations, semantic information is also available to the
child [1,8,11,12]. Moreover, semantics seems to play an important role in the early stages of



children’s language acquisition, concretely in the stage known as the two-word stage, in which
children go through the production of one word to the combination of two elements. In the view of
several authors [19,20], two-word sentences are “semantic speech”, where the context is important
to understand their meaning (thanks to the shared context, adult and child can communicate with
each other although their grammars are different) and the meanings of the two elements indicate
the implied syntactic relations. Later, when the communication is less contextually determined,
the child uses more complex syntactic rules and then we can talk about “syntactic speech”.

Taking into account that formal language learning is hard and it seems more natural to take
into account semantics in language learning, the following question arises: can semantic information
simplify the learning problem? Our conjecture is that semantics can make learning easier.

There are several works that take into account semantics for language learning. The ones nearest
to our work are [10,14,23]. All these approaches are based on Frege’s principle of compositionality
(this principle states that the meaning of a sentence depends of the meaning of the words involved
and of the syntactic rules used to combine them), and use A-calculus to represent compositional
semantics. The input of their algorithms is pairs consisting of a syntactically correct utterance and
its meaning. Moreover, these approaches require a correct or nearly correct parse in order to assign
a correct meaning to a sentence. However, this assumption fails when we try to analyze two-word
sentences because these sentences uttered by the child are not syntactically correct with respect to
the adult’s grammar.

Inspired by the two-word stage, we propose here a simple computational model that takes into
account semantics and does not rely on a complex syntactic mechanism; in that way, we try to
represent the fact that, although the child and adult grammars are different, the semantic situation
allows communication. Thus, in some sense, our model is more robust with respect to syntax.
Moreover, in contrast to other approaches, the input of our learning algorithm is utterances and
situations in which these utterances are produced (like in the two-word stage, where in addition to
hearing utterances, children have access to the context in which those utterances are generated).

What kind of utterances should be available to the learner? Ideally we should provide the learner
the same kinds of examples that are available to the child. Whereas the availability of positive data
(i.e., utterances that are grammatically correct) is generally accepted, the availability of another
kind of data, which is often called negative data, remains a matter of significant controversy.

However, there is a kind of information that is specifically available to the child during the
two-word stage, but which has not generally been taken into account in formal models of language
acquisition. It is called expansion. Consider the following example (extracted from Brown and
Bellugi [3]):

CHILD: Eve lunch
ADULT: Eve is having lunch

As we can see, the adult’s answer is a grammatical sentence (positive information is given),
but constitutes an expansion of an incomplete sentence uttered by the child (in that way, negative
information is also obtained, since the expansion suggests that the child’s utterance was not gram-
matically correct). Therefore, a correction is given to the child by means of an expansion. The
context will also play here an important role; adult and child share the context, and the adult uses
the semantic situation in order to correct the child. Hence, corrections have a semantic component
that could facilitate the learning process. Thus, it would be interesting to give an account of that
using a formal model.



Moreover, corrections seem to have a close relation to positive data because of semantics in a
shared context. Consider the two situations depicted in Figure 1. Assuming that the child is in the
two-word stage and the context is shared by adult and child, we can imagine two different situations:
a situation A, in which the child receives positive information, and looking at the context, he
will establish some semantic relations that describes that situation (moreover, sometimes children
explicitly repeat the same sentence but using his grammar, i.e., only 2 words, which could be
interpreted as an echo of the adult’s sentence [4,12]); a situation B, in which the child produces a
sentence and receives an expansion of it (then, the child can see whether the adult misunderstands
his message, and also, how to express the same meaning using the adult’s grammar).

Situation

Child Adult
A Daddy throw Daddy is throwing the ball
processing ’ N
I3 4
Daddy throw — === =========--= > . .
B . Daddy is throwing the ball
processing A-m - -

Figure 1: Adult and child share the same situation. In case A, child receives positive data. In B,
a correction is returned to the child.

As we can see, positive data and corrections have similar effects on the child. With either posi-
tive data or corrections: the child can see how to express a situation using a correct sentence (with
respect to the adult’s grammar); the production of the child is like an echo of the correspondence
adult’s sentence; although the grammars of the adult and the child are different, they can commu-
nicate with each other thanks to the semantics. Hence, a model that takes into account semantics
may give us a better understanding of the relation between positive data and corrections.

Therefore, based on ideas from linguistics, cognitive science and computer science, we propose
a new computational learning model to take into account the context, semantics, positive data and
corrections. As a first step in the formulation of such a model, we focus on a simple formal frame-
work. The model should accommodate at least two different tasks: comprehension and production.
However, in this paper, we focus only on the comprehension task. The scenario we consider is
cross-situational and supervised, i.e. the teacher provides to the learner several examples pairs
consisting of a situation and a utterance that denotes something in the situation. The goal of the
learner is to learn the meaning function, allowing the learner to comprehend novel utterances.

The remainder of the paper is organized as follows. First, we describe the meaning and de-
notation functions used by the teacher to provide examples to the learner (Section 2). Then, we
examine simple strategies the learner may use to try to learn the meaning and denotation functions
of the teacher (Section 3). Based on all these ideas, we present an algorithm to learn a meaning
function, and we prove its correctness (Section 4). We present and analyze the results of tests of
our algorithm with samples of several natural languages in a restricted domain (Section 5). We
conclude with a discussion of the computational feasibility of the algorithms used by the teacher
and the learner, the implications of our approach and future work (Section 6).



2 A Model of Meaning and Denotation

In this section we specify a class of very simple meaning and denotation functions which are used
by the teacher to provide examples for the learner.

2.1 Meaning functions

To specify a meaning function, we use a finite state transducer M that maps sequences of words to
sequences of predicate symbols, and a path-mapping function 7 that maps sequences of predicate
symbols to sequences of logical atoms. We consider three disjoint finite alphabets of symbols: W,
the set of words, P, the set of unary predicate symbols, and R, the set of primary binary
predicate symbols.

For each symbol r € R, there is also a new binary predicate symbol 7!, which is used to denote
r with its arguments reversed; the set of all such 7 is denoted R!. The symbols in P and R are
primary predicates, and the symbols in R are derived predicates. The function primary
maps each primary predicate symbol to itself, and each predicate symbol r! to r.

An utterance is a finite sequence of words, that is, an element of W*. Define the function ¢ to
map a finite sequence of elements to the set of distinct elements occuring in the sequence. Thus,
c(u) is the set of words occurring in the utterance w.

We define a meaning transducer M with input symbols W and output symbols Y = PURUR!.
M has a finite set ) of states, an initial state gy € @, a finite set F' C @ of final states, a deterministic
transition function ¢ mapping @ x W to @, and an output function v mapping @ x W to Y U {e},
where € denotes the empty sequence.

The transition function ¢ is extended to define §(q, u) to be the state reached from g following
the transitions specified by the utterance u. The language of M, denoted L(M) is the set of all
utterances u € W* such that 6(qp,u) € F. For each utterance u, we define the output of M,
denoted M (u), to be the finite sequence of non-empty outputs produced by starting at state gy and
following the transitions specified by u. A state ¢ € @ is live if there exists an utterance w such
that 0(¢,u) € F, and dead otherwise.

As an illustration, we describe an extended example of utterances in English involving geometric
shapes and their properties and relative locations. W contains the words the, triangle, square,
circle, red, blue, green, above, below, to, left, right and of. P contains the symbols tr, sq, ci, bi, re,
bl, gr referring to the properties of being a triangle, a square, a circle, big, red, blue, and green,
respectively, and R contains the symbols ab, le, referring to the relations of being above and to
the left of, respectively. (Note that there is no word big — a property or relation may not have
a corresponding word.) We define the meaning transducer M; as follows. M; has states ¢; for
0 < i <7; qp is the initial state and there is one final state, go. The transition function is partially
defined in Figure 2. Undefined transitions go to a non-final dead state, ¢7.

L(M;) contains such utterances as the triangle, the blue triangle to the left of the red circle, and
the circle to the left of the green triangle above the blue square. ' The output of M; for the utterance
the triangle is just the sequence < tr >, because the empty output for the is omitted. The output
of My for the utterance the blue triangle above the square is the sequence < bl, tr, ab, sq >.

'Having more than two objects in such an utterance is somewhat artificial, but it allows us to define an infinite
language.



above / ab
below / ab'

circle / ci
square / sq
trlangle /tr

blue / bl circle / ci
green / gr square / sq
red / re triangle / tr

left / le
right / le'

of /&

Figure 2: Meaning transducer M;

2.2 Path-mapping

Given a finite sequence of predicate symbols, we define a specific function, path-mapping, to convert
it into a finite sequence of atoms in the predicate logic. Let x1,x9,... be distinct variables and
t1,t9,... be distinct constants. Different constants will be used to denote different objects in a
situation. An atom is one of p(v), where p € P or r(v,w) or 7(v,w), where r € R and v and w are
constants or variables. An atom is primary if its predicate symbol is primary, that is, not from
R!. An atom is ground if it does not contain any variables.

The path-mapping function, denoted m, takes a finite sequence of predicate symbols and
supplies each predicate with the correct number of argument variables, as follows. Working left
to right, x; is the argument of each predicate in the initial sequence of unary predicates, then
x1 and z9 (in order) are the arguments of the first binary predicate, then xs is the argument of
each of the subsequent sequence of unary predicates, then x9 and z3 (in order) are the arguments
of the second binary predicate, and so on, introducing successive variables for successive binary
predicates. Applying 7 to the sequence of predicates

< bl, tr, ab, sq, let, re, ci >,
we get the following sequence of atoms
< bl($1), tT($1), ab(xh 33‘2), Sq($2)7 let($2a $3)7 Te(l‘g), Ci($3) >

The meaning assigned by a meaning transducer M to an utterance u is (M (u)). As an
example, the meaning assigned by M; to the utterance the blue square to the right of the green
circle is

< bl(w1), sq(w1), le* (21, 22), gr(z2), ci(wa) > .

The definition of 7 reflects a strong restriction on the way properties and relations can be expressed
by a meaning transducer.



2.3 Situations and denotation functions

Next we define situations, which represent the objects, properties and binary relations that are
noticed in some environment of the teacher or learner. These are not meant to be exhaustive
representations of the environment, but the results of sensing and interpreting part of the environ-
ment. A situation is a finite set of primary ground atoms. Note that only primary predicates
(from P U R) occur in situations, although meanings may use both primary predicates and derived
predicates (from R!).

For example, noticing a big blue triangle above a big green square gives the following situation.

51 = {bl(tl), bi(tl), tT’(tl), ab(tl,tg), gr(tg), b’i(tg), Sq(tg)}.

The things in a situation S, denoted things(S), is the set of all ¢; that occur in atoms in S. The
assignment of constants ¢; to things in the situation is arbitrary, as long as different things are
represented by different constants. The predicates in a situation S, denoted predicates(S), is the
set of all predicate symbols that occur in atoms in S. Thus,

things(S1) = {t1,t2}

predicates(S1) = {bl, bi, tr, ab, gr, sq}.

To determine the denotation of an utterance u in a situation S, the teacher takes the meaning
m(M(u)) of u and attempts to match it to a subset of the situation. A ground atom A is supported
by a situation S if A4 is primary and an element of S, or, if A is r!(¢;,t;) for some r € R and r(t;,t;)
is an element of S. For example, gr(ts), ab(t1,t2), and ab’(ts,t1) are supported by the situation S;
defined above, but gr(t1) and le(t1,t2) are not.

Let V = {x1,...,x%} denote the variables that occur in w(M(u)) and T denote the things in
the situation S. A match of 7(M(u)) to S is a one-to-one function f from V to T such that
substituting f(z;) for every occurrence of x; in m(M (u)) produces a set of ground atoms that are
all supported by the situation S. A match is unique if no other one-to-one function of V' to T' is
also a match of (M (u)) to S. Given a match f, the first thing mentioned is the constant f(z)
and the last thing mentioned is the constant f(zy).

As an example, the function f(z1) = t; and f(x2) = t3 is a unique match of w(< bl, tr, ab, sq >)
in the situation S7. In this match, the first thing mentioned is ¢; and the last thing mentioned is 5.
If we consider the utterance the square below the blue triangle, the output of Mj is < sq, ab®, bl, tr >.
The function g(x1) = t2, g(x2) = t1 is a unique match of 7 applied to this output in Sy, and in this
case, the first thing mentioned is ¢5 and the last thing mentioned is ¢;.

A denotation function is specified by a meaning transducer M and a choice of a parameter
which from {first,last}. Given an utterance u and a situation S such that v € L(M) and there
is a unique match f of w(M(u)) in S, then the denoted object is the first thing mentioned if
which = first and the last thing mentioned if which = last. Otherwise, the denotation function is
undefined for u and S.

With M; we specify a denotation function by choosing which = first. Then in the situation 57,
the utterance the blue triangle above the square denotes t; and the square below the blue triangle
denotes to. The utterance the green triangle has no denotation in the situation Sj.



3 Strategies for Learning Meanings

Next we examine simple strategies the learner may use to try to learn (approximations of) the
meaning and denotation functions of the teacher. For the meaning function, we assume that the
learner receives a sequence of pairs (S;, u;) from the teacher, where S; is a situation, and u; is an
utterance with a denotation in the situation S;. For the denotation function, we assume that the
learner receives triples (S;, u;, d;) where S; is a situation, u; is a denoting utterance in S;, and d;
indicates which thing, ¢;, in the situation is denoted by w;. In practice, the denoted object might
be indicated by non-linguistic means, e.g., pointing at it. This setting gives rather less information
than pairs consisting of an utterance u € L(M) and its meaning (M (u)). Learning the denotation
function is just a question of setting the parameter which correctly if the meaning function has
been learned; we focus on the latter task.

In this definition we are assuming that the learner and teacher share the relevant situation S;.
This is a strong assumption, which may not be satisfied in practice if the learner and teacher are
paying attention to very different aspects of their shared environment.

Given a pair (S, u) of situation and utterance, the learner knows that the teacher’s transducer
M may map some words in u to the empty result, ¢, but each other word in u must have been
mapped by v either to one of the predicates in S, or to 7, where r is a binary predicate in S.

In general, the mapping of a word by M depends on the state that M is in when the word
is encountered. However, in the transducer M7, the output map is state-independent, at least for
states other than the dead state. To simplify the learning problem, in this paper we make the
following state-independence assumption.

Assumption 1. For all states ¢ € Q and words w € W, v(q,w) is independent of q.

Thus we write y(w) instead of v(g,w). Under this assumption, knowing ~ is sufficient to
compute M (u) for any u € L(M); we apply ~y sequentially to the words of u and form the sequence
of results. And because the path-mapping function 7 is fixed, knowing ~ is sufficient to compute
the meaning (M (u)) of any uw € L(M). In this case we may think of M as separated into a finite
state acceptor for L(M) and the function v to compute the outputs for elements of L(M).

3.1 A cross-situational conjunctive strategy

Given the state-independence assumption, we consider a cross-situational conjunctive learning strat-
egy. Cross-situational learning has been investigated by [21,22,24], among others. For each encoun-
tered word w, we consider all utterances u; containing w and their corresponding situations S;, and
form the intersection of the sets of predicates occurring in these S;. That is, for each encountered
word w let

C(w) = ﬂ{predieates(&-) cw € c(u;)}

Because u; is a correct denotation in S;, if v(w) is a primary predicate, that predicate must be in
C(w). Similarly, if y(w) = 7!, then r must be in C(w). Hence, if C(w) is empty then the learner
may correctly conclude that y(w) = e.

Continuing with our earlier example, suppose we apply this approach to the pairs of utterances
and situations shown in the left part of Table 1. Each situation is described by an abbreviation:
for example brtlbbs represents the situation of a big red triangle to the left of a big blue square.

For the data in the left part of Table 1, observe that every C(w) contains the predicate bi
because it is present in every situation. Such a predicate is a background predicate. Let C'(w)



utterance situation

the triangle bbt 7
the blue triangle bbtibrt ?}jze (Z? (w)
the red triangle to the left of the blue square brtlbbs triangle | {tr}
the circle above the green triangle bbcabgt , .
the red circle to the right of the green circle bgclbre circle {ei}
the triangle above the red square bgtabrs Z?ggm }Z(ZJ}}
the green triangle bgtabrs

the blue circle bbcabgt red {re}
the red triangle to the right of the blue triangle | bbtlbrt ggeen {gg}
the red circle bre ;zef;)ve gle}}
the circle above the square bbcabrs right {le}
the circle to the left of the square bgclbgs to {le}
the blue circle above the square bbcabgs

the circle to the left of the triangle bbclbgt of {ie}
the triangle to the right of the circle bbclbgt

Table 1: English utterances and situations; values of C’(w)

to be C'(w) with all background predicates removed. The values of C’(w) for this data are shown
in the right part of Table 1. There is no entry for the word below because it is not encountered in
the examples.

The results in Table 1 for the words the, triangle, circle, square, blue, red, green, above and left
agree with the values of the output function for My, but the values for right, to and of disagree.
In the case of right, the difficulty is that the value should be le! instead of le. This arises because
although derived predicates may be meanings, they do not occur in situations. Additional process-
ing is necessary to get the order of arguments correct for binary predicates. As an example of the
kind of information we may use, to determine that ab rather than ab® is the correct image of the
word above, we examine the pair consisting of the utterance the circle above the green triangle and
the situation bbcabgt, that is

{bi(tl), bl(tl), Ci(tl), ab(tl, tg), bi(tg), g’l”(tg), tr(tg)}.

With the C’ values learned for circle, green and triangle, the choice of ab for above leads to a
match for this utterance, because ab(ty,t2) is supported by the situation, while ab’(t1,t3) is not.
This approach relies on the correctness of the object identifications as established by the unary
predicates.

For the words to and of, their occurrence in the phrases to the left of and to the right of ensure
that when they occur, the binary predicate le will be present in the situation. However, for these
words, the attempt to assign a definite order of arguments to the binary predicate le will fail,
because they occur with both argument orders. Thus, solving the problem of argument orders will
resolve these meanings as well.



3.2 Other languages, other phenomena

We have gathered comparable examples for several other languages, which exhibit various other
phenomena. For example, in our sample for Mandarin, a circle is designated as yuan or yuan xing,
a triangle as san jiao xing and a square as zheng fan xing. The English utterance the triangle below
the circle is rendered as yuan xing xia mian de san jiao wing. In this case, the denotation of the
utterance (the triangle) is mentioned last in the utterance rather than first; this is a case in which
the parameter which must be last rather than first.

Also in our sample for Mandarin, san and jiao always co-occur, and both of their C’ values are
the unary predicate tr; analogously, zheng and fan both have the value sq. If two (or more) words
always co-occur and have a non-empty meaning, there may be no evidence for which word should
be assigned the meaning. In our sample, ¢r can be assigned to either san or jiao and the denotation
function will be unaffected. A better general solution might be to recognize lexical items that are
combinations of words.

This co-occurrence phenomenon also occurs in our sample for Greek: o and kyklos always co-
occur, though not always contiguously, and both have the C’ value ci, though in fact o is an article.
Another phenomenon is present in our sample for Greek: the word for circle appears in three forms:
kyklos, kyklou and kyklo, depending on whether it is the object of a preposition, and, if so, which
preposition. Examples of this are: o kyklos pano apo to tetragono (the circle above the square), to
trigono sta deksia tou kyklou (the triangle to the right of the circle), and to tetragono pano apo ton
prasino kyklo (the square above the green circle).

A combination of morphological and semantic evidence would suggest that these three words
are in fact one word. If, however, we treat them as separate words, in the case of kyklou, the binary
predicate le will be present in every situation in which the word is used, so that its C’ value is
{ci,le} in the limit. Similarly, kyklo will always co-occur with the binary predicate ab. In our
model, each word maps to at most one predicate, so we would like a criterion to select one of the
two possibilities.

4 The Learning Algorithm

Based on the ideas discussed above, we propose a learning algorithm, and give set of assumptions
under which it finitely converges to a correct meaning function.

4.1 Further assumptions about M

We make additional assumptions about the meaning transducer M. In Assumption 1, we have
already assumed that the output function y(w) depends only on the input word w. If W’ is a set
of words, we define

YW = {y(w) 1w e W, y(w) #¢}.
We define the set of all utterances in L(M) that contain w:

Ly(w)={ue L(M):w € c(u)}.

A word w; implies a word we, denoted wy —pr we if Lys(wy) € Lps(we); this is true if every
utterance in L(M) that contains w; also contains we. Two words w; and wy always co-occur,
denoted wy <y we, if Lys(we) = Las(wy); that is, they occur in exactly the same set of utterances



in L(M). The relation of co-occurrence is an equivalence relation; its equivalence classes are co-
occurrence classes. In our English example, the words to and of always co-occur and each one
is implied by the word left. In our Mandarin example, the words san and jiao always co-occur.
To deal with co-occurrence classes instead of words as the units to which meanings are assigned,
we assume that v is well-behaved with respect to co-occurrence classes. We say that v is single-

valued if for every co-occurrence class K, v assigns a nonempty output to at most one word from
K.

Assumption 2. The output function v is single-valued and for any single-valued output function
v such that v(K) = v/ (K) for all co-occurrence classes K, M(u) = M'(u) for every u € L(M),
where M’ is M with output function +'.

For example, in our sample of Mandarin: either san or jiao can be assigned the meaning tr
without affecting the resulting values M (u) for utterances v € L(M). This assumption is not true
in our Greek example: if o rather than kyklos is assigned the output ci, then the output of o mple
kyklos pano apo to tetragono is changed from < bl, ci, ab, sq > to < ci, bl, ab, sq¢ >. (As this does
not affect the denotation function, perhaps this assumption should be weakened.)

We next assume that the language of denoting utterances and their meanings are sufficient to
determine the value of v for each co-occurrence class. Define for each co-occurrence class K,

Py (K) = (" We(M(u)) :ue L(M),K C c(u)}.

This is all predicates common to meanings of utterances from L(M) that contain the words in K.
Note that for all co-occurrence classes, v(K) C Py(K). The following assumption strengthens this
to equality.

Assumption 3. For all co-occurrence classes K, v(K) = Py (K).

This assumption holds of the transducer M;. For example, the value of Py, for the co-occurrence
class {of, to}, is (), witnessed by the utterances the circle to the right of the square, the triangle
to the left of the circle and the square to the right of the triangle and their corresponding sets of
predicates: {ci,le’, sq}, {tr, le, ci} and {sq,le’, tr}. In the case of Greek there are occurrences of
kyklou with both sta deksia and sta aristera that eliminate both le and le! from the value of Pyy.

Lemma 1. Under Assumptions 1, 2, and 3, knowledge of the set of co-occurrence classes K and
the values Py (K) is sufficient to compute the value of y(u) for every u € L(M).

Proof. Define 4/ as follows. For each co-occurrence class K such that Pys(K) is nonempty, select
one word w € K and set 7/(w) = p, where p is any element of Py;(K), and set 7' (w') = ¢ for all
other w’' € K. If Py (K) = ), then set v/(w) = ¢ for all w € K.

By Assumption 2, v(K) is single-valued and by Assumption 3, Py (K) = v(K). Thus v/(K) =
v(K) for all co-occurrence classes K, and 7/ is single-valued by definition. Hence by Assumption 2,
v (u) = v(u) for every u € L(M). O

However, in the setting we consider, what is observed is the primary versions of binary pred-
icates. We therefore define a variant of Py/(K) in which predicates are first transformed to their
primary versions.

PPy (K) = ﬂ{pm’mary(c(M(u))) cu€ L(M),K Cc(u)}.

10



For the example of the transducer M; and the co-occurrence class {of, to}, the value of PPy is
{le} because whenever these two words occur in an utterance u from L(M), either right or left
occurs, and therefore le occurs in primary(c(M(u))). Similarly, in the case of Greek, the value of
PP for the class containing kyklou consists of ¢i and le.

A useful property of PPy(K) is that it gives correct information about the unary predicates.

Lemma 2. For every co-occurrence class K, PPy/(K) NP = Py(K)NP.

Proof. Let p € P. Then primary(p) = p. If p € PPy (K), then for every utterance v € L(M) such
that K C c(u), p € primary(c(M(u)), thus p € ¢(M(u)) and therefore p € Py (K). Conversely,
if p € Py(K) then for every utterance u € L(M) such that K C c(u), p € ¢(M(u)), thus p €
primary(c¢(M(u)) and therefore p € PPy (K). O

4.2 The learning algorithm

We assume that the learning algorithm receives examples (S;,u;) for i = 1,2,... and responds to
each one by hypothesizing a meaning function ~,, based on the first n examples. The criterion of
success is whether the algorithm finitely converges to a meaning function 4’ such that v(u) = /()
for all utterances u € L(M).

After receiving the example (S, u,), the learner computes the intersection of the sets of pred-
icates seen in every situation so far, as follows.

G, = m predicates(S;).
i=1

Let G be the set of background predicates, that is, all predicates that occur in every situation
Si.
G= m predicates(S;).
7
Then G, finitely converges to G, because the set of predicates in any situation is finite.

The algorithm maintains a partition IC,, of the words it has seen, in which two words w; and
wy are in the same class if they occur in exactly the same set of utterances u; with 1 <14 <n. For
each class K € K,,, the learning algorithm computes the set of unary predicates that occur in every
situation .S; for which the utterance u; contains the class K:

U (K)=Pn ﬂ{predicates(&-) 1<i<n, K Cc(u)}

The algorithm uses these sets to define a partial meaning function g, as follows. For each class
K € Ky, if (Up(K)—G,,) is nonempty then the algorithm selects one word w € K and one predicate
p € (Up(K) — G,) and defines g, (w) = p. For all other words, the algorithm defines g, (w) = €.

The map g, translates any utterance into a sequence of unary predicates. For example, using
the map g,, derived from the data in Table 1, the translation of the green circle to the right of the
red triangle is < gr, ci, re, tr >.

Resolving argument order. The partial meaning function g, is used to try to gather informa-
tion about the possible orders of arguments of binary predicates as follows. Let u be a denoting ut-

terance in a situation S, with partial translation g, (u) =< p1,p2,...,pr >. Let <t , tiy, ..., t;. >
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be a finite sequence of distinct things from the situation S. We say that this sequence is compati-
ble with the partial translation g, (u) if there exists a partition of the sequence < 1,2,...,k > into
7 (possibly empty) non-overlapping consecutive intervals Iy, I, . . ., I such that p,(t;,) is supported
by S for every j =1,...,r and £ € I;.

We define the set of possible binary predicates possible(S, u) as follows. For each atom r(t;, ;) in
S, r is included in possible(S, ) if there is an ordering compatible with g(u) in which ¢; immediately
precedes t;, and r! is included in possible(S,u) if there is an ordering compatible with g(u) in which
t; immediately precedes t;. Note that

primary (possible(S,u)) C RN predicates(S).

For example, if the situation S is a big red triangle (¢1) to the left of a big green circle (¢2), with a
big red square (t3) below the circle, then the only orderings compatible with < gr, ci, re, tr > are <
to,t1 >, < t3,to,t; >, < to,t3,t; > and < to,t1,t3 >. Then in the computation of possible(S, u), le’
is included (because le(t1,t2) is in the situation and t5 immediately precedes ¢ in some compatible
ordering) but le is not (because t; does not immediately precede ts in any compatible ordering.)
Considering the occurrences of ty and t3 in the compatible orderings, both ab and ab’ will be
included.

The learner defines for each class K € ), a set of binary predicates as follows.

B,(K) = ﬂ{possz’ble(Si,ui) :1<i<n,K Cc(u)}

Finally, the learner uses B, (K) to extend g, to a hypothesized meaning function -, as follows. For
each w such that g, (w) # &, y,(w) is set to g,(w). For each class K € K, if (U,(K)—Gp) =0
and (B, (K) — Gp) # 0, then a word w is selected from K and a predicate ¢ from (B,(K) — Gy,)
and 7, (w) is set to ¢. For all remaining words w, -, (w) is set to e. This concludes the description
of the learning algorithm.

We note that the algorithm prefers to assign a unary predicate as the meaning of a co-occurrence
class K if possible. This means that it prefers ci to le as the meaning of the co-occurrence class of
kyklou in our Greek example.

4.3 Correctness of the algorithm

Our goal in this section is to prove the following theorem. To do so, we first make some additional
assumptions about the sequence of examples (S;, u;).

Theorem 3. Under Assumptions 1 through 6, the learning algorithm finitely converges to a meaning
function ~" such that 7' (u) = v(u) for every u € L(M).

Our first assumption about the data sequence (S;, u;) guarantees that the partition /C,, finitely
converges to the correct co-occurrence classes for L(M ). For the following Assumptions, we consider
only words w and co-occurrence classes K that actually appear in some example (S;, u;).

Assumption 4. For all pairs of words wy and wy, wy <> pr wy if and only if for all i, c(u;) contains
both w1 and wy or neither wi nor wsy.

This assumption is satisfied for our English example by the data in Table 1. The second
assumption about the sequence of examples allows the algorithm to compute PP/ (K) in the limit.

12



If K is a co-occurrence class, let

C(K)= m{predicates(Si) : K Cc(u)},

and
C'(K)=C(K) - G.

Assumption 5. For each co-occurrence class K, C'(K) = PPy (K).

Note that this implies that no background predicate is in v(K') for a co-occurrence class K that
appears in some example (S;,u;). This assumption is satisfied for our English example by the data
in Table 1. Our final assumption regarding the data is that if the unary predicates are learned
correctly, then compatibility considerations are enough to rule out any incorrect binary predicates.

Assumption 6. Suppose g is a partial meaning function such that for all co-occurrence classes K,
9(K) =~v(K) if y(K) is a unary predicate and g(K) = 0 otherwise. Then for every co-occurrence
class K such that v(K) is not a unary predicate and every predicate ¢ € (RU R' — G), such that
q & v(K), there exists an example (S;,u;) such that q & possible(S;,u;), where possible is computed
with respect to g.

This assumption is satisfied by the data in Table 1.

Proof of Theorem 3. By Assumption 4, the partition /C,, finitely converges to the correct co-occurrence
classes of L(M), so let n be sufficiently large that this is true. Because G, finitely converges to
the background predicates G and U, (K) finitely converges to the unary predicates in PPy, (K), we
have that (U, (K)— G,,) finitely converges to the unary predicates in PP ;(K), which by Lemma 2
and Assumption 3 are just the unary predicates in y(K). If n is also sufficiently large that this
is true, we must have g,(K) = v(K) for all co-occurence classes K such that v(K) is a unary
predicate and g, (K) = () for all other co-occurrence classes K.

Thus g, satisfies the hypotheses of Assumption 6. Consider any co-occurrence class K such
that v(K) is not a unary predicate. If v(K) = (), then for every binary predicate ¢ € (RU R —
G), there exists an example (S;,u;) such that ¢ & possible(S;,u;). Thus, for n sufficiently large,
(Bn(K) - Gn) = () and 'Vn(K) = 0.

Suppose 7(K) = {q} for some ¢ € RUR!. Then ¢ ¢ G, so ¢ € (RU R! — G), by Assumption 5.
For all sufficiently large n, ¢ is in possible(S;) if K C c¢(u;) for all 1 < ¢ <n. This is true because u;
is a denoting utterance in S;, so there is a match f from x1,...,x; to things in S; such that all the
atoms of (M (u;)) are supported in S;. Thus, there is an ordering f(x1), f(x2), ..., f(zx) of things
from S; compatible with the subsequence of M (u;) consisting of unary predicates (which is equal
to gn(u;)), and in which ¢(t;,t;41) for some j. Thus, g € (B,(K) — Gy,) for all sufficiently large n.
Every other predicate from (RU R! — () is eliminated by some example (.S;, u;), by Assumption 6.

Thus, for sufficiently large n, 7, finitely converges to a meaning function 4’ such that 7/(K) =
v(K) for all co-occurrence classes K of L(M). By Assumption 2, '(u) = v(u) for all utterances
u € L(M). O

13



5 Testing on Natural Language Samples

We have implemented and tested our algorithm in the example domain of geometric shapes with sets
of utterances in a number of natural languages, including Arabic, English, Greek, Hebrew, Hindi,
Mandarin, Russian, Spanish and Turkish. These experiments allow us to assess the robustness of
our assumptions for this domain and the adequacy of our model to deal with crosslinguistic data.

5.1 The initial samples

The first set of tests consisted of asking native speakers to translate the set of fifteen utterances
shown in Table 1, and then running the algorithm to learn a meaning function from the resulting
utterances paired with the same situations as in the table. The respondents provided Romanized
spellings of the words to facilitate testing. In addition, we created a second English sample for the
same situations in the form of giving “directions” to an object, for example, go to the red circle
and then north to the triangle.

Appendix A gives results for each language: (1) the translations of the initial sample of fifteen
utterances and the corresponding situations, (2) the set of word co-occurrence classes and their
associated sets of predicates for this data, and (3) the meaning function chosen on the basis of this
data. For each language for which the initial sample does not achieve convergence, we also give
final converged values of (2) and (3), computed as described in Section 5.2.

For the English, Mandarin, Spanish and English Directions samples, the fifteen initial examples
are sufficient for convergence of the sets of predicates associated with each co-occurrence class of
words, and also for the correct resolution of the binary predicates; correct meaning functions are
learned in each of these cases. In these cases, there is a single word class associated with each
unary predicate; for example, there is a single word class associated with ¢r and a single word class
associated with re.

In the Arabic, Greek, Hebrew, Hindi, Russian and Turkish samples, the fifteen initial examples
given are not sufficient to ensure convergence to the final sets of predicates associated with each
class of words. For example, in the Hebrew sample, the word classes hameshulash and lameshulash
should both refine to the predicate tr, but the sample is only sufficient to refine lameshulash to the
two predicate tr and bl. In the construction of the meaning function, ¢r is randomly chosen for the
meaning of lameshulash in the particular run shown. This kind of accidental association can be
removed with more examples of a similar nature, as we show in Section 5.2.

There is another kind of accidental association which would require an enlarged domain to
remove. For example, in the case of Arabic, the words alhamraa, alkhadraa, and alzarkaa are only
used of aldaerah, (circle), which means that even after convergence has occurred, the predicates
associated with alhamraa are both re and ci, and analogously for alkhadraa and alzarkaa. A similar
phenomenon occurs in the Greek sample; for example, kokkinos is associated with both re and c:
even after convergence.

When two objects are mentioned, the denoted object may be mentioned first (as in the Arabic,
English, Greek, Hebrew, Spanish, and Russian samples) or second (as in the English Directions,
Hindi, Mandarin and Turkish samples.) This affects the binary predicates chosen for the meanings
of words. Thus, in the English sample above is assigned the meaning ab, but in the English
Directions sample, north is assigned the meaning ab’, because the second argument of ab precedes
the first argument of ab in the resulting meaning. For example, in go to the red triangle and then
north to the square, the square is above the triangle, but the second argument of ab, namely, the
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triangle, is mentioned first. A similar consideration applies to left and right (see east and west in
the English Directions sample.)

5.2 Randomly generated samples

To explore the issues of whether our theoretical assumptions are satisfied and how many examples
may be required to ensure convergence, we constructed meaning transducers for each language in
our study and performed a set of experiments using randomly generated samples.

For each language we constructed a meaning transducer capable of expressing the 444 different
meanings involving one or two objects. There are 12 meanings involving one object: the 3 shape
predicates, and the 9 combinations of a color and a shape predicate. There are 432 = 12 x 3 x 12
meanings involving two objects related by one of 3 relations: left, right or above. The number of
states in the meaning transducer for each language is shown in Table 2.

Given a meaning transducer, we generated a random example as follows. We first randomly
generated a situation involving two objects. There are 162 = 9 x 2 x 9 different such situations,
because each object is specified by one of three colors (bl, gr, re) and one of three shapes (tr, sq, ci),
and there are two possible relations (le, ab) between them. We then determined all of the utterances
accepted by the meaning transducer that are denoting for the selected situation, and selected one
of these at random, returning the resulting pair consisting of the situation and denoting utterance.

There are 1476 distinct pairs consisting of a situation and a denoting utterance for that situation.
Note that our sampling method does not sample the possible utterances uniformly (because the
square is a denoting utterance in many more situations than the blue square to the right of the red
triangle), nor does it sample the situation/utterance pairs uniformly (because some situations have
more denoting utterances than others.)

To determine the final co-occurrence classes and their sets of predicates, we ran our algorithm
on large random samples (100 or 200 examples) and checked manually whether convergence had
occurred; the results of one such run are shown for those languages for which the initial sample
did not achieve convergence. This process has shown that our theoretical assumptions are satisfied
and a correct meaning function is found in the following cases: Directions, English, Hebrew, Hindi,
Mandarin, Russian, Spanish, and Turkish. For Arabic and Greek, the issues noted above regarding
adjectives with the words for circle mean that our assumptions are violated, and a fully correct
meaning function is not guaranteed. However, even in these two cases, a largely correct meaning
function is achieved.

We then made a set of 10 runs for each language, each run consisting of generating a sequence of
random examples and running the algorithm on longer and longer prefixes of it until it reached the
final co-occurrence classes and their sets of predicates for this language. Statistics on the results of
the number of examples to convergence of the random runs are shown in Table 2.

The process generating these statistics is one of waiting until the sampling produces enough
variation to eliminate all the incorrect possible associations of each word. As in a coupon collector
process, there is a lot of waiting for the last few meanings to refine, because examples to refine them
are not very probable. The statistical process is essentially equivalent for the Directions, English,
Mandarin and Spanish transducers, yielding a median of about 40 samples. (Differences in their
statistics are due to random variation.) Languages with more than one word for each predicate will
tend to incur more waiting, for example, Russian, with three versions of each adjective and three of
each noun, and Greek, with two forms for triangle and square and three for circle, red and green.
Intermediate are Hindi, which has two forms for green and blue, and Arabic, which has two forms
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language | correct meanings? | transducer size | median # exs | mean # exs
Arabic No 10 52.5 67.6
Directions Yes 8 36.0 38.3
English Yes 11 38.5 34.9
Greek No 20 93.0 95.9
Hebrew Yes 6 39.5 37.7
Hindi Yes 11 62.5 68.9
Mandarin Yes 17 37.5 40.4
Russian Yes 11 117.5 112.4
Spanish Yes 10 41.0 46.5
Turkish Yes 7 36.0 374

Table 2: Results of random tests: examples until convergence in 10 runs

for red, green and blue. Hebrew and Turkish seem not to incur any extra waiting, despite having
two forms for each noun — likely because each object mentioned requires a noun but not necessarily
an adjective.

Overall, compared with the 162 possible situations, 444 possible utterances, and 1476 possible
situation/utterance pairs, a few tens of randomly chosen examples to convergence does not seem
extravagant, especially as the intermediate results appear to be partially correct.

To get some sense of how this process might scale, we ran 10 analogous trials with an English
transducer with 6 color terms, 6 shape terms, and 4 relation terms (left, right, above and below).
The number of situations involving two objects is now 2592 (up from 162) and the number of
possible denoting utterances is 7098 (up from 444). For the 10 trials, the mean of the number
of examples until convergence was 47.2 and the median was 49.0. This modest increase reflects
two contrary tendencies: more terms means more examples to ensure that they are all sampled by
a random process, but more terms also means a smaller probability of accidental coincidences in
random samples.

Siskind [21] presents a formalization of cross-situational lexical acquisition and a constraint-
satisfaction method that successfully solves very large instances of it. In his experimental setup he
uses synthetic grammars resembling English or Japanese, and presents examples each consisting of
an utterance and its meaning together with 3 randomly generated uncorrelated distractor meanings.
The number of utterances in his samples seems to scale linearly in the number of words in the
lexicon. Thompson and Mooney [24] formalize the problem of learning a covering lexicon given a
set of examples consisting of an utterance and its meaning represented as a rooted labelled tree;
their formalization permits lexical ambiguity. Their system compares favorably with Siskind’s in
a learning a natural language interface to a geographic database. They remark on the lack of
large corpora annotated with semantic representations and advocate active learning to reduce the
annotation burden. Smith et al. [22] present a mathematical analysis and experimental results for a
simplified model of cross-situational learning of a lexicon. In their model of whole language learning,
there are M meanings and each example consists of an utterance and C' possible meanings for the
utterance, with the correct meaning and C' — 1 randomly chosen distractor meanings, which are
not equal to the target meaning but are otherwise uncorrelated with it. They give an asymptotic
analysis of the case when C' is much smaller than M, in which case approximately 2M In M examples
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will be required. This can be interpreted in terms of the coupon collector problem as approximately
the expected number of examples to sample each meaning at least twice; in the first sample the
utterance acquires a confounded meaning, which refines to the correct meaning with the second
example (because it is unlikely that any incorrect meaning will be repeated.)

In our setting, if we view the all the incorrect possible denoting utterances in a situation as
distractor meanings, there are typically more than 3, and they are correlated with the correct
meaning by involving some of the same predicates and relations. Because of compositionality, the
number of examples required for convergence scales much more slowly than M In M, where M is
the total number of meanings of utterances, contrary to the model of Smith et al. Using a coupon
collector argument, it must scale at least as L1n L, where L is the number of items in the target
lexicon, because convergence requires each lexical item to be sampled at least once. A more refined
analysis of the number of examples required in our setting is desirable.

6 Discussion and Future Work

Another relevant issue is the computational feasibility of the algorithms used by the teacher and
learner. An important parameter is the number of things in the example situations; some of our
methods do not appear to scale polynomially in this parameter. For example, consider the problem
of determining whether there is a match of 7(M(u)) in a situation S. If there are N variables and
at least IV things, the problem includes as a special case finding a directed path of length N in
the situation graph, which is NP-hard in general. Also, the method of determining the order of
arguments of binary predicates potentially involves considering all possible orderings of the distinct
things in a situation. However, it seems unlikely that human learners cope well with situations
involving arbitrarily many things, and it therefore seems important to find good models of focus of
attention.

The child’s comprehension in the two-word stage is limited to utterances that refers to something
present in that moment. Hence, the situation in which these utterances are produced is used by
child and adult to understand the meaning of each other’s utterances. We have argued that if the
situation plays this important role in the communication between child and adult, then learning
from positive data and learning from corrections may not be so different; in both cases, the adult
version of the utterance is provided to the child and also their common meaning. Our model begins
to suggest how this may be possible.

Moreover, our model suggests that learning meaning not only facilitates learning syntax, but also
precedes it. Therefore, we agree with Tellier’s suggestion [23] that “the acquisition of a conceptual
representation of the world is necessary before the acquisition of the syntax of a natural language
can start.”

Further work is required to relax some of the more restrictive assumptions. For example, the
limitations of the current framework mean that disjunctive meanings (for example, a color term
that applies to both blue and green things) cannot be learned, nor can a function that assigns
meanings to more than one of a set of co-occurring words. Statistical approaches may produce
more powerful versions of the models we consider. We plan to continue to develop our model to
incorporate production tasks for the learner, as well as corrections or expansions from the teacher.
Our goal is to contribute to a deeper theoretical understanding of the role of semantics in language
acquisition.
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Natural Language Test Data

For each of the languages considered, a table gives the (1) translations of the initial set of fifteen
utterances and their corresponding situations, (2) the word co-occurrence classes for this data and
the set of non-background predicates that occur every situation in which that word class is used,
and (3) the meanings chosen for each word that occurs in the sample in the construction of the
meaning function ~. For those languages for which the initial sample does not result in convergence,
additional tables give the results for (2) and (3) after convergence. These results are discussed in
Section 5.
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utterance situation
almouthallath bbt
almouthallath alazrak bbtlbrt
almouthallath alahmar ela alshamal mina almourabbaa alazrak | brtlbbs
aldaerah fouk almouthallath alakhdar bbcabgt
aldaerah alhamraa ela alyameen mina aldaerah alkhadraa bgclbre
almouthallath fouk almourabbaa alahmar bgtabrs
almouthallath alakhdar bgtabrs
aldaerah alzarkaa bbcabgt
almouthallath alahmar ela alyameen mina almouthallath alazrak | bbtlbrt
aldaerah alhamraa brc
aldaerah fouk almourabbaa bbcabrs
aldaerah ela alshamal mina almourabbaa bgclbgs
aldaerah alzarkaa fouk almourabbaa bbcabgs
aldaerah ela alshamal mina almouthallath bbclbgt
almouthallath ela alyameen mina aldaerah bbclbgt
- word meaning
class predicates
(almouthallath) | ((tr 1)) a}n;(;ult{hallath EE ?)
(alazrak) ((b1 1) (tr 1) (le 2) (re 1)) & anra
alahmar (re 1)
(alahmar) ((re 1) (tr 1))
(ela mina) ((le 2)) cla 0
alshamal (le 2)
(alshamal) ((le 2)) .
mina ()
(almourabbaa) | ((sq 1))
. almourabbaa | (sq 1)
(aldaerah) ((ci 1))
aldaerah (cil)
(fouk) ((ab 2)) fouk (ab 2)
(alakhdar) ((ab 2) (gr 1) (tr 1))
. alakhdar (gr 1)
(alhamraa) ((ci 1) (re 1))
alhamraa (cil)
(alyameen) ((le 2)) alvameen ((le 1) 2)
(alkhadraa) ((gr 1) (cil) (le 2) (re 1)) Y
(alzarkaa) (bl 1) (ci 1) (ab 2) (gr 1)) | | Mkhadraaf (ci 1)
alzarkaa (cil)

Table 3: Arabic: results for initial sample

20




Table 4: Arabic: results after convergence; alkhadraa, alhamraa and alzarkaa not sufficiently re-

solved

class predicates
(aldaerah) ((ci 1))
(alkhadraa) ((gr1) (cil))
(almourabbaa) | ((sq 1))

(ela mina) ((le 2))
(alyameen) ((le 2))
(alakhdar) ((gr 1))
(almouthallath) | ((tr 1))
(alazrak) ((bl 1))
(fouk) ((ab 2))
(alshamal) ((le 2))
(alhamraa) ((ci 1) (re 1))
(alzarkaa) ((b1'1) (ci 1))
(alahmar) ((re 1))

word

meaning chosen

aldaerah
alkhadraa
almourabbaa
ela

alyameen
mina
alakhdar
almouthallath
alazrak

fouk
alshamal
alhamraa
alzarkaa
alahmar
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utterance situation
go to the triangle bbt

go to the blue triangle bbtlbrt
go to the blue square and then west to the red triangle | brtlbbs
go to the green triangle and then north to the circle bbcabgt
go to the green circle and then east to the red circle bgclbre
go to the red square and then north to the triangle bgtabrs
go to the the green triangle bgtabrs
go to the blue circle bbcabgt
go to the blue triangle and then east to the red triangle | bbtlbrt
go to the red circle brc

go to the square and then north to the circle bbcabrs
go to the square and then west to the circle bgclbgs
go to the square and then north to the blue circle bbcabgs
go to the triangle and then west to the circle bbclbgt
go to the circle and then east to the triangle bbclbgt

word meaning chosen
class predicates 80 0
(go to the) | () Eﬁe 8
(triangle) ((tr 1)) triangle | (tr 1)
(blue) ((bl 1)) blue (bl 1)
(square) ((sq 1)) square | (sq 1)
(and then) | () and 0
(west) ((le 2)) then 0
(red) ((re 1)) west | ((ler) 2)
(green) ((gr 1)) red (re 1)
Enor‘ih)) Egab 2);) green (gr 1)
circle cil
est) [ (ae2) | |rent o
east (le 2)

Table 5: Directions: results for initial sample have converged
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utterance situation
the triangle bbt

the blue triangle bbtlbrt
the red triangle to the left of the blue square brtlbbs
the circle above the green triangle bbcabgt
the red circle to the right of the green circle bgclbre
the triangle above the red square bgtabrs
the green triangle bgtabrs
the blue circle bbcabgt
the red triangle to the right of the blue triangle | bbtlbrt
the red circle bre

the circle above the square bbcabrs
the circle to the left of the square bgclbgs
the blue circle above the square bbcabgs
the circle to the left of the triangle bbclbgt
the triangle to the right of the circle bbclbgt

class predicates Xloerd ?)leaning chosen
(thg) 0 triangle | (tr 1)
(triangle) | ((tr 1)) blue (bl 1)
(blue) ((bl 1)) red (re 1)
gred)f) Ege 1)))) to 9)

too e2

Eleft) | Egle 2)))) Lefft 86 ?
square sq 1

(circle) ((ci 1)) zﬁie Ei? 11))
(above) | ((ab 2)) above | (ab 2)
(green) ((gr1)) green (gr 1)
(right) ((le 2)) right ((er) 2)

Table 6: English: results for initial sample have converged
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utterance situation

to trigono bbt

to mple trigono bbtlbrt

to kokkino trigono sta aristera tou mple tetragonou | brtlbbs

o kyklos pano apo to prasino trigono bbcabgt

o kokkinos kyklos sta deksia tou prasinou kyklou bgclbre

to trigono pano apo to kokkino tetragono bgtabrs

to prasino trigono bgtabrs

o mple kyklos bbcabgt

to kokkino trigono sta deksia tou mple trigonou bbtlbrt

o kokkinos kyklos brc

o kyklos pano apo to tetragono bbcabrs

o kyklos sta aristera tou tetragonou bgclbgs

o mple kyklos pano apo to tetragono bbcabgs

o kyklos sta aristera tou trigonou bbclbgt

to trigono sta deksia tou kyklou bbclbgt

word meaning chosen
class predicates to. 0
o) 0 trigono (tr 1)
o[ o, |0
(mple) ((bl 1)) sta, 0
(kokkino) ((re 1) (tr 1)) .

aristera (le 2)
(sta tou) ((le 2)) tou 0
(aristera) ((le 2)) totragon (sq 1)
(tetragonou) | ((le 2) (sq 1)) Oe agonou (2?1)
(o kyklos) ((ci 1))

kyklos §)
(pano apo) ((ab 2)) pano 0
(prasino) ((ab 2) (gr 1) (tr 1))

. . apo (ab 2)
(kokkinos) ((cil) (re 1)) rasino (er 1)
(deksia) ((le 2)) iokkinos (1g°;e 1)
(prasinou) ((gr1) (cil) (le2) (re 1)) doksia ((le 1) 2)
(kyklou) ((gr1) (ci1) (le 2)) prasinou (re 1)
(tetragono) | ((ab 2) (sq 1)) .
(trigonow) | (bl 1) (tr 1) (le 2)) kyklou 1 (ci 1)

tetragono | (sq 1)
trigonou (bl 1)

Table 7: Greek: results for initial sample
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class predicates
(to) 0

(mple) (b1 1))
(trigono) ((tr 1))
(kokkino) ((re 1))
(tetragono) | ((sq 1))

(sta tou) ((le 2))
(deksia) ((le 2))
(tetragonou) | ((sq 1) (le 2))
(kyklou) ((ci 1) (le 2))
(pano apo) | ((ab 2))

(o kyklos) ((ci 1))
(aristera) ((le 2))
(kokkinou) ((le 2) (re 1))
(trigonou) ((le 2) (tr 1))
(prasinou) ((le 2) (gr 1))
(kokkinos) ((re 1) (ci 1))
(prasino) ((gr 1))

(ton kyklo) | ((ci 1) (ab 2))
(prasinos) ((gr1) (cil))

25

word

meaning chosen

to

mple
trigono
kokkino
tetragono
sta
deksia
tou
tetragonou
kyklou
pano
apo

0

kyklos
aristera
kokkinou
trigonou
prasinou
kokkinos
prasino
ton
kyklo

prasinos

Table 8: Greek: results after convergence; kokkinos and prasinos not sufficiently resolved




utterance situation
hameshulash bbt
hameshulash hacachol bbtlbrt
hameshulash haadom mismol laribua hacachol brtlbbs
haigul me’al lameshulash hayarok bbcabgt
haigul haadom miyamin laigul hayarok bgclbre
hameshulash me’al laribua haadom bgtabrs
hameshulash hayarok bgtabrs
haigul hacachol bbcabgt
hameshulash haadom miyamin lameshulash hacachol | bbtlbrt
haigul haadom bre
haigul me’al laribua bbcabrs
haigul mismol laribua bgclbgs
haigul hacachol me’al laribua bbcabgs
haigul mismol lameshulash bbclbgt
hameshulash mismol laigul bbclbgt
class predicates word meaning chosen
(hameshulash) | ((tr 1)) hameshulash | (tr 1)
(hacachol) ((bl 1)) hacachol (bl 1)
(haadom) ((re 1)) haadom (re 1)
(mismol) ((le 2)) mismol (le 2)
(laribua) ((sq 1)) laribua (sq 1)
(haigul) ((ci 1)) haigul (cil)
(me’al) ((ab 2)) me’al (ab 2)
(lameshulash) | ((bl 1) (tr 1)) lameshulash | (tr 1)
(hayarok) ((gr 1)) hayarok (gr 1)
(miyamin) ((le 2) (re 1)) miyamin (re 1)
(laigul) ((gr 1) (ci1) (le 2)) laigul (gr 1)

Table 9: Hebrew: results for initial sample




class predicates word meaning chosen
(haribua) ((sq 1)) haribua (sq 1)
(hayarok) ((gr 1)) hayarok (gr1)
(miyamin) ((le 2)) miyamin ((ler) 2)
(lameshulash) | ((tr 1)) lameshulash | (tr 1)
(haigul) ((ci 1)) haigul (cil)
(hacachol) ((bl 1)) hacachol (bl 1)
(me’al) ((ab 2)) me’al (ab 2)
(laigul) ((ci 1)) laigul (cil)
(mismol) ((le 2)) mismol (le 2)
(haadom) ((re 1)) haadom (re 1)
(hameshulash) | ((tr 1)) hameshulash | (tr 1)
(laribua) ((sq 1)) laribua (sq 1)

Table 10: Hebrew: results after convergence
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utterance situation

trikon bbt

neela trikon bbtlbrt

neele varg ke bain lal trikon brtlbbs

hare trikon ke upar vritt bbcabgt

hare vritt ke dain lal vritt bgclbre

lal varg ke upar trikon bgtabrs

hara trikon bgtabrs

neela vritt bbcabgt

neele trikon ke dain lal trikon | bbtlbrt

lal vritt bre

varg ke upar vritt bbcabrs

varg ke bain vritt bgclbgs

varg ke upar neela vritt bbcabgs

trikon ke bain vritt bbclbgt

vritt ke dain trikon bbclbgt

predicates word | meaning chosen

) trikon | (tr 1)

) neela | (bl 1)

) (tr 1) (le 2) (bl 1)) neele | (tr 1)
sq 1) varg | (sq 1)

ke |0

) bain 9)

) lal (re 1)

) (gr 1)) hare | (gr 1)

) wpar | ((ab 1) 2)

) vritt | (ci 1)

) dain | (le 2)
gr 1) (tr 1) (ab2) (re 1) (sq 1)) hara | (sq 1)

Table 11: Hindi: results for initial sample
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class predicates word | meaning chosen
(trikon) | ((tr 1)) trikon | (tr 1)
(k) | () ke |0

(dain) | ((le 2)) dain | (le 2)
(hara) | ((gr 1)) hara | (gr 1)
(vritt) | ((ci 1)) vritt | (ci 1)
(varg) | ((sa1)) | |varg | (sa1)
(upar) | ((ab 2)) upar | ((abr) 2)
(neela) | ((bl 1)) neela | (bl 1)
(hare) | ((gr 1)) hare | (gr 1)
(lal) ((re 1)) lal (re 1)
(neele) | ((bl 1)) neele | (bl 1)
(bain) | ((le 2)) bain | ((le r) 2)

Table 12: Hindi: results after convergence
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utterance situation
san jiao xing bbt

lan se san jiao xing bbtlbrt
lan se zheng fang xing zuo bian de hong se san jiao xing | brtlbbs
li se san jiao xing shang mian de yuan xing bbcabgt
lii se yuan you bian de hong se yuan bgclbre
hong se zheng fang xing shang mian de san jiao xing bgtabrs
lii se san jiao xing bgtabrs
lan se yuan bbcabgt
lan se san jiao xing you bian de hong se san jiao xing bbtlbrt
hong se yuan brc
zheng fang xing shang mian de yuan bbcabrs
zheng fang xing zuo bian de yuan bgclbgs
zheng fang xing shang mian de lan se yuan bbcabgs
san jiao xing zuo bian de yuan bbclbgt
yuan you bian de san jiao xing bbclbgt

word | meaning chosen
- san )
class predicates ..
(san jiao) ((tr 1)) Jliéf E;r b
(xing) 0 i(ang (bl 1)
(lan) ((bl 1)) o 0
(se) 0 zheng | (sq 1)
(zheng fang) | ((sq 1)) e | 4
(zu0) ((le 2)) w1 O
(bian) ((le 2)) f)l.lo ((le 1) 2)
(de) 0 B
(hong) (o) | e ey
(1) ((gr 1) | (e 1)
(shang mian) | ((ab 2)) shang ()g
(yuan) (el 1)) mian | ((abr) 2)
(you) (tez) | |mom | (G0
you (le 2)

Table 13: Mandarin: results for initial sample have converged
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utterance situation

triugolnik bbt

siniy triugolnik bbtlbrt

krasniy triugolnik c levo ot sinigo kvadrata brtlbbs

krug nad zelonim triugolnikom bbcabgt

krasniy krug c pravo ot zelonogo kruga bgclbrc

triugolnik nad krasnim kvadratom bgtabrs

zeloniy triugolnik bgtabrs

siniy krug bbcabgt

krasniy triugolnik ¢ pravo ot sinigo triugolnika | bbtlbrt

krasniy krug bre

krug nad kvadratom bbcabrs

krug c levo ot kvadrata bgclbgs

siniy krug nad kvadratom bbcabgs

krug c levo ot triugolnika bbclbgt

triugolnik ¢ pravo ot kruga bbclbgt

word meaning chosen
class predicates triugolnik (tr 1)
(triugolnik) ((tr 1)) siniy (bl 1)
(siniy) ((bl 1)) krasniy (re 1)
(krasniy) ((re 1)) c 9
(c ot) ((le 2)) levo (le 2)
(levo) ((le 2)) ot 9
(sinigo) ((re 1) (tr 1) (le 2) (b1 1)) sinigo (re 1)
(kvadrata) ((le 2) (sq 1)) kvadrata (sq 1)
(krug) ((ci 1)) krug (cil)
(nad) ((ab 2)) nad (ab 2)
(zelonim triugolnikom) | ((bl 1) (ci 1) (ab 2) (gr 1) (tr 1)) zelonim 9
(pravo) ((le 2)) triugolnikom | (gr 1)
(zelonogo) ((gr1) (cil) (le2) (re 1)) pravo ((ler) 2)
(kruga) ((gr1) (ci1) (le 2)) zelonogo (gr1)
(krasnim) ((gr1) (tr1) (ab2) (re 1) (sq 1)) kruga (gr1)
(kvadratom) ((ab 2) (sq 1)) krasnim (sq 1)
(zeloniy) ((gr1) (tr1) (ab2) (re 1) (sq 1)) kvadratom (sq 1)
(triugolnika) ((b1'1) (tr 1) (le 2)) zeloniy (re 1)
triugolnika (tr 1)

Table 14: Russian: results for initial sample
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class

predicates

krasniy)
kvadrat)
krug)

siniy)
triugolnik)
c ot)

pravo)
triugolnika)
nad)
krugom)
sinigo)
kruga)
zeloniy)
levo)
zelonim)
kvadratom)
sinim)
triugolnikom)
krasnim)
krasnogo)
kvadrata)
zelonogo)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

word

meaning chosen

krasniy
kvadrat
krug

siniy
triugolnik
¢

pravo

ot
triugolnika
nad
krugom
sinigo
kruga
zeloniy
levo
zelonim
kvadratom
sinim
triugolnikom
krasnim
krasnogo
kvadrata
zelonogo

Table 15: Russian: results after convergence
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utterance situation
el triangulo bbt
el triangulo azul bbtlbrt
el triangulo rojo a la izquierda del cuadrado azul | brtlbbs
el circulo encima del triangulo verde bbcabgt
el circulo rojo a la derecha del circulo verde bgclbrc
el triangulo encima del cuadrado rojo bgtabrs
el triangulo verde bgtabrs
el circulo azul bbcabgt
el triangulo rojo a la derecha del triangulo azul bbtlbrt
el circulo rojo brc
el circulo encima del cuadrado bbcabrs
el circulo a la izquierda del cuadrado bgclbgs
el circulo azul encima del cuadrado bbcabgs
el circulo a la izquierda del triangulo bbclbgt
el triangulo a la derecha del circulo bbclbgt
Toss prodicates word meaning chosen
(e 0 el 0
(triangulo) | ((tr 1)) triangulo | (tr 1)
azul (bl 1)
(azul) ((bl 1)) rojo (re 1)
(rojo) | ((e1)) | | T 0
(ala) ((le 2)) la 0
Etizq;uerda) E;le 2)) izquierda | (le 2)
del O
(cuadrado) ((sq L) cuadrado | (sq 1)
(circulo) ((ci 1)) .
circulo (cil)
(encima) ((ab 2)) .
encima (ab 2)
(verde) ((gr 1))
(derecha) ((le 2)) verde (r 1)
derecha | ((ler) 2)

Table 16: Spanish: results for initial sample have converged
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utterance situation
ucgen bbt
mavi ucgen bbtlbrt
mavi karenin solundaki kirmizi ucgen | brtlbbs
yesil ucgenin uzerindeki daire bbcabgt
yesil dairenin sagindaki kirmizi daire | bgclbrc
kirmizi karenin uzerindeki ucgen bgtabrs
yesil ucgen bgtabrs
mavi daire bbcabgt
mavi ucgenin sagindaki kirmizi ucgen | bbtlbrt
kirmizi daire bre
karenin uzerindeki daire bbcabrs
karenin solundaki daire bgclbgs
karenin uzerindeki mavi daire bbcabgs
ucgenin solundaki daire bbclbgt
dairenin sagindaki ucgen bbclbgt

class predicates word meaning chosen
(ucgen) ((tr 1)) ucgen (tr 1)
(mavi) ((bl 1)) mavi (bl 1)
(karenin) ((sq 1)) karenin (sq 1)
(solundaki) | ((le 2)) solundaki | ((le r) 2)
(kirmizi) ((re 1)) kirmizi (re 1)
(yesil) (er 1)) yesil | (ar 1)
(ucgenin) ((b1 1) (tr 1)) ucgenin (bl 1)
(uzerindeki) | ((ab 2)) uzerindeki | ((ab r) 2)
(daire) ((ci 1)) daire (cil)
(dairenin) ((gr1) (cil) (le 2)) dairenin (gr1)
(sagindaki) | ((le 2)) sagindaki | (le 2)

Table 17: Turkish: results for initial sample
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class predicates word meaning chosen
(mavi) ((bl 1)) mavi (bl 1)
(ucgenin) ((tr 1)) ucgenin (tr 1)
(sagindaki) | ((le 2)) sagindaki | (le 2)
(ucgen) ((tr 1)) ucgen (tr 1)
(daire) ((ci 1)) daire (cil)
(yesil) (1) | |yesil (ar 1)
(dairenin) ((ci 1)) dairenin (cil)
(uzerindeki) | ((ab 2)) uzerindeki | ((ab r) 2)
(kirmizi) ((re 1)) kirmizi (re 1)
(kare) ((sq 1)) kare (sq 1)
(solundaki) | ((le 2)) solundaki | ((le r) 2)
(karenin) ((sq 1)) karenin (sq 1)

Table 18: Turkish: results after convergence
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