A new version of the Fast Multipole Method for the evaluation of potential fields on one-
dimensional structures is introduced. The scheme uses a new representation of potential
fields, based on generalized Gaussian quadratures [6,9]; in this representation, most trans-
lation operators are diagonal. To incorporate this representation into the FMM, an appa-
ratus is introduced for transforming between different types of expansions; this apparatus
is somewhat general, and is based on formulae for the least squares approximation of linear
operators. The performance of the method is illustrated with several numerical examples;
it is roughly twice as fast as previously published algorithms.

An Improved Fast Multipole Algorithm for Potential
Fields On One-Dimensional Structures

N. Yarvin and V. Rokhlin
Research Report YALEU/DCS/RR-1119
January 24, 1997

The authors were supported in part by DARPA/AFOSR under Grant F49620-95-1-0575,
in part by ONR under Grants N00014-89-J-1527 and N00014-96-1-0188, and in part by a
fellowship from the Fannie and John Hertz Foundation.

Approved for public release: distribution is unlimited.

Keywords: Singular Value Decompositions, Fast Algorithms.

1 Introduction

This paper describes an algorithm for the following problem: given two finite sequences
Zy,...,Zp € R and qy,...,¢, € R, compute the quantities ¢,...,¢, € R given by the for-

mula
n

¢i= 3 —F_ (1)

i=ligs T3 T T

This is identical to the following physical problem: n point charges are located on a line at
positions z,,...,z,, with the magnitudes of the charges being qi,..., ¢, respectively. At each
of the locations z;, the electrostatic potential ¢; which is due to the charges at all the other
points is to be computed. ’

An algorithm is also presented for the variation of the above problem in which ¢y,..., ¢,
are given by the formula

¢i= Y aqloglz;—zi. (2)

i=1i#]

This is identical to another physical problem: electric charge is present on n parallel, infinitely
thin wires of infinite length which lie at positions z;,...,z, in a plane. At each of those
positions, the electrostatic potential which is due to the other wires is to be computed.

One algorithm for these problems is the Fast Multipole Method (FMM) [3]. The FMM is an
O(n) scheme, which was first formulated for the two-dimensional case, that is, the computation
of (2) in the case that z,,...,z, € C. It uses a hierarchy of multipole expansions to compute
potentials which are due to distant charges. A version of the FMM specialized to the one-
dimensional case was later published [2].

The algorithm described in this paper is a variation of the FMM which differs from the
FMMs of [3] and [2] in two respects. The first change is that potentials due to nearby charges
are computed using a new numerical tool, namely expansions based on generalized Gaussian
quadratures [6, 9]. The second change is that the multipole expansions of [3] are replaced by
expansions based on singular value decompositions of integral operators. These two changes
are linked together by an apparatus for transforming between different types of expansions; this
apparatus is somewhat general, and is based on formulae for least squares approximation of
linear operators.

This paper is organized as follows. Section 2 contains existence theorems for singular value
decompositions of linear integral operators, and theorems on least squares approximation of
such operators. Section 3.1 briefly describes certain standard numerical tools used by the
algorithm. Section 3.2 contains derivations of error bounds for expansions based on generalized
Gaussian quadratures. Section 4 contains various analytical results used in the construction of
the algorithm. Section 5 contains a primitive algorithm for (1) or (2) which uses quadrature-
based expansions exclusively, and which displays O(n) behavior for small n, although it is
asymptotically an O(n?) algorithm. Section 6 contains the main algorithm of this paper, which
is an O(n) algorithm for an arbitrary number of points. Finally, Section 7 contains experimental
results.

2 Mathematical Preliminaries

2.1 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, which is
given for the case of real matrices by the following lemma (see, for instance, [8] for more details).

Lemma 2.1 For any n X m real matriz A, there ezist, for some integer p, an n X p real matriz
U with orthonormal columns, an m X p real matriz V with orthonormal columns, and a p X p
real diagonal matriz S = [s;;] whose diagonal entries are non-negative, such that A=U-S-V*
and that s;; < Siy1,441 foralli=1,...,p— 1.

The diagonal entries s;; of S are called singular values; the columns of the matrix V are
called right singular vectors; the columns of the matrix U are called left singular vectors.

2.2 Singular value decomposition of integral operators

This section, which follows [4], contains an existence theorem for a factorization of integral
operators. The operators T : L?[c,d] — L?%[a,b] to which it applies are of the form

(T-1)(@) = [K00t ®)

in which the function K : [a,b] x [¢,d] — R is referred to as the kernel of the operator T.
Throughout this section, it will be assumed that all functions are square-integrable; the term
“norm” will mean the L? norm.

The following theorem, which defines the factorization, is proven in a more general form as
Theorem VI.17 in [7].

Theorem 2.2 Suppose that the function K : [a,b] X [¢,d] — R is square integrable. Then there
exist two orthonormal sequences of functions u; : [a,b] = R and v; : [¢,d] = R and a sequence
s$; €R, fori=1,...,00, such that

K(z,8) = 3 ui(z)sivi(2) (4)

1=1

and that s1 > 82 > ... > 0. The sequence s; is uniquely determined by K.

By analogy to the finite-dimensional case, we will refer to this factorization as the singular
value decomposition. We will refer to the functions u; as left singular functions of K (or of T),
to v; as right singular functions, and to s; as singular values.

As is the case for the discrete singular value decomposition, this decomposition can be used
to construct an approximation to the function K, by discarding small singular values and the

associated singular functions:
P

K(z,t) =) u(z)sin(t). (5)

i=1

2

The error of this approximation can then be computed from (4):

K(z,t) - Z ui(z)sivi(t) = Z ui(z)sivi(t), (6)
i=1 i=p+1

and, therefore,

HK(z,t)—f:u,-(z)s,-v,-(t)H = !f: 2. ()
i=1 i=pt+1

A more compact notation for the above SVD, in which the analogy to the discrete singular value
decomposition is more clearly displayed, is as follows. Let p be the number of singular values
which are greater than zero. Let the operator U : R? — L?[a,b] be defined by the formula

2.2.1 Notation

p ,
Uy)(2) = Y piui(2), (8)

i=1
where the numbers yi,...,7, € R are the elements of the vector y € R?. Let the dperator

V : R? = L?[c,d] be defined by the formula

(Vy)(z) = D wivi(z), (9)
i=1

and let the matrix S be the p x p diagonal matrix whose ’th diagonal entry is s;. Then the
SVD can be written as
T=U-§-V*. (10)

In addition the orthogonality properties of the functions {u;} and {v;} can be written as

Uvr-v = I, (11)
V.V = I (12)

2.2.2 Singular value decomposition of linear operators with finite-dimensional in-
put and infinite-dimensional output

The following theorem is analogous to Theorem 2.2, from which it easily follows (the proof is
omitted). The theorem applies to operators whose input is finite-dimensional and whose output
is infinite-dimensional, or vice versa; in particular, to, operators whose kernel is a function of
the form K : [a,b] x N — R, for some interval [a, b], where A/ denotes the set of integers 7 such
that 1 < ¢ < n, for some integer n > 0.

Theorem 2.3 Suppose that the function K : [a,b] x NV — R is square integrable. Then there
ezist a finite orthonormal sequence of functions uy,...,u, : [a,b] = R, an nXxp matriz V = [v;;]

with orthonormal columns, and a sequence s; > 83 > ... > s, > 0 € R, for some integer p,
such that

K(I,j) = Z u,-(z)s,-v;j, (13)

i=1

for all z € [a,b] and all j = 1,...,n. The sequence {s;} is uniquely determined by K.

As in the case of the factorization of integral operators presented in Section 2.2, we will
refer to the above factorization as a singular value decomposition; since these factorizations
apply to different objects, the meaning is unambiguous. We will refer to the functions {u;} as
singular functions, to the columns of the matrix V as singular vectors, and to the numbers {s;}
as singular values. ’

A more compact notation for the above factorization is as follows. Let the operator U : R? —
L?%[a,b] and the px p matrix S be defined as in Section 2.2.1. Let the operator T : R® — L?[a, b]
be defined by the formula

(T-y)(z) =Y yiK(a,1), (14)
1=1
where the.numbers yi,...,y, € R are the elements of the vector y € R"™. Then equation (13)
can also be written as
T=U-§-V* (15)

and the orthogonality properties of the singular functions and singular vectors can be written
as

vr-v = I, (16)
VeV = I (17)

2.3 Least squares approximation of linear operators

This section contains six lemmas on least squares approximation of linear operators. In this
section, and in the remainder of the paper, the vector norms and function norms used are L?
norms, except where explicitly indicated otherwise. For more complicated objects, the norms
used are as follows.

e 1. For an n X m real matrix A = [a;;], the norm is

14 = lzi 18)

e 2. For a linear operator V : R™ — L2[a, b] which is given by the formula

WV -9)@) =3 (), (19)

=1

the norm is

Vil = \JZ [wite)pa. (20)

i=178%
The norm of its transpose V* : L?[a,b] — R™ is identical.

e 3. For an integral operator T : L?[¢c,d] — L?[a, b] which is given by the formula

(- N@) = [K 1w (1)

)| = \/ / ’ / (K (2, 1))dadt. (22)

The proof of the following lemma is an exercise in elementary matrix algebra, and is omitted.

the norm is

Lemma 2.4 Suppose that U is an n X p matriz with orthonormal columns, that is, U*U = I.
Then for any n X m matriz B,

1Bl = | - U -U"BI*+||U-U*- B|”. (23)
The following simple lemma is well-known in the case when B = I and k = 1.

Lemma 2.5 Suppose A is a p X n real matriz, B is a m X k real matriz, and C is an px k
real matriz, for some m, p, n, and k. Let A=U, -5, -V} be a singular value decomposition
of A, and let B = Ug - Sg - Vg be a singular value decomposition of B. Then an n X m real
matriz X which minimizes the quantity ||A- X - B — C|| is given by the formula

X=V,-83'-U;-C-Vg-S5'-Up. (24)
The quantity which is thus minimized is given by the formula
|A-X-B-C||=||C-Uy-Uj-C-Vp-Vgl|. (25)
Proof. Using the singular value decompositions of A and B, we have
|A-X-B-C|*=||Us54-Vi-X -Up-8p-Vg-Cl” (26)
Using Lemma 2.4 and equation (26), we get

JA-X-B=C|* = |[[I-Uy-Us)(Uy-S4-Vi-X-Ug-Sp-Vg-C)?
+ (Ua-Ug)Uy-84-Vi-X -Ug-Sp-Vg—C)|% (27)

Using the fact that U} - U4 = I, it follows that

lA-X-B-CIP=II-Us-UR)CI? +[Us-84-Vi-X -Up-Sp-Vg—Uys-Ui-ClP* (28)

5

Using Lemma 2.4 and equation (28), we have

JA-X-B-C|? = |[I-Uy-U;C|?
+ Us-84-Va-X-Ug-Sp-Ve—Uu-Us-C)I-Vg-Vp)|?
+ W(Up-84-Vi-X-Ug-8p-Ve—Uy -UsC)(Va-VE)I”. (29)

Since Vg - Vg =1,

[A-X-B-C|? = |[I-Uy-U3)C|?
+ ||Us U3 -CI - Vg -VB)I?
+ ||Us-8S4-Vi-X-Ug-Sg-Vi~U,-Us-C-Vg- V3|2 (30)

Since U3 -U, =1,

A-X-B-Cl|* = [[U-Uy-U3NC—-Uy-U3-C-Vg-Vp)|
+ |[U4-UZ(C - C-Vg-VB)II?
+ HUA~SA-VX'X-UB-SB-V§—UA-UZ-C-VB'Véllz. (31)
= lU-Uy-UNC-Uy-U;-C-Vg-Vp)|?
+ ||Us-UA(C-U,-U;-C-Vg- VB
+ [Us-S4-Vi-X-Ug-Sp-Vg-Uy -Us-C-Vg-VB|>. (32)

Using Lemma 2.4, it follows that
|4-X-B=C||* = |IC~Us-Us-CVpVBII*+|Us-S4-Vi-X -Up-Sp-VE-Uys-Ui-C-Vg-V3II°. (33)

The quantity |JA- X - B — C||?> which was to be minimized has now been broken into two parts,
one of which is not dependent upon X and one of which is. Substituting (24) into the latter
part, we get

|Us -S4 Vi-X-Up-Sp-Vg—Uy-Uy-C-Vg-V3|J? .
= U+ 84+ Vi-Va-S531-Us-C-Vg-S5'-Up-Ug-Sp-Vi-Uy-Us-C-Vg V3|
WU4-U4-C-Vp-VE~Uy-Ux-C-Vg-VB|I?
= 0. (34)

Thus, by the substitution (24), the quantity ||A- X - B — C|| is minimized, with the minimum
value being given by (25). 0

It can easily be seen that the above proof does not depend on the operators A, B, C, and
X being finite-dimensional, except in two respects. The first respect is that Lemma 2.4 is used;
however that lemma possesses an infinite-dimensional counterpart, Lemma 2.6 (below), which
is equally simple to prove and whose proof is again omitted. The second respect is that for
infinite-dimensional operators A and B, the convergence of the formula (24) is problematic;
however, convergence is obviously assured in the case that the operator C has finite norm, and
that each of the operators A and B either has finite norm and finite rank, or is the identity
operator. Thus Lemma 2.7 (below) holds.

Lemma 2.6 Suppose that U : R? — T'; and B : 'y — T’y are linear operators such that each
of the spaces Ty and Ty is either a function space of the form L?[a,b] for some a,b € R, or a
vector space of the form R™ for some m. Suppose in addition that U* -U = I, and that B has
finite norm. Then

1Bl = (I - U -U")BI*+||U - U* - BI|*. (35)

Lemma 2.7 Suppose the operators A : T3 — Ty, B: T4y — TI's, and C : T4 — Ty, are linear
operators, such that each of the spaces Tq,...,T4 is either a function space of the form L?*{a,b]
for some a,b € R, or a vector space of the form RP for some p. Suppose in addition that C
has finite norm, and that each of the operators A and B is either the identity operator, or has
finite norm and finite rank. Let the singular value decompositions of A and B be denoted by
A=U, -85, Vi and B = Ug - Sg - V3 respectively. Then an operator X : T's — TI'y which
minimizes the quantity ||A-X - B — C|| is given by the formula

X:VA-SZI-UZ-C-VB-Sgl-Ug. (36)
The quantity which is thus minimized is given by the formula
l4-X-B-C||=|[C-Uy-Uy-C-Vp- Vgl (37)

Remark 2.1 An obvious application of Lemma 2.7 is depicted in Figure 1, and is as follows. If
B is an operator which generates an ezpansion (such as a multipole ezpansion) from a function
on some interval 'y, A is an operator which evaluates an expansion (perhaps of a different type,
such as a Taylor series) on a distant interval T'y, and C is the operator which generates the
desired result on Ty directly from the input on Ty, then Lemma 2.7 provides a formula for a
matriz X such that constructing an erpansion with B, converting it with X, then evaluating it
with A, produces a result which is as close as possible (in the least squares sense) to the result
produced using C alone.

Figure 1: The operators of Lemma 2.7

X

/] A

C

Remark 2.2 Lemma 2.7 also yields an alternative formula for a matriz which converts between
two types of expansions. If (as depicted in Figure 2) B is an operator which generates an
expansion from a function on some interval I'1, and C is a operator which generates a different
type of expansion from a function on I'y, then (setting A to the identity matriz) Lemma 2.7
provides a formula for a matriz X such that constructing an ezpansion with B, then converting
it with X, produces an ezpansion which is as close as possible (in the least squares sense) to
the expansion produced using C alone.

Figure 2: The operators of Remark 2.2

The following lemma provides a bound, in certain situations, on the error of the approximation
given by Lemma 2.7.

Lemma 2.8 Under the conditions of Lemma 2.7, suppose that there ezist linear operators
D:Ty— T3 and E : T3 — Ty such that

[|A-D - Cl|| < e, (38)
and
|E - B - C|| < &,. (39)
Then
HUA-U;{-C-VB-VE—CH<51+52. (40)

Proof. By Lemma 2.7, the minimum value of ||A-Y —]|, for any linear operator Y : T'y — I's,
is given by ||C — U, - U} - C||. Thus, using (38),

HC —Uy-Ui-Cl| < ée;. (41)
Similarly, from (39), it follows that
IIC - C-Vg- Vgl <e,. (42)
Using the triangle inequality, we get
WUA-U4-C-Vg-V5~Cll = |[Uy-Us-C-Vg-V5—C-Vg-VE+C-Vg-V5-C
< U4-Ux-C-C)Wa-VBlI+IC-Vg-VE-C|. (43)
By Lemma 2.6, for any linear operator Z : T'y — Ty,
1Z-Vp - Vgl <1Z]]. (44)
Combining (43) and (44), we get

WUA-Uz-C-Vg-V5E=C|| < |lUy-Uz-C~Cll+]|C-Vg-V5-C|
< €1+é. (45)

Remark 2.3 Lemma 2.8 provides an error bound for the application of Lemma 2.7 mentioned
in Remark 2.1, which is depicted (with the additional operators introduced in Lemma 2.8) in
Figure 8. It requires that both types of ezpansion (the type computed by B, and the type evaluated
by A) be suitable for computing the desired output on the target interval 'y from the input
function on the source interval T'y. It then states that ezpansions can be converted accurately
from one type to the other, using the conversion formula given in Lemma 2.7.

Figure 3: The operators of Lemma 2.8

As shown by the following lemma, the error bound in Lemma 2.8 also applies when a different
formula for the operator X is used.

Lemma 2.9 Under the conditions of Lemma 2.8, let the operator X : I's — I'y be given by the

formula
X=D-Vg- 551-U;;. (46)

Then
IC—A-X-B|| <ée +e2. (47)
Proof. Using (46), we get

I|IC-A-X-B| IC-A-D-Vg-Sg'-Ug- Bl
IC-A-D-Vg-S5'-Up-Ug-Sp- V5l|
IC-A-D-Vg Vgl

= |IC-C-Vg-V5+C-Vg-Vi—A-D-Vg-V3ll

li

= 1ICU ~ V5 V5)+ (C~ A- D)V - V3ll. (48)
Applying the triangle inequality to (48), we obtain
Ic - A4-X - B < [[CU- Vg - V@)l + [I(C - A- D)V -Vl (49)
Combining (44) and (49), we get
IC-A-X-B||<||CU-Vg-Vp)ll+]IC—A-D||. (50)
Then (47) follows immediately from (42), (38), and (50). m]

Remark 2.4 Lemma 2.9 provides an error bound for the application of Lemma 2.7 which is
mentioned in Remark 2.2. It requires that the two expansions between which the conversion is
made (the expansion produced by B, and the ezpansion produced by D) both be accurate on some
interval I's; it then states that the conversion matriz X given by (46) produces an ezpansion
which is accurate on I's.

3 Numerical Preliminaries

3.1 Gaussian integration and interpolation

Classical Gaussian quadrature rules are a well-known numerical tool (see, for instance, [8]);
they integrate polynomials of order 2n — 1 exactly with respect to some weight function, and
consist of n weights and nodes. A variety of Gaussian quadratures were analyzed in the last
century, each being defined by a distinct weight function. Of these, the algorithm presented in
this paper uses only the Gaussian quadratures for the weight function w(z) = 1 on the region
of integration [—1, 1]. These quadratures are closely associated with the Legendre polynomials;
we will refer to their nodes as Legendre nodes.

Another numerical tool used in this paper is polynomial interpolation on Legendre nodes.
Interpolation refers to the following problem: given two finite real sequences fi,..., f, € R and
T1,...,%n € [a,b], construct a function f : [a,b] — R such that f(z;) = f; foralli=1,...,n.
One interpolation scheme is polynomial interpolation, in which the interpolating function f
is a polynomial of degree n — 1. As is well-known, such a polynomial always exists and is
unique. However, in general two numerical difficulties arise with polynomial interpolation using
polynomials of high order. The first is that for many sequences of points {z;}, the values of
the interpolating polynomial between the points {z;} are not well-conditioned as a function
of the values {f;} to be interpolated. The second is that even for those sequences of points
where the computation of the values of the interpolating polynomial is well-conditioned, the
computation of the coefficients of the power series of the interpolating polynomial is extremely
ill-conditioned.

As is well-known, these difficulties do not arise if the points {;} are taken to be Chebyshev
nodes and the interpolating polynomial is computed as a series of Chebyshev polynomials rather
than as a power series. As is shown in [9], the difficulties also do not arise if the points {z;}
are taken to be Legendre nodes and the interpolating polynomial is computed as a series of
Legendre polynomials.

3.2 Exponential expansions

The following theorem is the basis for the algorithms presented in this paper for the evaluation
of (1).

Theorem 3.1 Suppose there exist numbers a,b,e € R such that the quadrature formula with
weights wy,...,wy, € R and nodes ty,...,t,, € R satisfies the inequality

fa'e) m
/ et — E wie %
0

J=1

<e, (51)

10

for all z € [a,b]. Suppose in addition that the points z1,22,...,2, € R are such that z; < x5 <

.o.< &y, that z, — 21 < b, and that z, — 2,_1 > a. Then

n-1 G m n—1
Yo=Y wioelvm | < e gy, (52)
‘et g, —2; 4 .
=1 7=1 =1
where the coefficients ay,...,a, € R are defined by the formula
n—1
a] = Z qie(zi—y)tj, (53)
t=1
and where y is an arbitrary real number.
Proof. Let ¢ be an integer such that 1 < i < n. Then (z, — z;) € [a, b], so by (51),
00 m
/ e~ @n-zitgy Z uyje'("'“"‘"“”")tJ <e. (54)
0 i=1
Evaluating the integral, we get
1 i vy
- Z wje"(x"—x')tJ <e. (55)
Tn—Ti o
Taking the sum over all charges yields the inequality
n—1 G n—1 m n—1
YA Y e we | e Y ol (56)
e s i=1
thus
n—1 G m n-1 n—1
Do = Y wiem TN Y e | <oy gy, (57)
e g, —1; * . ;
=1 J=1 =1 =1
from which (52) follows immediately. O
We will refer to the expansion (52) as an exponential expansion, to the quantities ay, ..., a,

as its coefficients, and to the quantity y as its location. Clearly, an exponential expansion com-
puted at one location can be moved to a different location without effect on its accuracy: given
the coefficients a,...,a,, of an expansion located at any point y1, the coefficients &,..., &,
of an expansion located at a point y2 which evaluates to the same potential are given by the

obvious formula
=~ _ Jvy1—v2)t; .
a;=e Ta;.

11

(58)

3.2.1 Quadrature rescaling

In the computation of potentials using exponential expansions, the quadrature which is available
often is not on the same scale as the points; that is, the requirement that the points {z;} are
such that z,, —z7 < b and that z,—z,,_1 > ais often not satisfied. This situation can sometimes
be remedied by rescaling either the points or the quadrature. The former option is to perform
the computations

r; = 8T, (59)
G = sqi, (60)

for an appropriate number s € R, and for all : = 1,...,n. As can be seen by inspection of (1),
this does not change the resulting potential. The latter option is to perform the computations

w; = swj, (61)
t; = stj, (62)
for an appropriate number s € R, and for all 7 = 1,...,m; as can easily be verified, this changes

the region of accuracy of the quadrature from [a,b] to [a/s,b/s]. We will refer to the number
a/s as the minimum range, and to the number b/s as the maximum range, of the expansions
based on the rescaled quadrature.

3.2.2 Exponential expansions for the logarithmic potential

The following theorem is the basis for the algorithms presented in this paper for the evaluation
of (2).

Theorem 3.2 Suppose there exist numbers a,b,e € R such that the quadrature formula with
weights wy,...,wy € R and nodes ty,...,t,, € R satisfies the inequality

fors) m
/ e~dt —) wje” "
0 =

for all z € [a,b]. Suppose in addition that the points z{,z3,...,2, € R are such that

<e, (63)

21 <22<...< Zy, (64)
z, —z1 < b, (65)
Tp—Tp-1 240 . (66)
Then
n—1 LAY n—1
(E g; log(z, — x;)) - (cpn_l + E —T?aje‘tf(z""y)> I <e¢ E lgi(zn — z; — a)|, (67)
i=1 j=1 J i=1

where the coefficients ai,...,ay, € R are defined by the formula
n—1
aj =Y ge =T, (68)
=1

12

where p,.1 € R is defined by the formula

n—1
Pn-1= E qs,s (69)
i=1
where ¢ € R is defined by the formula
c-loga—E——J ~te (70)
J=1 j

and where y is an arbitrary real number.

Proof. Let f be any number such that f € [a,b]. Then, using (63), we get

fm _ f
—/ ije'tfydy! < / € dy; .
a j=l a

(71)
Evaluating both integrals in the left hand side of 71 yields the inequality
—t; f ~t;
(log f — loga) — (;——e if E—lee J") ’ < elf-al. (72)

7=1

Due to (64-66), (z, — z;) € [a,b] for all : = 1,2,...,n — 1; replacing f with z,, — z;, we rewrite
(72) in the form

m m ‘
(log(zn - 131 log a (E wJ "‘tJ(-Tﬂ“l‘: E _%e—tja) ‘
j:] J

]:

<el(zn —zi —a)l. (73)

Summing up (73) for all i = 1,2,...,n — 1, we have

-1
(log(zn — z;) — loga) — E G (E __e—tj(xn—x.) E ____J_ —t,a>]

1=1

< e lalen -2 -). (74)

i=1

Thus

=1 i=1 j=1 i=1 j=1 -7

< ef_‘_, lgi(zn — 2 — a)]. (75)
i=1

3

13

Using (75) and the definition (69) of p,_;, we get

-1
.log(x —I')— (Z.__e—tJ(xﬂ y)qu tJ(y zt)_cpn 1) l

7=1 L =1
-1
<e¢ Z lgi(zyn — z; — a)]. (76)
i=1
Substituting (68) into (76) then immediately yields (67). O

3.2.3 Exponential expansions for the square root kernel

A similar theorem forms the basis for the a,lgonthm presented in Section 5.2 for the following
problem: given two finite sequences z1,...,2, € R and ¢, ..., gn» € R, compute the quantities
®1,...,0, € R given by the formula

k-1

D P — (77)

s 2 2
=1 .’l:k - zi

In this case the quadrature formula which is used is for the integral
o 1
/ Io(yt)e™"'dt = ———ee. (78)
0 z? — y?
(This, and formulae suitable for many other kernels, can be found in tables of Laplace trans-
forms; see for instance [1].)

Theorem 3.3 Suppose there ezxist numbers a,b,e € R such that the quadrature formula with
weights wi,...,wn € R and nodes ty,...,t, € R satisfies the inequality

<e, (79)

fo'e) m
l / Io(yt)e~"tdt — Z w;lo(yt;)e™"4
0 :
=1

for all z € [a,b] and y € [0,z — a]. Suppose in addition that the points T1,%2,...,2, € R are
such that 0 < z; < 29 < ...< 7, < b, and that ¢, — z,,_, > a. Then

Zw]a e(y -’Bn)tJ
i=1 V - ,' 7j=1

<e Z |l (80)

=1
where the coefficients o4, ...,on € R are given by the formula
n-1
a; =Y gi(lo(zit;) /e)el=—V) (81)
=1

and where y is an arbitrary real number.

14

Proof. Since 0 < z; < z, < b, and z, — z,—; > a, it follows that z, € [a,b], and that
z; € [0,z, — a]. Thus, making the substitutions z = z,, and y = z; in (79), we get

I/ Io(z;t)e™ntdt — Zw_,]o(a:t Yenti | < ¢ (82)
1=1
l Zw_,]o(:v t)e™ ™ < e (83)
Va2 — z?
Therefore

n—1 Qi v n-1
DR B o) Z gilo(zity)e™™ | < e i, (84)

=1 /22 ~z? &1 i3 i=1
from which (80) follows immediately. o

4 Analytical Apparatus

4.1 Approximation of singular value decompositions
4.1.1 Interpolation

This section contains two basic lemmas about interpolation. The following lemma shows that
any interpolation scheme whose output depends linearly on its input is characterized by a finite
sequence of functions [a,b] — R; it-is proven in [9].

Lemma 4.1 Suppose L : R* — L3[a,b] is a interpolation scheme with n nodes z1,...,z, €
[a,b], and that L is a linear mapping. Then there exists a sequence of functions ay,...,ay :
[a,b] — R such that for any vector f € R, with elements f = (f1,..., fa)7,

(L f)(z) =) fiei(), (85)

=1
for all z € [a,b].

In the case of polynomial interpolation, the functions «; are referred to as Lagrange polynomials;
by analogy to that case, we will in general refer to the functions a; as the Lagrange functions
of the interpolation scheme.

The following lemma provides an error bound for approximation of a function of two vari-
ables using two one-dimensional interpolation formulae, expressed in terms of error bounds
for each one-dimensional interpolation scheme applied separately. Its proof is an exercise in
elementary analysis, and is omitted.

Lemma 4.2 Suppose that z1,2z3,...,2, € [a,b] and t1,t5,...,tm € [c,d] are two finite real
sequences, and that ay,a,...,an : [a,b] = R and By, P,,...,Bm : [c,d] = R are two sequences
of bounded functions. Suppose further that Ly : R® — L*[a,b] is an interpolation formula

15

with the nodes z1,...,z, and Lagrange functions ay,...,0,, and Ly : R™ — L%®[c¢,d] is an
interpolation formula with the nodes ty,...,t,, and Lagrange functions By,...,0Bm. Suppose
that n € R s such that

S lasta)l <, (56)

for all z € [a,b], or
2Bl <, (87)
j=1
for all t € [c,d]. Finally, suppose that K is a function [a,b] x [c,d] — R, and that for all
z € [a,b] and t € [¢,d],

lK(m,t)—iK(mi,t)a;(x) <e (88)
and m
| K@t~ 3 K@ t)pi0)] <. (89)
Then I
l K(z,t) - Z Z K(.’c,',tj)a,'(:c)ﬂj(t)r < e(1+ n), (90)

=1 j=1

for all z € {a,b] and t € [c,d].

4.1.2 Approximation of the SVD of an integral operator

This section describes a numerical procedure for computing an approximation to the singular
value decomposition of an integral operator.
The algorithm uses quadratures which possess the following property.

Definition 4.1 We will say that the combination of a quadrature and an interpolation scheme
preserves inner products on an interval [a,b] if it possesses the following properties.

o 1. The nodes of the quadrature are identical to the nodes of the interpolation scheme.

o 2. The function which is output by the interpolation scheme depends in a linear fashion
on the values input to the interpolation scheme.

o 3. The quadrature integrates ezactly any product of two interpolated functions; that is,
for any two functions f,g : [a,b] — R produced by the interpolation scheme, the integral

b
[1@)(a)dz (o1)
is computed ezactly by the quadrature.

Quadratures and interpolation schemes which possess this property include:

16

Example 4.1 The combination of e (classical) Gaussian quadrature at Legendre nodes and
polynomial interpolation at the same nodes preserves inner products, since polynomial interpo-
lation on n nodes produces an interpolating polynomial of order n — 1, the product of two such
polynomials is a polynomial of order 2n — 2, and a Gaussian quadrature integrates ezactly all
polynomials up to order 2n — 1.

Example 4.2 If an interval is broken into several subintervals, and a quadrature and interpo-
lation scheme which preserves inner products is used on each subinterval, then the arrangement
as a whole preserves inner products on the original interval. (This follows directly from the
definition.)

Example 4.3 The combination of the trapezoidal rule on the interval [0,27], and Fourier in-
terpolation (using the interpolation functions 1, cos z,sin z, cos 2z, sin 2z, . . ., cos nz, sin nx) pre-
serves inner products.

The algorithm takes as input a function K : [a,b] x[c,d] — R. It uses the following numerical
tools:

e 1. A quadrature and an interpolation scheme on the interval [a,b] which preserve inner
products. Let the weights and nodes of this quadrature be denoted by w{,...,w% € R
and z1,...,%, € [a,b] respectively. Let the Lagrange functions (see Section 4.1.1) of the
interpolation scheme be denoted by a1,...,ay, : [a,b] — R.

e 2. A quadrature and an interpolation scheme on the interval [c,d] which preserve inner
products. Let the weights and nodes of this quadrature be denoted by wi,...,w!, € R
and t1,...,tn € [c,d] respectively. Let the Lagrange functions of the interpolation scheme
be denoted by £1,...,0mn : [¢,d] — R.

As will be shown below, the accuracy of the algorithm is then determined by the accuracy to
which the above two interpolation schemes approximate K.

The output of the algorithm is a sequence of functions u,,..., 4, : [a,b] — R, a sequence of
functions vq,...,9, : [¢,d] — R, and a sequence of singular values sy,...,s, € R, which form
an approximation to the singular value decomposition of K.

Description of the algorithm:

e 1. Construct the n X m matrix A = [a,;] defined by the formula

a;; = K(:E;,tj)ﬂwf . w;-. (92)

¢ 2. Compute the singular value decomposition of A, to produce the factorization

A=U-§-V*, (93)
where U = [u;;] is an n X p matrix with orthonormal columns, V' = [v;;] is an m x p
matrix with orthonormal columns, and § is a p X p diagonal matrix whose j’th diagonal

entry 1s s;.

17

e 3. Construct the n x p matrix U = [4;;] and the m x p matrix V = [#;;] defined by the

formulae
Ak = uk/y/wf, (94)

bk = vjk/\/w} (95)

e 4. For any points z € [a,b] and t € [c,d], evaluate the functions uy : [a,b] — R and
vk : [¢,d] — R via the formulae

uk(z) = zn:ﬁik-a;(z), (96)
ui(t) = .m Bjk - B;(1), (97)

foral k=1,...,p.

Theorem 4.3 Suppose that the combination of the quadrature with weights and nodes
wi,...,ws € R and z,,...,z, € [a,b], respectively, and the interpolation scheme with Lagrange
functions ay, ...,y : [a,b] — R, preserves inner products on [a,b].

Suppose in addition that the combination of the quadrature with weights and nodes
wh,...,wt € Randty,... t, € [c,d)], respectively, and the interpolation scheme with Lagrange

functions By, ...,Bm : [c,d] — R, preserves inner products on [c,d).
For any function K : [a,b] x [¢,d] — R, let u; : [a,b] = R, v; : [e,d] » R, and s; € R be
defined in (92)-(97), foralli=1,...,p. Then

o 1. The functions u; are orthonormal, i.e.
b
/ wi(z)us(e)dz = Sik (98)
foralli,k =1,...,p, with b;x the Kronecker symbol (6;; =1 if i = j, 0 otherwise).

o 2. The functions v; are orthonormal, i.e.
d
/ vi(t)v(t)de = 6ix - {99)
[
foralli,k=1,...,p.

e 3. The function K : [a,b] X [c,d] — R defined by the formula
P

B(z,1)= 3 sjui(2)v;(0), (100)

J=1
is identical to the function produced by sampling K on the grid of points (z;,t;), then
interpolating with the two interpolation schemes. That is,

Ra,) = 325 K (i ty)ai(2)5(0): (101)

=1 j3=1

A proof of the above theorem can be found in [9].

18

4.1.3 Approximation of SVDs of linear operators with finite-dimensional input
and infinite-dimensional output

The above algorithm can be modified so that it produces an approximation of a singular value
decomposition of a linear operator whose input is finite-dimensional and whose output is infinite-
dimensional, or vice versa. (Such singular value decompositions are defined in Section 2.2.2.)
Crudely speaking, the modification consists of removing all portions of the algorithm which
discretize the kernel of the operator, in the variable in which it is already discrete. More
precisely, the modification is as follows:

e 1. The input to the algorithm is the kernel K : N X [¢,d] — R of the linear operator.

¢ 2. The n x m matrix A = [a,;] whose singular value decomposition is computed is defined
not by (92) but rather by the formula

a;; = \/QTEK(i,tj). (102)

¢ 3. The output of the algorithm contains, in place of the functions u4,...,u,, the m x p
matrix U = [u;;] (as produced by the SVD of the matrix A); the columns of this matrix
are orthonormal.

4.2 Far field and local expansions

In the terminology of FMM type algorithms, the term “far field expansion” is used to refer to
an expansion which represents the potential due to a set of charges, on regions distant from
those charges. The term “local expansion” is used to refer to an expansion which represents the
potential on a region, due to charges in distant regions. In the original FMM of [3], multipole
expansions were used as far field expansions, and Taylor series were used as local expansions.
In the FMM described in this paper, both types of expansions are based on singular value
decompositions of integral operators. Two types of far field expansions are used, one which is
valid only to the right of the interval on which the charges lie, and one which is valid only to
the left; likewise two types of local expansions are used, one for charges to the left, and another
for charges to the right. One set of expansions is used for the computation of (1), and another
is used for the computation of (2).

4.2.1 Expansions for the 1/z kernel

For any numbers a,b,c,d € R such that b > 0 and d > 0, we will refer to the integral operator
Agbed : L*[a,a + b) — L¥ec,c+ d] given by the formula

(ases- () = [LD g, (103

as the 1/z potential operator with input on [a,a + b] and output on [¢,¢ + d]. This operator
possesses the obvious symmetry that the operator —Aj, cq s the 1 /z potential operator with
input on [e, ¢+ d] and output on [a,a + b].

19

Far field and local expansions (for the 1/z kernel) on an interval [a, a+b] and for an accuracy
£4 are defined as follows. Let the integral operator A : L?[a,a + b] — L?[a + 2b,) be the
1/z potential operator with input on [a, a + b] and output on [a + 2b,0). As shown in Section
2.2, A can be approximated to any desired accuracy by the truncation of its singular value
decomposition. Let the approximation of A to the accuracy €4 be denoted by U, - S5, -V}, so
that

A—Uy-54-Vill
1Al

Let the number of singular values used in this approximation be denoted by p. Let the operator
Va : L%a,a + b] — R? be defined by the formula

< E4. (104)

where the function §: [a,a 4+ b] — R is given by the formula §(s) = ¢(2a + b — s).

Then we will refer to the operator V, (or respectively V4) as the leftgoing (rightgoing)
local expansion evaluation operator on [a,a + b}, and to its adjoint V} (f/j‘) as the rightgoing
(leftgoing) far field expansion creation operator on [a, a + b].

4.2.2 A Simple Example

Following is an example of a way in which expansions defined in Section 4.2.1 can be used to
calculate sums such as (1). Suppose that the point charges ¢;,...,¢, € R are located at the
points z1,...,z, € [0,1], respectively, and that the resulting potentials ¢y, ..., ¢, at the points
Y1,-- -, Ym € [2,00) respectively, are to be calculated. Let the operator Ao, : L2[0,1] — L?[2, c0)
be the 1/z potential operator with input on [0,1] and output on [2,0), and let the operator
Vay © L?[0,1) — R? be the rightgoing far field creation operator on [0,1]. Vp; is then one
component of the truncation of the SVD of the operator Ag; to the rank p; let the remaining
components be denoted by Up; : R? — L?[2,00) and So; : R? — R?, so that Ag; =~ Up; - Soy Vo
Let the charge distribution ¢ : [0,1] — R be defined by the formula

q(z) = Zn:qié(:v - z;), (106)

=1

where ¢ denotes the Dirac §-function. Then using (103), we get

/01 (ZI; qi6(s — :c,-)) . i sds,
= zn: %, (107)

3
t=1 T— T

(Ao1 - g)(z)

that is to say, the product Ag; - ¢ yields the potential on the interval [2,00) which is due to
the charges ¢1,...,qn. Thus ¢; = (Ao1 - ¢)(¥;) = (Upy - So1 * Voi - ¢)(y;), for all j = 1,...,m.
This calculation can be done in two steps, the first being the computation o = Vj; - ¢, and the
second being the computation ¢; = (U * So1 - @)(y;), for all § = 1,...,m. Let the left and
right singular functions of Ag; be denoted by u;,...,up : [2,00) — R and vy,...,v,:[0,1] = R,

20

respectively, and let the singular values of Ag; be denoted by s1,...,5, € R. Let M denote the
CPU time required to evaluate any of the singular functions at a point. Then the calculation
a = Vp1 - ¢ amounts to the computation of the quantities aq,..., 0, € R which are given by the
formula

1273

/01 vk(s)g(s)ds
/01 vk(s)(iz:; 8(s — z;))ds

i

= z": vk(Zi) i, (108)
=1

and can be done in O(npM) time. The calculation ¢; = (Up1 * So1 - @)(y;) amounts to the
computation of the quantities ¢1,..., ¢, € R given by the formula

p
¢; =D akskur(y), (109)
k=1

and can be done in O(mpM) time, for a total of O((m + n)pM) time, as compared to O(mn)
time for the direct calculation.

4.2.3 Expansions for the logarithmic kernel

For any numbers a,b,c,d € R such that & > 0 and d > 0, we will refer to the integral operator
Babed : L*a,a+ b] = L2[c,c+ d] which is given by the formula

a+b
(Babat)(z) = / a(s)log|z — s|ds, (110)

as the logarithmic potential operator with input on [a,a + b] and output on [¢,c + d]. This
operator possesses the obvious symmetry that the operator By, ., is the logarithmic potential
operator with input on [¢,¢ + d] and output on [a,a + b].

Far field and local expansions for the logarithmic kernel on an interval [a,a + b] for an
accuracy €4 are defined as follows. Let the operator B : L%[a,a + b] — C[a + 2b,0) be the
logarithmic potential operator with input on [e,a + b] and output on [a + 2b,0). Let the
operator C : L%[a,a + b] — L%[a + 2b,00) be defined by the formula

C =B -u-u"), (111)

where the operator u : R — L%[a,a + b] is given by the formula (uy)(z) = y/vb. Clearly, C
is the operator which orthogonalizes its input to the constant function (producing, in physical
terms, a charge distribution with no net charge), then computes the resulting potential. We will
refer to C as the modified logarithmic potential operator on [a,a + b]. Let the approximation of
C to within the accuracy €4 by the truncation of its singular value decomposition be denoted
by Up - S¢ - V§&, so that

IC = Ug - S¢ - VeI <ea,

ICll

(112)

21

and let the number of singular values therein be denoted by p,. Let the operator V3 : [a,a+b] —
R?<t1 be defined by the formula

VO(VE @) ey, i=1,...,p
V*’ * i = C ty] ’ s FCy
(B q) € {\/E(u*.q), 2=pc+1’

where €1, ..., €,.+1 € RP<*1 are the standard basis vectors in R?<*1. Clearly, Vg is the operator
which computes V%, and which in addition computes the integral of its input function (in
physical terms, the net charge on the interval). Let the operator VB : L?[a,a + b] — R? be
defined by the formula

(113)

(VB q) = V-4, (114)

where §G : [a,a + b] — R is given by the formula §(s) = ¢(2a + b — s).

We will refer to the operator Vg (or respectively V) as the leftgoing (rightgoing) local
expansion evaluation operator for the logarithmic potential on [a,a + b], and to its adjoint V3
(V3) as the rightgoing (leftgoing) far field expansion creation operator on [a,a + b].

Lemma 4.4 Let the operator Vg be defined by (113). Then

1
iV Va=1 (115)

Proof. Using (113), we get

1 Ve Vo Vo-u
FVE Ve = | £ ¢)
B (U’VC

u -u

_ I Vé-u
= (u*.VC .) (116)

Suppose that V3 - v # 0. Then since (by definition) none of the singular values in S¢ are zero,
Sc-Va-u# 0, and since Uy, is orthogonal, Uy - Sp Vi u # 0,50 C-u # 0,50 B(J —u-u*)u # 0.
But B(/ —v-v*)u = B(u — v u*-u) = B(u — u) = 0. Thus, by contradiction,

Ve -u=0. (117)

Now, the lemma follows immediately from the combination of (117) and (116). O

4.2.4 Scaling behavior

As the following two theorems establish, the operators on which far field and local expansions
are based scale extremely simply with the size of the interval [a,a + b]. The first theorem is for
the 1/z kernel; its proof is trivial, and is omitted. The second theorem is for the logarithmic
kernel; its proof is slightly more involved, and is presented.

22

Theorem 4.5 For any numbers a,b € R with b > 0, let the operators Agy and A,y be the 1/z
potential operators (see (103)) with inputs on [0,1] and [a,a + b] respectively, and with outputs
on [2,00) and [a + 2b,00) respectively. Then for any function ¢ : [0,1] — R, and for any point
T € [2,00),

(Aab - ga)(bz + @) = (Ao1 - ¢)(), (118)

where the function gy : [a,a + b] — R is defined by the equation q,;(bz + a) = ¢(z).
Theorem 4.6 For any numbers a,b € R with b > 0, let the operators Co1 and Cyp be the

modified logarithmic potential operators (see (111) on [0,1] and [a, a + b] respectively. Then for
any function q : [0,1] — R, and for any point z € [2,0),

(Cab * qab)(bz + @) = b(Cor - g)(z), (119)

where the function qq : [a,a + b] — R is defined by the equation gq.(bz + @) = ¢(z).

Proof. For nogational convenience, we ﬁrstkdeﬁne rescalings of the operators B, and Cyp. Let
the operators By : L2[0,1] — C[2,00) and C, : L?[0,1] — L?[2, 00) be defined by the formulae

(?ab ‘q)(z) = (Bab-qap)(bz + a), (120)
(Cas-q)(z) = (Cab-gap)(bz + a). (121)

Let the operators ug; : R — L?[0,1] and us, : R — L%[a,a + b] be defined by the formulae
(uo1 - ¥)(z) = y and (ugs - y)(2) = y/v/b. Combining (121) and (111), we obtain

(Cab-a)(z) = (Bap(I = ugp - ul3)gab)(ba + a)

(Bab * 4ab)(bz + a) = (Bab - ugp * Ugp * 4ab)(bZ + @)

(Bab - 9)(z) = ((Bab - uo1/Vb)usy - gab)(2)

(Bab -q)(z) - (Bab <ty * gy - ¢)(2)

= (Bap(I - ugy - ugy)g)()- (122)

The combination of (120) and (110) yields

i

. a+b
(Bapq)(z) = /; gab(8)log |(bz + a) — s|ds. (123)

Performing the change of variables s = bt + a in (123), we get

(Bapg)(2) = /: gab(bt + a)log |(bz + a) — (bt + a)|b dt

1
b/(; q(t)(log |z — t| + log b)dt

b</:q(t)log|:z:—t|dt+/:q(t)logb dt>
b((Bo1 - ¢)(z) + (log b)ug, - ¢), (124)

23

with Bo; : [0,1] — C[2, o] the logarithmic potential operator with input on [0, 1] and output
on [2,00]. Let the operator ug : R — C[2, 0] be defined by the formula (ug - y)(z) = y. Then
(124) can be written as:

B,y = b(Bo; + (logb)ug - uy). (125)
Thus

Cap = Bab(-[= Ugy * Upy)
= b(Bo + (logb)us - ug;)({ — vy - up)
= bBo1(I — ug; - upy) + b(log b)uy - ugy (I — ugy - ugy)
= (bBo1)({ — ugy - ugy) + b(log b)ug - ugy (I — ugy - ugy)
= bCo1 + b(log b)uz - ugy (I — upy - ugy)
= bCo1 + b(log b)ua(ug; — ug; - gy * Upy)
= bCo- - (126)

Now, (119) follows immediately from (126) and (121). o

4.3 Exponential expansions

This section defines operators which create and evaluate exponential expansions. It defines
operators both for leftgoing and for rightgoing expansions. The expansions created by these
operators differ slightly from those defined by Theorems 3.1 and 3.2, in that the multiplication
by the quadrature weights w;, which in those theorems is done in the evaluation of the expansion
(that is, in (52) or (67)), is, for symmetry, here done partly in the evaluation and partly in the
creation of the expansion, each containing multiplications by square roots of the weights. A
consequence is that each evaluation operator is the adjoint of a creation operator for expansions
going in the other direction.

Two variants of the operators are defined. The first variant consists of operators which
ignore a section of size r of the interval [a,a + b], either at the beginning of the interval or at the
end. The second variant consists of operators which compute, in addition to the exponential
expansion, a multipole expansion on the interval, or, in the case of evaluation operators, which
evaluate, in addition to the exponential expansion, a Taylor series.

All the operators are based on rescalings of the same quadrature; for the operators on an
interval [a, a+b], the quadrature is rescaled (using (61),(62)) so that the maximum range of the
exponential expansions is equal to 2b. Let the number r denote the resulting minimum range,
and let the weights and nodes of the rescaled quadrature be denoted by w,,...,w, € R and
t1,...,tm € R respectively.

Let the operators X : L%[a,a+b] — R™,Y : L*a,a+b] —» R™*1, X, : L%a,a+b] — R™HE,
and Y, : L%a,a + b] — R™** be defined by the formulae

a+b
X-q)-e; = w,q s)e(s'("+b))tfds, 127
J A 3

24

/ w;/tig(s)e(s“(““))t’ds ji=1,.

(Y .q)' .ej = (128)

/ q(s)ds, J=m+l,

+bq) j= 1,...,m
XoaY e a 129
(Xg-9)" - ¢ / (s)P_m_l(s)/\/I;ds, j=m+1,....m+k, (129)

(Y.q)‘.ev]:1,,m+1

Y, g)-e:. = a+b 130
(g q) eJ / q(s) —m—l(s) S, j=m+2,...,m+k’ ()
where e;,...,e,, € R™ are the standard basis vectors in R™, and where the polynomial P; is

deﬁned by the formula P;(s) = ((s —a - b/2)/b) Let the operators X : L*[a,a + b] — Rm

9 L%[a,b] = R™+F X, : L%a,a+b—1] = R™, X, : L?[a+r, a+b - R™Y Y : L%a,a+b] —
Rm+1 Y, : L%[a,b] — Rm+’° Y, : L?a,a+b—7] - Rm+l and Y, : L¥[a + r,a + b] — R™*1 be
the operators such that for any function ¢ : [¢,a + 8] — R,

X§ = X-q, (131)
Y.§ = Y-q (132)
X0 = X,-q, (133)
Y- = Y,-q (134)
X:-q X q, (135)
Yoog = Y-q, (136)
X, § = X-q, (137)
Y,-§ = Y-q, (138)

where the functions §, ¢1,¢2 : [@,a + b] — R are defined by the equations

§(z) = q(2a+b-2z), (139)
_ g(z), a<z<a+b-r
a(z) = {0, a+b-r<z<a+b, (140)

0, az<La+r

g2(z) = { qz), a+r<z<a+b, (141)
The terminology which will be used for the above operators and their adjoints is as follows.
The operators X, X,, X, X, X’g, X,, and their adjoints, will be referred to as operators for
the 1/x kernel. The operators Y, Y,, Y;, Y, Yg, Y,, and their adjoints will be referred to as
operators for the logarithmic kernel. The operators X, Y, X,, Y;, X,, and Y;, will be referred
to as rightgoing exponential expansion creation operators. Their ad301nts will be referred to as
leftgoing exponential expansion evaluation operators. The operators X, Y, X Y , X,,and ¥,

will be referred to as leftgoing exponential expansion creation operators. Thelr ad301nts w111
be referred to as rightgoing exponential expansion evaluation operators. The operators X, Yo,
X,, Y., and their adjoints, will be referred to as “restricted”. The operators X, Y, Xg, Yg,

25

Table 1: Operators used in the construction of translation and conversion matrices

” Operator

! Definition

|

Vg, : L[a,a + 2b] — RP

rightgoing far field expansion creation

Vg : L*la,a+ b] — R?

operators on the intervals [a,a + 2b],

o L%[a + b,a + 2b] — R?

[a,a + b], and [a + b, a + 2b] respectively
(see (104)).

V0*2a : L2[a, a+ b] — RP

identical to Vg5, but with inputs restricted

Vios : L%la+ b,a + 20] — RP

to the intervals [a,a + b] and
[a + b,a + 2b] respectively.

Vaq : R? — L%[a + 3b,a + 4b]

rightgoing local expansion evaluation
operator on [a + 3b, a + 4b]. (see (105))

Aoz : L*la,a + b] —
L%a + 3b,a+ 4b]

1/z potential operators on the specified
intervals (see (103))

Az : Lla+b,a+ 2b] —
L%[a + 3b,a + 4b]

Ao1r : L*[a,a +b] —
La+ b+ r,a+ 3b]

Aoz : Lla,a + b] —
L2[a + 2b,a + 4]

X, : L*[a,a+ b) — R™FF

k-term augmented exponential expansion
creation operator on [a, a + b] (see (129))
singular value decomposition of X,

ng‘ng'VJ;QZXg
X :R™ - L}a+b+ra+ 30

restricted exponential expansion evaluation
operator on [a + b,a + 3b] (see (137)).
singular value decomposition of X,
exponential expansion evaluation operator
on [a + 2b,a + 4b] (see (131)).

singular value decomposition of X

l]){r 'SX,_ .V;((r =X,-
X*:R™ - L?[a + 2b,a + 4b)]

Ux‘Sx'V)’E:X

and their adjoints will be referred to as “augmented”. (Thus, for example, f’;" will be referred
to as the augmented rightgoing exponential expansion evaluation operator for the logarithmic
kernel.)

4.4 Translation and conversion matrices

This section lists (in Table 2) translation and conversion matrices used by the algorithm. These
matrices are derived along the lines mentioned in Remarks 2.1 and 2.2: each matrix is chosen
to minimize the norm of an appropriate linear operator, and the formula for the matrix is then
a consequence of Lemma 2.7. Table 2 lists, for each matrix, the norm to be minimized and the
resulting formula. Only matrices for the 1/ kernel are listed; the formulae for the matrices
for the logarithmic kernel are identical, except in that they use the corresponding operators for

26

Table 2: Translation and conversion matrices

Matrix | Input Output Quantity Formula
Expansion Expansion to minimize

M;;1 | far field far field Veae — Mss1- V3l M;s = Vi, Vo
on f{a,a+b] | on[a,a+ 2b]

Mg¢y | far field on far field WVoas — Mysa - Vil Msgr = Vi - Via
[a+ b,a+ 2b] | on [a,a + 2b)]

M. augmented far field Vo1 — Mes - Xl Mes=V5y-Vyx, - S}:
exponential | on [a,a + b] Uk,
on [a,a + b

M far field local on [|Aos — Vaq M -Vl | M = 173*4 - Aoz - Vou
onfa,a+b] | [a+ 3b,a+ 4b)

My, far field on local on [| A1z — Vaq M-Vl | Mpg = Vi - Ay - Vig
[a+b,a+2b] | [a+ 3b,a+ 4b]

M, augmented restricted | Ao1r — j(: “Mee - X,|| | Mee = Vy, - 5;,: - Uk,
exponential exponential on -Aotr -V, - Sg—l .U,
on[a,a+b] |[a+bd,a+ 3b]

Mg, far field exponential on Aoz — X - My, - vall My =Vy- S5 - U
on [a,a+b] | [a+ 2b,a+ 4b] Aoz - Vou

Table 3: Uses of adjoints of translation and conversion matrices

” Matrix [Input Expansion

[Output Expansion

M7 | local on [a,a + 2b] local on [a, a + b]
M., |local on [a,a+ 2b] local on [a + b, a + 2b]
of local on [a,a + 8] augmented exponential
on [a,a + b]
M., restricted exponentjal | augmented exponential
on [a+ b,a + 3b] on [a,a + b]
M3, restricted exponential | augmented exponential
on [a+ b,a+ 3b)] on [a,a + b]

27

that kernel. Only matrices for rightgoing expansions are listed; by symmetry, the matrices for
leftgoing expansions are identical. The adjoints of all but two of the matrices in Table 2 also
are used by the algorithm; these uses are listed in Table 3.

The operators used in Table 2 are listed in Table 1. Each operator’s input and/or output
lies on an interval which bears a fixed relation to a reference interval [a,a + b]. Each of the
translation and conversion matrices is thus a function of @ and b. A rather tedious analysis,
which is omitted here, and which would be based largely on Theorems 4.5 and 4.6, shows that
for the 1/z kernel, none of the matrices varies with a or b, and that for the logarithmic kernel,
none of the matrices vary with a or b, except that the last four matrices in Table 2 each contain
one element which varies with b. This element (the (p.+1, p.+1)’th element of My;; and My,
the (m + 1, p. + 1)’th element of Mgy, and the (m + 1,m + 1)’th element of M., where m + 1
is the number of terms in an exponential expansion for the logarithmic kernel, and p, + 1 is
the number of terms in a far field expansion for the logarithmic kernel) is the element which is
the coefficient, on the input side, of the integral of the charge, and on the output side, of the
constant potential, and, in all cases, varies as follows: if b is multiplied by a number f, then
the quantity (log f) is added to that element of the matrix.

Bounds for the L? error of these matrices are given by Lemma, 2.9, for the first three matrices,
and by Lemma 2.8 for the remaining four matrices (see also Remarks 2.3 and 2.4.) In most
cases the conditions of the lemmas are trivially satisfied, with the numbers &; and ¢; of the
lemmas being the L? errors of the expansions between which the matrices convert. The only
exception is in the case of the matrix M.y, which converts an augmented exponential expansion
on an interval [a,a + b] into a far field expansion on the same interval. In this case, Lemma
2.9 requires that the augmented exponential expansion be sufficient to accurately compute the
potential on the interval [a+ 2b, 00) (on which the far field expansion is to be used) which is due
to a set of charges on [a,a+b]. Asis shown in [2], the multipole expansion which comprises the
augmentation to the exponential expansion is sufficient by itself for computing the potential
on [a + 2b, 00); any desired accuracy can be achieved by taking a sufficiently large number k of
terms. Thus for some k, this condition is satisfied.

Remark 4.1 The authors know of no analytic formula for the minimum value of k which is
necessary to achieve a given precision. Thus, in the authors’ implementation, the necessary
value of k was determined by numerical experimentation, using the formula (25) to compute
the error for each k.)

5 Simple Exponential Expansion FMM Algorithm

A simple algorithm for (1), which is suitable for moderate numbers of nearly equispaced points,
is as follows. The input to the algorithm is a sequence of points in sorted order z; < 73 < ... <
T, and a sequence of charges ¢, q2,...,9, € R. The algorithm consists of two passes. The first
pass computes the portion of the potential at each point which is due to the charges to the left
of it, in other words, the sums

gi= —H_ (142)

The second pass computes the portion of the potential at each point which is due to charges
to the right of it; this pass is almost identical to the first pass, and thus will not be discussed
further.

The algorithm uses a quadrature which satisfies the conditions of Theorem 3.1. The first
step of the algorithm is to rescale the quadrature (using (61),(62) so that the maximum range
of the exponential expansions is equal to z, — ;. Let the number 7 denote the minimum range
of the expansions based on this rescaled quadrature, and let its weights and nodes be denoted
by wi,...,wm € R and ty,...,t, € R respectively.

The algorithm makes use of the observation that evaluation of an exponential expansion is
less computationally expensive when the expansion is already located at the point at which it
is to be evaluated, since the factor e(=%)% in (52) is equal to one when y = z;. For the same
reason, the creation of an exponential expansion for a single charge ¢; at a point z; is, less
computationally expensive when the expansion is located at that point. Thus the algorithm
maintains a single exponential expansion, which it translates to each point z; in turn, moving
from left to right. This expansion represents the potential due to the charges to the left of the
current point, and is accurate on the region to the right of the current point.

Algorithm 5.1

Comment { Make an exponential expansion for the charge at the first point }
doj=1,....m{ej:=q }

doi=2,...,n{
Comment { translate the expansion from point i — 1 to point }
doj=1,...,m{ aj = ajel-1-2Jt }

Comment { evaluate the potential at point ¢ }
i =301, wiey

Comment { add charge ¢ to the expansion }
doj=1,....m{aj:=a;+q¢}

}

The execution time for Algorithm 5.1 is clearly O(mn). One of the most computationally
expensive portions of the algorithm is the evaluation of exponentials for use in the translation
operator. These exponentials do not depend on the sequence {@:}, but rather only on the
sequence {z;}. Thus, if (1) is to be computed for many sequences {¢:} and a single sequence
{z:}, it may be most efficient to precompute these exponentials.

The error which Algorithm 5.1 makes in the portion of the potential at a point z; which is
due to a charge g is given by the obvious formula GkCik, Where

o = (2 — Lwelemn). (143)

Ti—=Zr 3

By Theorem 3.1, if |zx — z;] > r, then ¢jx < . The remaining interactions, between pairs of
points which are too close together, can obviously be corrected by performing the operation

Pk = Pk + Cirdi, (144)

29

for each of the p pairs of points (z;, zx) such that |zx—=z;| < 7, after the completion of Algorithm
5.1. The CPU time required for this process is clearly O(p); in addition, the computation of
the coefficients ¢;x takes O(mp) CPU time, but only needs to be performed once for any given
sequence of points {z;}. For large numbers of points n, p varies as n?; thus, while Algorithm
5.1 combined with this process of “local corrections” produces accurate results for any n and
any distribution of points, and has O(n) behavior for small numbers of points which are close
to uniformly distributed, it is asymptotically an O(n?) algorithm.

The quadratures used in the authors’ implementation were generalized Gaussian quadratures
[9] specifically tailored to this problem. In particular, quadratures were generated for integrals
of the form (51), with the interval of accuracy being [1,500].

5.1 Logarithmic kernel

The algorithm for the logarithmic kernel (2) is nearly identical. The required changes to the
algorithm follow from the differences between Theorem 3.1 and Theorem 3.2, and are as follows:

e 1. In place of the quadrature weights w;, the numbers (—w,/t;) are used.

e 2. The numbers py,...,p,—; defined by (69) are computed in O(n) time by taking a
running sum.

5.2 Square root kernel

The algorithm for the square root kernel (77) is again nearly identical. The required changes
follow from the differences between Theorem 3.1 and Theorem 3.3, and are as follows:

e 1. The input points are further restricted as follows: the points z; must lie on the interval
[0,b], where b is determined by the quadrature.

e 2. The generation of the exponential expansion for each point is done using (81) rather
than (53); thus O(nm) evaluations of the function Iy are required.

e 3. A different quadrature is required. The authors’ implementation of this algorithm used
generalized Gaussian quadratures [9] tailored to the integral (78) under the condition that
z € [1,500] and y € [0, — 1]. These quadratures are similar to those used for the 1/z
kernel, both in the number of nodes required to achieve a given accuracy and in the
values of the weights and nodes. They are tabulated in [9] for various precisions, and are
partially repeated in this paper as Tables 16 and 17.

6 Adaptive FMM in One Dimension

This section describes an algorithm for the computation of (1) or (2) which uses an adaptive
partitioning of the interval on which the points {z;} lie, and which consumes O(n) CPU time
for arbitrary point distributions.

The algorithm uses the translation and conversion matrices listed in Table 2. Due to the
simple manner in which these matrices scale to different size intervals, their computation only

30

needs to be performed once (ever) for any given precision of the algorithm. In this computation,
the singular value decompositions of linear operators used in the formulae for these matrices can
be computed by the algorithms of Sections 4.1.2 and 4.1.3, with the combinations of quadrature
and interpolation scheme used for those algorithms being Gaussian quadratures at Legendre
nodes, and polynomial interpolation.

The algorithm partitions the interval [z, z,,] on which the points lie in the following manner.
(The points are assumed to be in sorted order.) Each subinterval produced is examined to
determine the number of local corrections which would be used on that interval if it were left
intact; this is equal to the number of pairs of points which are closer together than a threshold
which depends on the quadrature used for exponential expansions, and which is proportional
to the size of the interval. If this exceeds a fixed number n., the interval is split; the split is
always exactly in half. In addition, the interval is split if the adjacent interval on either side
is less than half its size. Otherwise, the interval is left intact. (The number n. is chosen by
numerical experiment, so as to roughly minimize the CPU time consumed by the algorithm;
the tradeoff it controls is between CPU time necessary to perform multiplications of vectors by
translation and conversion matrices, and CPU time necessary to process local corrections.)

The main computation is done in two passes. The first pass computes potentials due to
charges to the left of each point (142), and the second pass computes potentials due to charges
to the right. These two computations are essentially identical, and thus only the first pass will
be described. Only rightgoing expansions are used in this pass; thus the word “rightgoing”
will be omitted throughout the description. We will refer to an exponential expansion created
from charges on an interval as an outgoing expansion on that interval, and to an exponential
expansion from which the potential on some interval can be calculated as an incoming expansion
on that interval.

The program maintains the following variables. Each interval is assigned a number, which
is used to index two arrays: the array +; contains the far field expansion for interval ¢, and the
array (; contains the local expansion for interval i. The latter array is initialized to zero. In
addition, six exponential expansion variables are used, three for incoming expansions (&', o2,
and oi"*), and three for outgoing expansions (°*, ¢°**?, and a°***). We will designate the j’th
element of each of these expansions by appending the subscript j.

The first pass of the algorithm is done by the following recursive subroutine. The routine
takes one parameter, the number of the interval on which to operate; to do the entire first pass,
the routine is called on the top-level interval. The routine traverses the tree of subintervals in
such a manner that the lowest-level subintervals are visited in order from left to right. The
subroutines which it calls are presented subsequently.

Algorithm 6.1

subroutine process (¢)
if (interval 7 is subdivided) {

11 := interval number of left half of ¢
15 := interval number of right half of ¢

31

Comment { Use the local expansion for the interval i to produce local expan-
sions for its two halves }

ﬂil = M;fl ‘ﬂi

ﬂi: = M;jz - Bi

Comment { Process the left half }
call process (71)

Comment { Compute interactions from the left half to the right half }
call interact (7)

Comment { Process the right half }
call process (iz)

Comment { Use the far field expansions on the two halves to produce far field
expansions on the interval . }
Yi = My, + Myg2 v

} else {

Comment { Transform the local expansion for this interval into an augmented
incoming exponential expansion, and add it to the already-
produced incoming expansion resulting from the adjacent segment

' ~ to the left. }

o = ot + M, - B

Comment { Perform the evaluation of potentials and creation of outgoing ex-
ponential expansion(s) on this interval }

call lowlev(i)

Comment { Transform the outgoing augmented exponential expansion into the
far field expansion for this interval }

} % = Mey - o™

The routine lowlevis a version of Algorithm 5.1, which it differs from in the following ways.

e 1. It takes as a parameter the interval number i of the interval [a,a + b] to process.
The quadrature used in exponential expansions is rescaled (using (61),(62)) so that the
maximum range of the resulting exponential expansions is equal to 2b; we will denote the
corresponding minimum range by r.

e 2. The incoming augmented exponential expansion ¢™ on [a,a + b] is evaluated at each
point. The Taylor series portion of the expansion is evaluated directly; the exponential
expansion portion is computed by initializing the exponential expansion « to equal o',
rather than initializing it to zero.

¢ 3. The outgoing augmented exponential expansion a°** on [a,a + b] is computed from the
input charges on [a,a + b]. The multipole expansion portion is computed directly; the

32

exponential expansion portion is computed from the value of the exponential expansion
a at the end of the routine (after all the charges on the interval have been added to it).

e 4. If the adjacent interval to the left is smaller than the current interval, two additional
incoming exponential expansions are evaluated. The first expansion, a'*®, is the restricted
incoming exponential expansion on [a,a + b], and is evaluated by adding it to the expan-
sion o when that expansion has just been translated past the point a + r. The second
expansion, a2, uses a quadrature scaled appropriately for the interval to the left, and is
only evaluated on the tiny interval [a,a + 7).

e 5. If the adjacent interval to the right is smaller than the current interval, two additional
outgoing expansions are created. The first expansion, a°™*®, is the restricted outgoing
exponential expansion on [a,a + b], and is computed from the expansion o when that
expansion is just about to be translated past the point a + b — r. The second additional
outgoing expansion, a°**?, uses a quadrature scaled appropriately for the interval to the
right, and is computed so as to represent only the charges on the tiny interval (a + b —
r,a+ b].

The routine interact takes as a parameter an interval number i. It computes the portion of
the potential on the right half of the interval which is due to the charges on its left half, with
both the potential and the charges being represented by expansions. The routine is as follows;
Figure 4 contains a map of the expansions which it uses in a case of equally sized intervals,
and Figure 5 contains a map of the expansions which it uses in a case of adjacent unequally
sized intervals. (In places in the following pseudocode, conversion matrices which expect non-
augmented exponential expansions are multiplied by augmented exponential expansions; this
normally undefined operation is, here, used to mean that the additional terms which comprise
the augmentation are ignored in that multiplication. Similarly, in places, a non-augmented
expansion is added to an augmented expansion; the meaning is that the terms which the non-
augmented expansion lacks are taken to be zero.)

subroutine interact ()
11 := interval number of left half of :
iz := interval number of right half of ¢

ain2 =0
ains =0

while both 7; and 7 are higher level intervals {
%11 := interval number of left half of i;
i12 := interval number of right half of ;
121 := interval number of left half of i,
= interval number of right half of i,

izz .

Comment { Compute three out of the four interactions, using far field to local
expansion potential operators }

33

185'21 = ,812‘ + M]Il 7111
,Bigg = ,B:n + Mj12 Yii
:Bin = :Bln + M/fl Yiia

Comment { Move down one level to examine the remaining interaction }
i 1= 119
ip 1= ip

}

Comment { At this point at least one of i; or iz is a lowest level interval. }

If i, and 75 are both lowest level intervals, then {
Comment { Use the outgoing exponential expansion from ¢; as the incoming
exponential expansion to i3, but delete the augmentation }
ain = U
doj=m+1,....m+k{af =0}

}

If i; is a lowest level interval and i, is subdivided, then {
197 := interval number of left half of 75
192 := interval number of right half of i)

Comment { Use the far field to local expansion rescaling matrix to compute

the local expansion on a2 }
Bizy = Bizy + M, -

Comment { Use the exponential expansion scaling-down matrix, plus the stub
exponential expansion, to compute the incoming exponential ex-
pansion on ig; }

ain = M:e . aouts + aoutz

}

If i, is subdivided and i, is a lowest level interval, then {
111 := interval number of left half of #;
112 := interval number of right half of i,

Comment { Use the exponential expansion scaling-up matrix to compute the

incoming exponential expansion on is;. }
ams = Mee .Ut

Comment { Use the far field to local expansion rescaling matrix to compute
the local expansion on a2 }
o = Mae - ¥iy,

Comment { Use the old exponential expansion as the stub expansion }

am2 = aout

34

exponential — far field
1 — local — exponential
2 .
exponential
FROM "~
exponential
3
exponential — far field
41 S local — exponential

Figure 4: Map of expansions used for uniform subdivision.

The text at a vertical location z; and horizontal location z, lists the
expansions used to compute the potential at z, from a charge at z;.
The rightwards arrow (—) indicates a conversion from one expansion
type to another.

35

1 2 3 !
exponential (scale 1)
1 exponential — far ‘ﬁeld —a>l
(scale 1) exponential (scale 2)
exponential exponential (scale 1)
le 1) -
2 (scale exponential (scale 2)
FROM ~~
exponential
(scale 2) exponential exponential
gcal (scale 2) (scale 2)
3|~ . ”) exponential
exponential | exponential
(scale 2)
(scale 1) (scale 1)

(NOT TO SCALE)

Figure 5: Map of expansions used for non-uniform subdivision

The text at a vertical location z; and horizontal location zo lists the
expansions used to compute the potential at zo from a charge at z;.
The rightwards arrow (—) indicates a conversion from one expansion
type to another.

36

6.1 Execution time

The CPU time consumed by Algorithm 6.1 can be bounded as follows. The subroutine lowlev
is called once on each lowest-level subinterval, and takes O(m + k) time for each point therein,
giving a total execution time of O((m+k)n) (where m is the number of nodes in the quadrature
on which the exponential expansions are based, k is the number of terms used in the augmen-
tation of exponential expansions, and n is the number of input points). The routines process
and interact spend their time in matrix multiplications, each of which is performed a number
of times proportional to the number M of subintervals which are produced by the partitioning
routine, and each of which takes either O(p?), O(p(m + k)), or O(m(m + k)) time (where p
is the number of terms in a far field expansion). Since M is clearly O(n), the algorithm as a
whole takes O(n(m + p? + (p + m)(m + k))) time.

7 Numerical Results

Algorithm 6.1 has been implemented in double precision (Fortran REAL*8) arithmetic. The im-
plementation used generalized Gaussian quadratures [9] as the quadratures for the exponential
expansions. To achieve roughly double precision accuracy, a generalized Gaussian quadrature
using 27 weights and nodes was used. To achieve roughly single precision accuracy, a generalized
Gaussian quadrature using 14 weights and nodes was used. These quadratures are tabulated
in [9], and are repeated here in Tables 14 and 15.

The sizes of certain expansions are determined numerically by the stage of the algorithm
which computes the conversion and translation matrices; the values which were produced are
as follows. For the 1/z kernel, the number p of terms in a far field or local expansion was 12
for double precision, and 6 for single precision, and the number & of multipole terms used to
augment exponential expansions was 3 for double precision, and 2 for single precision. The
sizes of expansions for the logarithmic kernel were identical, except that for single precision,
the number of terms in a far field expansion was 7.

Algorithm 6.1 was run for two types of distributions of the points {z;}, namely equispaced
points and Chebyshev nodes; for both single and double precision expansions (but both in
double precision arithmetic); and for both the logarithmic and 1/z kernels. The resulting
timings (for a Sun Sparcstation 2) and accuracies are included as Tables 4-11. The execution
times are listed in two ways: first as an absolute time, then as the ratio of the time taken
by the algorithm to the time taken by an FFT of the same size. The execution times of the
initialization and evaluation stages of Algorithm 6.1 are listed separately, in the columns labeled
“Init” and “Eval” respectively. The column of the tables which is labeled “Error” contains the
normalized L? error (the L? norm of the error, divided by the L2 norm of the correct result)
of Algorithm 6.1; the correct result was determined by the direct computation of (1) or (2)
in extended precision (Fortran REAL*16) arithmetic. Also listed in Tables 4-11 are timings
for the direct computation of (1), performed in double precision arithmetic. For large n, the
computation becomes expensive, and was not performed; for these entries the tables contain
extrapolations, calculated by assuming O(n?) behavior, which are indicated by parentheses.

Remark 7.1 For the 1/z kernel, comparing against an extended precision calculation produces

37

error figures which are considerably larger than those found if one compares against the direct
computation done in double precision arithmetic. The errors seem to arise in the subtraction
T; — Tk; in the case that z; and zi are adjacent points (that is, k =i—1 or k =1+ 1), this
subtraction has an O(n) condition number for equispaced points and an O(n?) condition number
for Chebyshev nodes. Since the interactions between adjacent points are much larger than the
remaining interactions, their O(n) or O(n?) error plays a large part in the total error. If both
the test computation and the reference computation are done in double precision arithmetic,
the error in the computation of x; — z is made ezxactly the same way in both, and thus is not
observed. For the logarithmic kernel, this problem does not arise, since the interactions between
adjacent points are, in general, little larger than the remaining interactions.

In Table 8, timings from [2] for the one-dimensional FMM of that paper are also presented,
for comparison. (Of the two versions of the FMM in that paper, the one picked for comparison
here, Algorithm 3.2, is the one with the faster evaluation times and slower precomputation
times.) However, the timings for the algorithms are not directly comparable; the present
algorithm calculates the potentials at the same points where the charges are located, but in
the algorithm of [2] the two sets of locations need not be the same. Thus, when the points
where the potentials are to be evaluated coincide with the locations of the charges, our scheme
displays an improvement of roughly a factor of two over the method of [2] (in terms of CPU
time requirements). On the other hand, when the charge locations are distinct from the points
where the potentials are to be evaluated, most of the advantage of our algorithm is lost.

The column labeled Ng;, in Tables 4-11 contains the number of lowest-level subdivisions
which the algorithm used. In the case where this number is equal to two, the timings printed
serve also as the timings for Algorithm 5.1, since the implementation of Algorithm 6.1 avoids in
this case any unnecessary computations of far field expansions, augmentations to exponential
expansions, and so forth.

Table 13 contains execution times and accuracies for the exponential-expansion-only algo-
rithm for the square root kernel, as described in Section 5.2. The input consisted of equispaced
points. The unusually high initialization times (as compared to the other tables) are due to the
large number of evaluations of the function I.

Table 12 contains timings and errors for a version of the algorithm which is optimized for
equispaced points. With equispaced points, the precomputed translation operators and local
correction coefficients are identical for all points {z;}; thus the precomputation time is quite
small. In addition, each of the subtractions z; — z; can be calculated more accurately, using
the formula (z, — z1)(¢ — k)/n; the tabulated accuracy is thus much better than the accuracy
for the unoptimized algorithm (Table 8). However, this calculation is a convolution, and thus
can be performed efficiently, and much more simply, using the FFT.

8 Conclusions and Generalizations
We have presented a version of the one-dimension fast multipole method which, by incorporating

expansions based on generalized Gaussian quadratures, is in the best case roughly twice as fast
as its predecessors, and in the worst case roughly breaks even with them. This algorithm exists

38

in versions for both the logarithmic and 1/z kernels. Generalizations to other kernels are some-
what problematic; unless those kernels possess benign scaling properties, as do the two kernels
treated in this paper, the translation and conversion matrices would have to be recomputed for
each scale, and perhaps for each location. Generalizations of the simple exponential-expansion-
only algorithm are somewhat easier, and one such generalization (to the square root kernel)
has been presented. However, the exponential-expansion-only algorithms are only efficient for
small to medium numbers of points which are close to uniformly distributed.

References

(1] M. ABRAMOWITZ, I. STEGUN, Handbook of Mathematical Functions, Applied Mathematics
Series, National Bureau of Standards, DC, 1964

[2] A. DuTT, M. Gu, AND V. ROKHLIN, Fast Algorithms for Polynomial Interpolation, In-
tegration, and Differentiation, SIAM Journal on Numerical Analysis, Vol. 33, No. 5, Oct
1996

[3] L. GREENGARD AND V. ROKHLIN, A Fast Algorithm for Particle Simulations, Journal Of
Computational Physics, Vol. 73, No.2, Dec 1987

[4] T. Hrycak, V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields,
Research Report 1089, Yale Computer Science Department, 1995

[5] S. KAPuRr, V. ROKHLIN, An Algorithm for the fast Hankel transform, Technical Report
1045, Yale Computer Science Department, 1995

(6] J. MA, V. ROKHLIN, AND S. WANDZURA, Generalized Gaussian Quadratures For Systems
of Arbitrary Functions, SIAM Journal of Numerical Analysis, June 1996

[7] M. REED, B. SIMON, Methods of modern mathematical physics, Vol. 1, Academic Press,
1980

[8] J. STOER, R. BULIRSCH, Introduction to Numerical Analysis, Second Edition, Springer-
Verlag, 1993

[9] N. YARVIN, V. ROKHLIN, Generalized Gaussian Quadratures and Singular Value Decom-
positions of Integral Operators, Research Report 1109, Yale Computer Science Department,
1996

39

Table 4: Single precision timings for the 1/z kernel, for equispaced points

N | Ny, | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 2410 | 0.64E-07 || 0.008 | 0.003 0.004 || 5.60 | 16.77
128 3 3338 | 0.49E-07 || 0.013 | 0.004 0.017 || 4.65 | 14.58
256 3 5194 | 0.55E-07 || 0.024 | 0.008 0.071 3.99 | 12.52
512 3 9417 | 0.36E-07 || 0.057 | 0.016 0.273 || 2.89 | 10.43
1024 3 18375 | 0.37E-07 || 0.137 | 0.034 1.195 2.51 | 10.15
2048 3 39360 | 0.32E-07 || 0.367 | 0.074 5.270 | 2.61 | 12.85
4096 15 71049 | 0.39E-07 || 0.559 | 0.168 22250 || 242 8.04
8192 31 | 141281 | 0.39E-07 || 1.150 | 0.327 92.800 1.77 | 6.23
16384 63 | 281745 2.320 | 0.660 | (3.7E+402) 1.67 | 5.87
32768 | 127 | 562673 4.830 | 1.332 | (1.5E+03) 1.62 | 5.89
65536 | 255 | 1124529 9.690 | 2.685 | (5.9E+403) 1.51 | 5.46

Table 5: Single precision timings for the 1/z kernel, for Chebyshev nodes

N | Ny | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval | Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 2412 | 0.53E-07 || 0.008 | 0.003 | 0.004 5.67 | 16.97
128 3 3354 | 0.30E-07 || 0.014 | 0.004 | 0.017 4.83 | 15.23
256 3 5300 | 0.22E-07 || 0.026 | 0.015 | 0.068 7.78 | 13.57
512 3 9506 | 0.19E-07 || 0.059 | 0.016 | 0.274 2.94 | 10.93
1024 3 19477 | 0.19E-07 || 0.169 | 0.036 | 1.200 2.69 | 12.49
2048 7 38737 | 0.75E-08 || 0.344 | 0.086 | 5.290 2.98 | 11.97
4096 15 73061 | 0.80E-08 {| 0.611 | 0.171 | 22.350 2.44 | 8.73
8192 27 | 144257 | 0.77E-08 || 1.212 | 0.338 | 93.000 1.84 | 6.58

40

Table 6: Single precision timings for the logarithmic kernel, for equispaced points

N | Mgy | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 2547 | 0.63E-08 || 0.008 | 0.003 0.018 5.05 | 16.55
128 3 3475 | 0.43E-08 || 0.013 | 0.004 0.071 4.88 | 15.09
256 3 5331 | 0.53E-08 || 0.024 | 0.008 0.286 4.12 | 12.52
512 3 9554 | 0.53E-08 || 0.061 | 0.016 1.151 3.05 | 11.36
1024 3 18512 | 0.44E-08 || 0.151 | 0.037 4.707 || 2.72 | 11.13
2048 3 39497 | 0.55E-08 || 0.422 | 0.076 19.340 || 2.65 | 14.68
4096 15 71210 | 0.92E-08 || 0.613 | 0.161 78.590 || 2.28 | 8.70
8192 31| 141474 | 0.43E-08 || 1.268 | 0.321 320.510 1.65 | 6.54
16384 63 | 282002 2.455 | 0.646 | (1.3E+03) 1.65 | 6.26
32768 | 127 | 563058 4.910 | 1.300 { (5.1E+03) 1.59 | 6.01
65536 | 255 | 1125170 9.780 | 2.605 | (2.1E+04) 1.49 | 5.59

Table 7: Single precision timings for the logarithmic kernel, for Chebyshev nodes

N | Ny, | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval | Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 2549 | 0.56E-08 || 0.008 | 0.003 0.018 5.09 | 16.49
128 3 3491 | 0.54E-08 || 0.015 | 0.004 0.072 4.92 | 16.49
256 3 5437 | 0.56E-08 || 0.027 | 0.008 0.288 4.24 | 14.04
512 3 9643 | 0.53E-08 || 0.068 | 0.016 1.162 3.03 | 12.57
1024 3 19614 | 0.55E-08 || 0.183 | 0.037 4.785 2.71 | 13.60
2048 7 38882 | 0.79E-08 || 0.386 | 0.086 | 19.610 || 3.00 | 13.51

4096 15 73222 | 0.33E-08 || 0.671 | 0.166 | 79.310 2.36 | 9.55
8192 27 | 144442 | 0.26E-08 |l 1.335 | 0.332 | 323.490 1.81} 7.29

41

Table 8: Double precision timings for the 1/z kernel, for equispaced points

N | Ngy Error Times Timing Old ratios
(seconds) Ratios

Init | Eval Direct || Eval/ | Init/ || Eval/ | Init/

FFT | FFT || FFT | FFT
64 3| 0.52E-14 || 0.017 | 0.004 0.004 8.41 | 34.53
128 3 | 0.65E-14 || 0.026 { 0.007 0.017 8.04 | 29.30
256 3| 0.11E-13 || 0.046 | 0.014 0.068 7.47 | 24.45

512 3| 0.27E-13 || 0.106 { 0.029 0.273 5.36 | 19.73 12.2] 78.3

1024 3| 0.25E-13 || 0.253 | 0.059 1.228 4.39 | 18.69 11.7) 65.7

2048 31 0.11E-12 || 0.596 { 0.124 5.280 4.35 | 20.84 10.6 | 57.6

4096 15 | 0.10E-12 || 0.956 | 0.277 22.240 3.98 | 13.75 9.7 49.8
8192 31| 0.17E-12 || 2.017 | 0.553 92.400 3.02 | 11.02
16384 63 3.795 | 1.118 | (3.7E+02) 2.86 | 9.70
32768 | 127 8.270 | 2.255 | (1.5E+03) 2.78 1 10.18
65536 | 255 16.121 | 4.900 | (5.9E+03) 2.68 | 8.83

Table 9: Double precision timings for the 1/z kernel, for Chebyshev nodes

N | Ny | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval | Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 5833 { 0.13E-13 || 0.017 | 0.004 | 0.004 8.17 | 34.58
128 3 7607 | 0.49E-13 || 0.026 | 0.007 | 0.017 8.14 | 29.29
256 3 11217 | 0.77E-13 |{ 0.049 | 0.014 | 0.070 7.20 | 24.78
512 3 18751 | 0.13E-11 || 0.108 | 0.039 | 0.279 7.23 | 19.95
1024 3 35378 | 0.21E-11 || 0.272 | 0.061 | 1.207 4.55 | 20.12
2048 3 73866 | 0.32E-11 || 0.782 | 0.135 | 5.570 4.69 | 27.24
4096 15 | 130626 | 0.13E-10 || 1.020 | 0.287 | 22.380 4.07 | 14.46
8192 27 | 256798 { 0.15E-09 {| 2.015 | 0.572 | 92.950 3.10 | 10.91

42

Table 10: Double precision timings for the logarithmic kernel, for equispaced points

N | Ngi, | Memory | Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 5929 | 0.20E-14 || 0.017 | 0.004 0.018 || 8.28 | 35.58
128 3 7689 | 0.19E-14 || 0.026 | 0.007 0.071 8.26 | 29.36
256 3 11209 | 0.48E-14 || 0.046 | 0.014 0.284 || 7.30 | 23.47
512 3 18760 | 0.49E-14 § 0.111 | 0.033 1.151 6.05 | 20.53
1024 3 34374 | 0.31E-14 {| 0.249 | 0.061 4.767 | 4.48 | 18.39

2048 3 68671 | 0.78E-14 || 0.652 | 0.127 19.330 4.42 | 22.69
4096 15| 128712 | 0.69E-14 || 1.038 | 0.268 78.789 3.82 | 14.77
8192 31| 254496 | 0.62E-14 || 2.025 | 0.546 320.520 2.97 | 11.02

16384 63 | 506064 4.090 | 1.097 | (1.3E403) 2.80 | 10.43
32768 | 127 | 1009200 8.221 | 2.247 | (5.1E+03) 2.75 | 10.06
65536 | 255 | 2015472 16.790 | 4.600 | (2.1E+04) 249 | 9.10

Table 11: Double precision timings for the logarithmic kernel, for Chebyshev nodes

N | Ny, | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init | Eval | Direct | Eval/ | Init/
spaces) FFT | FFT
64 3 5931 | 0.73E-15 || 0.017 | 0.004 0.018 8.30 | 35.32
128 3 7705 | 0.60E-15 || 0.026 | 0.007 0.072 7.07 | 25.45
256 3 11315 | 0.86E-15 || 0.050 | 0.015 0.288 7.59 | 25.92
512 3 18849 | 0.11E-14 || 0.108 | 0.030 1.166 5.59 | 19.99
1024 3 35476 | 0.17E-14 || 0.291 | 0.102 4.757 7.57 | 21.57
2048 3 73964 | 0.21E-14 (| 0.857 | 0.138 | 19.580 || 4.83 | 30.00
4096 15| 130724 | 0.33E-14 || 1.077 | 0.282 | 79.180 4.04 | 15.44
8192 27 | 256896 2.143 | 0.560 | 322.230 3.03 | 11.60

43

Table 12: Double precision timings for the 1/z kernel, optimized for equispaced points

N | N4, | Memory Error Times Timing
(seconds) Ratios
(REAL*8 Init { Eval Direct || Eval/ | Init/
spaces) FFT | FFT
64 3 4130 | 0.43E-14 || 0.006 | 0.004 0.004 7.43 | 13.10
128 3 4162 | 0.28E-14 || 0.006 | 0.006 0.017 6.76 | 6.89
256 3 4226 | 0.19E-14 || 0.006 | 0.011 0.069 5.84 | 3.31
512 3 4865 | 0.46E-14 {| 0.007 | 0.022 0.273 4.15 | 1.30
1024 3 6655 | 0.35E-14 || 0.008 | 0.046 1.190 3.36 | 0.58
2048 3 13304 | 0.55E-14 | 0.010 | 0.098 5.270 3.21 | 0.33
4096 15 18049 | 0.18E-13 || 0.031 | 0.212 22.740 3.01| 044
8192 31 33241 | 0.70E-13 || 0.063 | 0.422 92.630 229 | 0.34
16384 63 63625 0.134 | 0.859 | (3.7TE+02) 217} 0.34
32768 | 127 | 124393 0.293 | 1.722 | (1.5E+03) 2.09 | 0.36
65536 | 255 | 245929 0.578 | 3.472 | (5.9E403) 1.96 | 0.33

Table 13: Timings for the square root kernel, for equispaced points

N Error Times Timing
(seconds) Ratios
Init | Eval | Direct {| Eval/ | Init/
FFT | FFT

64 | 0.30E-14 | 0.041 | 0.002 | 0.018 3.70 | 82.64
128 | 0.23E-14 || 0.083 | 0.004 | 0.075 4.06 | 83.79
256 | 0.21E-14 || 0.167 | 0.010 | 0.308 4.75 | 80.80
512 | 0.32E-14 || 0.352 | 0.020 | 1.237 3.78 | 64.97

1024 | 0.19E-14 || 0.733 | 0.041 | 4.920 3.26 | 57.78
2048 | 0.29E-14 || 1.591 | 0.087 | 19.430 3.16 | 57.47
4096 | 0.34E-14 || 3.733 | 0.182 | 78.140 2.61 | 53.53

64 | 0.54E-07 || 0.021 { 0.001 | 0.018 2.19 | 42.98
128 | 0.51E-07 || 0.043 | 0.002 | 0.074 2.30 | 43.36
256 | 0.48E-07 || 0.086 | 0.005 | 0.307 2.44 | 41.89
512 | 0.48E-07 || 0.184 | 0.013 | 1.238 2.34 | 33.94

1024 | 0.45E-07 || 0.392 | 0.025 | 4.890 1.95 | 30.58
2048 | 0.44E-07 || 0.879 | 0.053 | 19.500 1.90 | 31.73
4096 | 0.44E-07 || 2.140 | 0.115 | 77.940 1.65 | 30.68

44

Table 14: Quadratures for exponentials

Quadratures for the integral

o0
/ e dz,
0

under the condition that 1 < ¢ < 500.

[N]

Nodes (z;)

|

Weights (w;)

Error

14

0.1075073588251350E-02
0.5889243490962496 E-02
0.1560078432135377E-01
0.3258052212086110E-01
0.6154351752779967E-01
0.1109619891032348E+00
0.1951651530857407E+00
0.3377699882687942E+00
0.5772805419211481E+00
0.9761165652290038E+00
0.1635615445691163E+01
0.2723809484786727E+01
0.4541163041303490E+01
0.7767616655342678E+01

0.2783455121689438E-02
0.7006395914900820E-02
0.1279502133157069E-01
0.2192733340131016E-01
0.3737740049082059E-01
0.6379243969367225E-01
0.1084594588227473E+00
0.1830223278438481E+00
0.3061647832783700E+00
0.5079755103629931E+00
0.8381174751258640E+00
0.1385562498413431E+401
0.2347348786059432E+01
0.4444622409829190E+01

0.366E-07

45

Table 15: Quadratures for exponentials (continued)

Quadratures for the integral

[e]
/ e “dz,
0

under the condition that 1 <t < 500.

| N

Nodes (z;)

Weights (w;)

Error

27

0.5378759010624780E-03
0.2860176825815242E-02
0.7148658617716300E-02
0.1360965515937845E-01
0.2257800188133212E-01
0.3456421989535069E-01
0.5032042618508775E-01
0.7092509447124836E-01
0.9788439120828463E-01
0.1332509921950535E+-00
0.1797695570864978 E+400
0.2410654714132133E400
0.3218961915636380E+00
0.4284852078938826 E+00
0.5689615509235298E+00
0.7539347736933301E+00
0.9972472224438443E+00
0.1316964566299846E+01
0.1736698582009859E+01
0.2287418444638146E+01
0.3010034073439038E+01
0.3959315495048493E+01
0.5210381702393131E401
0.6870768194824406E401
0.9106577764323245E+01
0.1221294512896673E+02
0.1689348652665484E+02

0.1383311204046008E-02
0.3279869733166365E-02
0.5330932895600203E-02
0.7646093110803760E-02
0.1037458793227033E-01
0.1372178039022047E-01
0.1796868836009351E-01
0.2348971809947674E-01
0.3076860552710760E-01
0.4041894092839717E-01
0.5321827718681367E-01
0.7016094768858448E-01
0.9253048536912244E-01
0.1219928996130354E+00
0.1607156476580828 E+00
0.2115215602167892E+00
0.2780925850550500E+00
0.3652478333806065E+00
0.4793398853949993E+00
0.6288554258416082E+00
0.8254021100491956 E+00
0.1085495633209734E+01
0.1434174907278760E+01
0.1913323186889750E+01
0.2604342790201154E+01
0.3708436699287805E+401
0.6023086156615004E+01

0.323E-14

46

Table 16: Quadratures for exponentials multiplied by I

Quadratures for the integral

[e,
0

under the condition that ¢t € [1,500] and y € [0,¢— 1].

Nodes (z;)

Weights (w;)

l

Error

14

0.6424288534795956E-03
0.3562319666990144E-02
0.9643424057074440E-02
0.2074298599770349E-01
0.4057928260022333E-01
0.7600572280169251E-01
0.1390443053485344E4-00
0.2503136051566992E+-00
0.4447622918282108E4-00
0.7811276346003586E4-00
0.1357818162257100E+-01
0.2341992534236977E+01
0.4036529413075654E4-01
0.7126502974662635E+01

0.1667964367860395E-02
0.4298903067080389E-02
0.8159545461265918E-02
0.1463864640961027E-01
0.2614391453322226E-01
0.4665755537868725E-01
0.8276361628521883E-01
0.1454478222995341E+00
0.2529871458046016E+00
0.4357009925372973E+00
0.7446059596 729966 E+00
0.1271434906786924E+01
0.2216807353831690E+01
0.4302367103374836E+401

0.900E-07

47

Table 17: Quadratures for exponentials multiplied by Iy (continued)

Quadratures for the integral

o0
| Io(ey)e=tdz,
0

under the condition that ¢ € [1,500] and y € [0, — 1].

LN

Nodes (z;)

.

Weights (w;)

l

Error

|

29

0.2855179413353365E-03
0.1519624696728258 E-02
0.3804359141657344E-02
0.7260138000706486E-02
0.1208205371062810E-01
0.1856564543199398E-01
0.2714156753309568E-01
0.3842017800878239E-01
0.5324783256625659E-01
0.7277755829761968E-01
0.9855788611173273E-01
0.1326465035778468E+00
0.1777590387840778E+00
0.2374657658898870E+00
0.3164509240422835E+00
0.4208524457939620E+00
0.5587051648321601E+00
0.7405185479404663E+00
0.9800319873390735E+00
0.1295209795621391E+01
0.1709570851677607E+01
0.2254009385987865E+-01
0.2969389638669206E+01
0.3910476327629495E+01
0.5152430007642100E+01
0.6802867813529709E+01
0.9027979519502084E+01
0.1212289908066820E+02
0.1679085599535762E+02

0.7344503079351386E-03
0.1744538390662211E-02
0.2844687196642974E-02
0.4098961298933580E-02
0.5593550200298448E-02
0.7444670271885530E-02
0.9807968524698940E-02
0.1288914176031762E-01
0.1695687345717790E-01
0.2235879759838917E-01
0.2954235698585380E-01
0.3908423859367898E-01
0.5173159700695577E-01
0.6845695550893067E-01
0.9052903520482935E-01
0.1196036182345700E+00
0.1578409524693449E+00
0.2080593451794129E+00
0.2739397750144418E+00
0.3603059290242059E+00
0.4735231867763476 E+00
0.6221016600956893E+00
0.8176841100086656 E+00
0.1076831175000068E+01
0.1424628439002124E+01
0.1902988149814232E+01
0.2593285548365225E4-01
0.3696550722303479E4-01
0.6009492062220468E+01

0.299E-14

48

