Keeping One’s Eye on the Ball: Tracking Occluding
Contours of Unfamiliar Objects without Distraction

Kentaro Toyama and Gregory D. Hager

Research Report YALEU/DCS/RR-1060
January 1995

Keeping One’s Eye on the Ball: Tracking Occluding

Contours of Unfamiliar Objects without Distraction

Kentaro Toyama and Gregory D. Hager
Department of Computer Science

Yale University*

December 6, 1994

Abstract

Visual tracking is prone to distractions, where features similar to the target features
guide the tracker away from its intended object. Global shape models and dynamic
models are necessary for completely distraction-free contour tracking, but there are
many cases when component feature trackers alone can be expected to avoid distraction.
We define the tracking problem in general and devise a method for local, window-based,
feature trackers to track accurately in spite of background distractions. The algorithm
is applied to a generic line tracker and a snake-like contour tracker which are then
experimentally analyzed with respect to previous bcontour—tra,ckers. We discuss the
advantages and disadvantages of our approach and suggest that existing model-based

trackers can be improved by incorporating similar techniques at the local level.

P.O. Box 208285, New Haven, CT, 06520. E-mail: toyama®@cs.yale.edu, hager@cs.yale.edu

1 Introduction

Given a series of images, the problem of visual tracking is to identify the apparent motion
of a target from frame to frame. Many applications use assumptions about a motion model
or the rigidity of the target to perform their function. In this way, the tracking problem is
reduced to a combination of prediction and localized search: first, tracking algorithms guess
the new configuration of a visual feature, then they search near the guess to determine the
actual state of the feature.

By narrowing the search area, tracking applications try to avoid both computational
complexity and mistracking. Unfortunately, limited search area does not imply that the
search is trivial or even uniquely solvable. In fact, the searching stage of tracking is often a
small-scale problem in pattern recognition.

Most search algorithms rely on one of two pattern detection methods: edge detection
or correlation-based pattern matching. Generic edge detection has the advantage that it is
relatively insensitive to many types of changes in the environment, such as illumination and
contrast changes across the contour. However it suffers from a lack of specificity. In many
circumstances, a generic edge-based tracker is easily “distracted” by background features.
Successful tracking with edge operators depends on having an extremely localized search
through the use of geometric or temporal constraints. Pattern matching techniques such as
correlation suffer from exactly the opposite problem — they are often too specific. Small
changes, for example, in the local brightness or contrast can easily ruin or bias the match.

We have begun to use visual tracking in a variety of applications where the environment is
unstructured 7], implying that specific geometric and dynamic information is not available.
Hence, our tracking algorithms must rely on local feature detection to perform properly.
In this article, we address the question of what can be tracked locally in a distraction-free
fashion. We first delineate a set of situations where local tracking can be performed robustly.

Then, based on these observations, we develop algorithms which are more robust than either

correlation-based or edge-based tracking and offer experimental evidence for this claim.
The remainder of this article is structured as follows. In the next section, we describe
a generic model for feature tracking and review related work in the area of visual tracking.
Next, we consider what kind of contours can be tracked accurately based on local informa-
tion alone. We then describe our algorithm; and finally, we implement the algorithm for the
specific problems of tracking edge segments and tracking occluding contours. The perfor-
mance of our distraction-proof trackers is analyzed and compared with existing trackers for

similar objects.

2 Background and Tracking Problem Definition

In this section, we define trackers as state-based observers with minimal dynamics and

introduce the notions of model-based and temporal constraints.

2.1 Problem Formalization

We view tracking as a state-based control system. At the image level, pattern recognition
algorithms compute the state of a feature assumed to fall within a local search area, com-
monly referred to as a window, in an image. Windows are subregions of the entire camera
image with position, length, width, scale, orientation, and possibly other parameters. The
use of small windows to track isolated features makes tracking faster. For example, a contour
tracker could focus on small, isolated regions near the contour edge, instead of processing
entire image frames.

We formalize feature trackers here as functions which return states or state offsets of
features given the pixel values from a window. The state vector of a feature may include
position and orientation, as well as a variety of other geometric parameters. In the sequel,

a state space for a feature z is denoted Fj. The notation F" is shorthand for []}.; F; where

F;, 1 <1 < n, are arbitrary feature state spaces. The variable ¢ € [0, 00] represents time.
The notation f;(¢) denotes the state of feature i at time t. Systems evolve continuously, but
are sampled at a fixed but arbitrary time increment (which we normalize to 1). The notation
t; is equivalent to the instant k time intervals following ¢o.

Local feature detectors attempt to minimize objective functions, which may be temporally
dependent or independent. Time-dependent objective functions try to solve some kind of
temporal correspondence problem. That is, they are trying to correlate features between
two images taken at different time instances. We model this process as an optimization as

follows:

f@) = fo) + arg min O(f(t), W, W)

(EF ()
where F(t) is a set of potential state offsets, W; is a window of an image acquired at time
t, f () is a prediction of the feature state at time ¢, and ¢’ is commonly ¢ — 1 or #,.

Temporally dependent objective functions are usually variations on auto-correlation meth-
ods. In particular, sum-of-squared-difference (SSD) methods have become quite popular
[10, 13]. Tracking based on correlative methods works well for matching specific patterns,
yet it becomes unreliable in many situations. If a feature is not visible in its entirety in a
particular frame, correlation fairs poorly; when shears and rotations are expected, comput-
ing time increases drastically; and if the target image is almost constant or if it contains
repetitive elements, the matches are susceptible to minute effects of noise.

At the other end of the spectrum lie simple edge detection methods [2, 4, 6]. These
methods are temporally independent in that they make decisions about a feature’s state by
observing only the current window.

We define s = (s, sy, sg)T where s, and s, denote the center of a finite line segment, and
6 denotes the direction of the line in image coordinates. S is a set of potential line state

offsets. Edge-based methods can then be formalized as:

DWy(sz, sy)
D.Sg)

s(t) = § + arg Isr}egl
where W(-,-) denotes the window brightness function, and D denotes directional derivative.
Note that no information about the prior image is used in this matching process; it simply
finds the “strongest” edge.

Edge-based methods can be made robust to noise, to varying brightness, and to other
abrupt changes in the image region surrounding a feature. Yet while they excel at finding
features quickly, their emphasis on “edgeness” over sameness makes them especially prone
to distraction, which we define presently.

A feature is visible at time ¢ if it lies entirely within its window, and nothing physically
interferes between it and the camera. A feature is observable if the set of allowable states at
time ¢, F(t), contains the true feature state.

We define distraction as an event that occurs when other objects move into a window
of an observable target componént, and the feature tracker’s objective function returns a
value for its state, f(¢), other than the one sought by the user. We note that distraction is a
subjective term, where whether a feature tracker is distracted depends upon the intent of the
algorithm and the intent of the task. It is of interest to note that an objective function that
is adequately designed for its feature in an expected environment should never be distracted.

Unless the feature tracker finds more than one minimum, distraction occurs only when the

objective function is not accurately defined.

2.2 High-Level Constraints

Three other types of information are commonly used in tracking applications. In model-
based tracking, information about the geometry of features is supplied, as in {9]. Here, the
configurations of physical features are expected to fit some shape model of the object, and

visual tracking of those features is enough to track the state of the modeled object. The

)

principle advantage of model-based tracking is that the model overconstrains the possible
configuration of features, so incorrect feature tracking information can often be detected
and discarded. Furthermore, the location of these errant features can be predicted from the
model state. In unstructured situations, we do not have prior information about the object,
so strong model-based constraints usually cannot be used.

Likewise, when information about the object dynamics is available, temporal constraints
can be used localize the search for features [4, 5, 11]. The object dynamics can be expressed
in terms of the image features [5], or in terms of a model [11]. Again, in unstructured
situations, it is unlikely that highly reliable dynamic information is available, except on
the camera system itself. Even when dynamic information is known, it may not be precise
enough to prevent distraction.

In constraint-based tracking, no explicit model is used. However, the feature states are
forced to respect one or more constraints C : F™ — R. An example is found in [2]. Their
work supposes constant velocity motion and an affine motion constraint on the set of features
being tracked. Kalman filters applied both to the motion and the affine model allow tempo-
rary distactions to be eventually disregarded as noise. However, because their methods see
distraction merely as noise to be filtered out over time, they still fail during initial phases of
distraction or in cases of slow distraction. We seek to avoid even such temporary distraction,
and expect to do so without explicit models for the object or dynamics. Including model
constraints clearly enhances the overall reliability of the tracking algorithm, but tracking
errors may still cause estimation errors and bias. We expect that robust feature detection

will benefit these algorithms by significantly reducing such estimation errors.

3 Robust Local Tracking

In many cases, particularly those involving the occluding contours of object, correct tracking

performance is difficult to guarantee. We have often watched with dismay when a tracker

meant to track a screwdriver finds the light switch on the wall more interesting or cringed
helplessly when a casual bystander unwittingly passed behind an experiment, only to drag
our trackers away.

There are two ways to decrease the likelihood of distraction. The first is to decrease
the size of the search region through better temporal or spatial constraints. However, this
alternative is only available in structured environments where prior knowledge about the
object’s spatial or temporal properties are given; and even with prior models, the models
themselves may not be precise enough to eliminate the possibility of local distractions. The
second way is to increase the local information retained about the feature’s appearance and
to develop algorithms that use this information in a robust fashion. This section considers
the latter alternative, specifically, as it applies to contour tracking. Similar analysis reveals

identical results for edge tracking, as well.

3.1 What Can’t Be Tracked Locally

Some tracking problems have no solutions at a local, window level. For instance, if we
anticipate partial foreground occlusion of a contour, no algorithm can be expected to know
the location of a hidden edge simply by observing single windows or even rows of adjacent
windows. What is observed as an occludor enters a small window could be mimicked by
different combinations of background motion and object motion, making it impossible for
individual windows to determine even if the edge is visible or occluded.

If we assume that foreground occlusion will not occur, we know that the contour will, at
least, be visible to appropriately placed windows. Some analysis reveals, however, that local
window information will still not suffice in certain situations. For example, if we consider a
soda can viewed from its side and rotating about it’s longitudinal axis, we notice that small
windows observing its contour edge will not be able to distinguish between new patterns

rotating into view and similar background patterns appearing from behind. Thus, a single

window (or even a series of windows) cannot unambiguously determine the location of the
occluding contour without using model information.

More complex issues arise if local windows are not guaranteed to be tracking the same
part of the object contour. If the foreground object appears to change from frame to frame
within a window, it is not clear how such a difference can be understood as a change in the
foreground object rather than additional background motion.

There are quite a few other situations where local information alone is insufficient to track
occluding contours without distraction, leading us to suspect, therefore, that there will never
be distraction-free, context-independent contour tracking. Algorithms which incorporate
global shape models or environments that fit narrower assumptions are necessary to track

occluding contours correctly.

3.2 What Can Be Tracked Locally

There are many generic instances where a little local processing can make contour-tracking
much more robust to background distractions. The principle requirement is that the fore-
ground immediately within the contour must have enough spatial and temporal stability so
that local trackers can recognize it from one frame to the next.

In particular the contours of the following types of objects can be tracked accurately,

using only local knowledge, regardless of background distraction:

e Any kind of connected object with monotone brightness, moving in any way.

o Any connected, rigid, planar object with relatively large patches, where each patch is
of monotone brightness, moving in any way such that the line normal to the plane is

never perpendicular to the optical axis of the camera.

e Any connected, rigid, curved object with relatively large patches of monotone bright-

ness, translating in any direction and/or rotating only about the optical axis of the

camera.

Some additional constraints which must be fulfilled in order for these objects to be tracked
include reasonable sampling assumptions, rarity of the background appearing like the fore-
ground with respect to brightness, and spatial/temporal smoothness in ambient lighting
changes.

In the discussion above, “brightness” can be replaced by other qualities, providing that
there exist reliable algorithms for detecting those qualities and distinguishing them from
things without those qualities. Such qualities might include color, certain textures, etc.
Depending upon the quality or qualities chosen, additional assumptions may be necessary
and others may become disposable. For example, color-based tracking may eliminate the
need for some ambient lighting assumptions, while requiring that any lighting changes vary
smoothly with respect to color.

We now search for an algorithm which can track parts of these objects in spite of back-

ground distraction.

4 Feature Tracking

Our high-level trackers (see Section 5) expect the individual low-level feature trackers to
return a 1-dimensional offset for the new location of a contour edge. Thus, search windows
are a thin line of pixels, where we assume that every tracked edge component has a foreground
on one side and a background on the other, where the foreground falls within the assumptions
given in Section 3.2, and the background is continually, and unpredictably, changing. Locally
tracking an edge under these assumptions requires some mixture of edge detection and
foreground pattern matching.

Several objective functions were considered as candidates for determining the location of

the new contour edge:

SSD:
w—k k-1

j* = arg r;lzigg(pm - i)’ (1)
where p; = pi(t) is the image value of the ith pixel at time ¢, p} = pi(t') is an image value
for the previous foreground (¢’ = ¢ — 1) or the original foreground (¢ = 0), w is the width
of the window, and j* is the location of the new edge (w/2 should be subtracted to find the
offset). The SSD method searches for the best location to match the k values nearest the
edge of the previous foreground with the new image, where “best” is defined as where the

sum of squared differences is least.

Gain-adjusted SSD:

w—k l.“—l L)2
j* = arg l’Il_l(I)l Zz:O (pH'.J pz) , (2)
= Yi

where p;, pi, 7%, and k are as in normal SSD, and #; is a factor that normalizes the intensity
values of a strip of k pixels such that the mean intensities of attempted matches are the
same.

Edge-biased SSD:

o w_.k ot N2 .
j" =argmin} (pir; — pi)* — Bedge(s), (3)
T 4=0
where 3 is a weight that biases the SSD near edges, and edge(j) is a function that returns 1
if an edge exists at location j. This performs an SSD calculation similar to that of Equation
1, but prefers matches that coincide with an observable edge.
Coarse SSD:
A I"}I b N2
j=argmin 3 (mi; —m))’, (4)
T m=1
where m’s are mode values of regions between edges, and 7 is the edge number (not location)

of the best edge. This computes SSD values on modes of gray-scale values between edges.

We use “mode” in the standard statistical sense of “the most frequently occurring event.”

10

(a) (b) (c)

Figure 1. (a) A simple edge, (b) in a shadow, and (c) with background distraction. In (c), the
patch of gray on the far right is the foreground object. The patch in the middle is the distractor

which has crept into the window from behind the foreground object.

Mode values were used in this computation to stabilize otherwise noisy input — outlying
pixel values are ignored, and the rest are tallied such that the dominant intensity value is
returned as the region intensity.

Strongest Edge:

J Jtk(2

- w—k/2 . s
§* = arg max > im Z I, (5)
m=j—k/2 m=3+1

where j* is the location of the strongest edge and w is the width of the image. This convolves
a discrete gradient mask (of size k¥ < w) with the image values and finds the strongest edge
in the new image without considering previous frames.

Our desiderata for a reliable tracker are that it can track in spite of gradual illumination
changes, avoid distraction, deal with translations, and be reasonably fast. Thus, experiments
were run to test the ability to track simple edges and textured edges, each with distraction,
ambient lighting changes, scale changes, and varying speeds. For these experiments tracking
was considered successful if an algorithm continued to track the correct edge as the target
was smoothly displaced. In general, algorithms either succeeded or failed consistently on any
specific target, so algorithms were rated on their ability to track under these conditions with
slightly different targets and distractors, different suddenness or degrees of lighting changes,
and different degrees of scale changes.

Tracking speed is a function of the width of the window, since wider windows require

11

(a) (b) (c)

Figure 2. (a) A periodically textured foreground, (b) slanted for scale change, and (c) an irregularly

textured foreground.

greater processing time. Algorithms were standardized with widths of 40 pixels. The remain-
ing two components that determine speed are the number of arithmetic operations computed
each frame and the width of the foreground that needs to be visible for accurate tracking
to take place. We simply measured the speed at which the target could be moved without
mistracking and without leaving the tracker behind.

Examples of the types of images seen by component windows are shown in Figures 1 and
2. The right half of each image is cast in the experiments as the foreground object.

In Figure 3, we summarize how well each algorithm performed on several different exam-
ples of each kind of task. Fractional numbers indicate the number of successful tracking tests
out of the total number of trials, where each trial is of a different foreground/background
combination.

These results are as expected. Valuing the existence of an edge adds robustness to pure
SSD methods. Thus, coarse SSD and edge-biased SSD both performed excellently overall,
since coarse SSD does not allow a contour to be found except where a detectable edge exists,
and edge-biased SSD prefers detectable edges. Simple edge detection, while robust in simple
cases, fails immediately when any kind of texture or distraction is considered. Pure SSD
fared poorly for constant-intensity foregrounds because matches to previous foregrounds
often floated away from the contour as negligible changes in pixel values made one constant-

valued region preferable to another. On the other hand, including part of the background

12

Method: la | 1b | 2a | 2b | 3a | 3b | 4a | 4b 5

Simple edges 2/5(11/5|0/5|0/5|4/5{4/5|5/5|5/5|4/5
Distraction free 0/5|0/5 | 0/5|0/5|4/5|4/5|5/5|4/5|2/5
Robust to lighting changes || 0/5 | 0/5 | 0/5 | 0/5 | 4/5 | 5/5 | 5/5 | 5/5 | 4/5
Robust to scale changes 0/510/5|0/5|0/5|4/5|4/5|5/5|5/5|4/5

Textured foreground 3/5°3/5|2/512/5|3/5]2/5|2/5]|2/5|2/5
Distraction free 2/5|2/5|1/5|1/5(3/5|3/5{2/5{2/5]1/5
Robust to lighting changes || 2/5 | 2/5 | 1/5 | 1/5 | 2/5 | 1/5 | 1/5 | 2/5 | 2/5
Robust to scale changes | 1/5 | 2/5 | 1/5 | 1/5 | 0/5 | 1/5 | 2/5 | 2/5 | 2/5

Speed (pixels/sec) | 250 | 250 | 220 | 220 | 350 | 350 | 500 | 500 | 500

Figure 3. Method numbers refer to equations given above. Methods suffixed by an “a” match

frames with the original frame, “b” methods match frames with the last frame.

for the SSD match resulted in a tracker that did not avoid distraction reliably.

Texture proved to be difficult to track overall for three reasons. First, small motions in
the direction parallel to the contour often result in great changes in the image. Secondly,
periodic textures create a type of aperture problem for the foreground matcher — it is
difficult to know where the foreground begins, when several matches seem equally likely.
Lastly, because texture often contains pixel-width features, even SSD matches were poor
when such features moved sub-pixel distances.

In the end, we selected Method 4a (Coarse SSD) with k = 1 as our algorithm for finding
the foreground edge because it dpplies best to the assumptions given in Section 3.2. Coarse
SSD corresponds to matching a constant valued region immediately inside of the contour
edge to the new image, and it allows for scaling and shearing effects by performing the SSD
computation not on the image itself, but rather on the mode values of entire regions. This

approach provides a convenient compromise between simple edge tracking and correlation-

13

based tracking, giving the algorithm the robustness of edge tracking with the specificity of
correlation methods. Greater values of k seemed to degrade the value of Method 4 because
the existence of edges was not very reliable from frame to frame. In particular, soft changes
in intensity resulted in occasionally detected edges, ruining potential matches. On the other
hand, raising the threshold for edge detection weakened the algorithm when ambient illumi-
nation was low.

We stress, ultimately, that the type of algorithm used should depend on the environment
and the types of object tracked, and that at a purely local level, it is difficult to arrive at

one, good, general-purpose tracking algorithm.

5 Implementation and Results

We now describe how Coarse SSD is employed in two real tracking applications. These
applications are separated into two levels, where the lower level deals with local tracking and
feature matching, and the uppef level directs window placement and computes the state of

the entire object. See [6] for more information on layered feature tracking.

5.1 Low Level Tracking

The algorithm chosen above is incorporated into a 1-dimensional edge detector. Each window
is simply a single line of pixels which monitors a part of the contour. The position and
orientation of the windows (the w’s) are chosen by the top level (see Section 5.2), and the
width was determined empirically.

Equation 4 is implemented in a straight-forward manner. Edges are found by convolving
a 1-dimensional discrete derivative mask with the line of pixels in a window and looking
for points with gray-scale gradient above a threshold (See [6]). Regions between edges and

window boundaries are identified by computing the mode of gray-scale values for each region

14

to within 2 percent of the range of possible values. Our foreground-finding computation
then finds the minimum SSD between the mode value of the region immediately within the
previous edge and the new image.

During successful contour-tracking, the strip of pixels will be split into two halves, where
one half is the image of the foreground object, the other half is part of the background, and
the boundary between the halves is the edge itself.

In extreme cases, when there seems to be no continuity from frame b;-; to frame b;
(when the minimum correlation is above a certain threshold), the window gives up trying to
interpret the new image and signals that its return value is unreliable. This is an indication
to the top level that the bottom level is unable to offer any advice about the location of
the contour component. Such a situation should not occur if sampling assumptions are not

violated, but it occurs fairly frequently in practice.

5.2 High Level Tracking

We believe that the low-level tracker will provide additional robustness to many existing
constraint- or model-based trackers. In order to show how easily it can be incorporated
into existing trackers, we use it as the basis for distraction-free line trackers and snake-like
contour trackers.

The top level makes two choices. The first choice is to select the parameters for the
window which the bottom level processes. The second is to guess, when the bottom level
provides insufficient knowledge about the location of a tracked component, where the edge
lies. In some applications, other tracked components may give strong hints about the location
of the unknown component. In other instances, global constraints may be sufficient.

In our implementations, we make only minimal global assumptions so that the power and

the limitations of wholly local tracking are evident.

15

5.2.1 Lines

We use many low-level trackers arranged linearly to track a whole line segment. The con-
straint in line or edge tracking is simply that the expected feature is a line segment. Thus
the top level must balance the competing forces of individual low-level trackers with the
straightness of the line.

The tracking scheme is simple: First, windows are placed by the top level; then, the low-
level components search independently for their edges; and finally, line-fitting constraints
are applied, components are adjusted to lie on the fit, and the cycle is repeated.

We use approximately one third as many component trackers as the length in pixels of
the desired line segment. Components are indexed in order from one endpoint to the other.
The center of the line is determined by the geometrical center of mass of all of the component
edges. The orientation of the line is determined by taking the average slope of a set of lines
determined by two valid feature trackers:

E?ﬂ‘i atany(Yiyk/a — Yis Tiyk/a — Ti)valid(z)
53k valid () - valid(z + k/4)

where k is the total number of components, atan,(y, =) returns a signed inverse tangent value

0 =

for y/x, and valid(:) returns 1 if the low-level tracker’s output is reliable and 0 otherwise.
Component window positions are placed on equispaced points along a line with slope equal
to tan(f) and centered on the previously computed center of mass. Orientations of all
components are set at §. These new tracker window parameters are used as the initial
parameters for the next round of tracking.

Figure 4a shows an initialized line. The diskette at the bottom is the foreground object
we are trying to track. In Figure 5a, we see how a simple edge-tracker is easily distracted
by another, stronger edge. Figure 5b shows how our tracker remains unperturbed by the
apparent distraction.

In a different set of examples, we show how an SSD-based edge-tracker fares well for

simple distraction, but not as well when shearing effects are added. Figure 4b shows the

16

(a) (b)

Figure 4. Initialized lines for use with comparison against (a) simple foregrounds and (b) slightly

textured foregrounds.

(a) (b)

Figure 5. (a) A distracted line and (b) an undistracted line.

17

(a) (b)

Figure 6. (a) A mistracked line and (b) a correctly tracked line.

(a) (b)

Figure 7. Partially occluded line (a) mistracked by a simple edge detector and (b) successfully

tracked.

18

initial configuration. Figure 6a shows the SSD algorithm failing for slight shearing and
rotation. In Figure 6b, our algorithm performs well in the same situation. We note also that
SSD-based trackers cannot track roughly constant-valued foregrounds, such as that seen in
Figure 4a, at all.

The method we use to compute the slope of the line actually enables the line to deal well
with partial foreground occlusions as well as distractions. In Figure 7b, we see a part of the
line segment occluded without any adverse effect on line tracking. A simple edge-tracker

becomes confused by such an image, because of it’s rudimentary objective function (Figure

Ta).

5.2.2 Contours

Our contour tracker is slightly more complex, but uses no shape models, either. The only
geometric constraint is that the tracked object is a simple, closed loop. Our snake-like tracker
takes elements of many previous contour trackers [1, 3, 8, 12, 14].

To determine the position of new search windows, we compute a weighted combination
of predicted positions and spatially interpolated positions to calculate the parameters, w,
of the search window for the lowest level. The coordinate and orientation elements of this
vector also serve as the best prediction for the new location of the contour component edge.
The top level chooses between the coordinate and orientation of w and the suggestion made
by the bottom level. If the bottom level is sure of its recommendation, the edge position
is updated to the recommended position. If the bottom level can give no hints for the
component position, then w is used as the location of the edge.

The initial position is computed as follows: Three independent estimates are computed
first. Given the prior history of a tracked component, where a history is an array of two
previous positions and orientations, the new position is then extrapolated for the next time

instant using linear extrapolation (this is an instantiation of a minimal dynamic model

19

that assumes smooth velocity transitions — it is unnecessary for distraction-proof tracking).
Because we make no concrete assumptions about the motion, we do not use a Kalman
filter for position or Velocify. Rather, we discard completely the information previous to
the third frame before the current frame. Next, a spatial interpolation process occurs for
each tracking component. Neighboring components are fit with a least-squares algorithm to
a second-order spline, and a middle position is interpolated. The temporally extrapolated
position (which is independent of spatial neighbors) and the spatially interpolated position
(which is independent of history), are combined as a weighted average, and this final value
is used as the position of the center of the search window for the bottom level.

The final position is either the initial position estimated by this last procedure, or the
best recommendation by the bottom level, given the initial search window.

Lastly, given the final positions of each feature, cubic splines connect the features to give
a final estimate for the entire contour.

Figure 8 displays images immediately after a contour tracker is initialized. Figure 8(a)
shows the cubic spline determined by the knot points shown in Figure 8(b). The silhouette
of the gray ovals are the intended targets for Figures 9 through 12.

We show in Figures 9 and 10 the problem with many edge-based contour trackers. In
each instance, edges more prominent than the original edges enter into one or more search
windows, effectively distracting them from their intended targets. Distraction occurs because
individual components are simply high-gradient edge finders, and depend upon high-level
models to correct them in the case that they stray. While many model- or template-based
contour trackers, such as those described in [2], might not be distracted by the high-contrast
edges in Figures (a) and (b), they would still fail in cases (c) and (d), where the change in
the shape of the contour is small and/or gradual.

Figures 11 and 12 illustrate distraction-free tracking. By simply maintaining some infor-

mation about the kind of edges that are tracked (i.e., what intensities are observed inside

20

,
£

o

Figure 8. Initial tracking showing, (a) a cubic spline contour, and (b) the search windows. The
short line segments represent the search window of each tracking component, with estimated edge

location (and consequently, spline knot points) at their midpoints.

21

the contour), tracking is improved greatly. Without recourse to any global models for shape,
individual search windows can remain on target, even when what might be considered more
“attractive” edges enter the search space.

As expected, our trackers fail when our assumptions are not valid. Sudden illumination
changes cause each local tracker to be in doubt about the new foreground, at which point our
tracker deteriorates to a simple edge-based tracker and becomes prey to future distraction
(performance, however, is no worse than for standard edge-based trackers). General rotations
of objects with non-constant brightness cause local trackers to maintain track of specific
patterns on the surface, but not of the entire occluding contour. And finally, distraction by
objects that have the same intensity as the inside of the contour cause local trackers to lock
onto the distracting edge. These problems cannot be avoided by local tracking schemes, and
in some contrived instances, probably cannot be avoided at all.

Finally, in Figure 13, we show how a book remains accurately tracked even as significant
distraction occurs in the background. We note that no specific dynamic models or shape
models for the book have been used. The images were taken approximately 15-20 frames
apart, at a tracking rate of 20Hz for 35 search windows of 40 pixel widths each. Similar

results can be obtained no matter how quickly distractions in the background occur.

6 Discussion

Our original intent was to create generic contour trackers, which could track occluding con-
tours without predefined models and without being prone to background distraction. Fo-
cusing on what individual feature trackers could do to avoid distraction, we arrived at the
conclusion that although local information is surprisingly limited and that some sort of global
perspective greatly enhances tracking, there is also much that can be done at the local level
to improve reliability.

There seem to be several different avenues for subsequent research. One is to explore the

22

.31;; 3

Figure 9. Instances of distraction and consequent mistracking.

23

e

g %
%

R
‘:;;-:.}:‘f 5

(c) (d)

Figure 10. What’s really happening during distraction: some windows discover more “attractive”

edges.

24

o,

(¢) (d)

Figure 11. The fix.

25

)

d

(

Figure 12. Some search windows include potential distractors, but they are ignored.

26

k 2
o

.
-zgﬁ::,\b::
R 3 5

B

N
.
e o &

o

Figure 13. A contour of a book undistracted by movement of strong edges in background.

27

possibilities of distraction-free tracking using more information from a broader perspective:
Can generic contour trackers be improved with additional high-level knowledge, yet without
models? Another avenue is to combine model-based tracking with the work presented in
this paper. We anticipate that local methods incorporated into model-based trackers will
result in very robust trackers. Yet another consists of doing more careful work on how
best to match foregrounds with new images; our treatment of this problem barely scratches
the surface, because it ignores the possibility of tracking small 2-dimensional patches of
foreground. Finally, we are interested in the theoretical limitations of local feature tracking
— can we prove that isolated window information alone is insufficient to solve various tracking
problems?

Visual distraction, though difficult to define objectively, is a common problem for most
motion trackers. In some sense, tracking accurately in the face of distraction is really only
better tracking with a keener objective function. Yet, specifying the target of a feature tracker
too narrowly results in a significant decrease in robustness, and overly generic descriptions
of the target result in a tendency to be distracted by similar features. We have presented
a method that combines the specificity of correlation methods with the robustness of edge-
based trackers. Our method, without the use of global shape models or dynamic models,
performs well in all cases where local, window tracking alone can be expected to track without
distractions. Integration of our algorithm with model-based tracking should result in highly

robust, distraction-free tracking of occluding contours.

Acknowledgements: This research was supported by DARPA grants N00014-91-J-1577
and N00014-93-1-1235, and by National Science Foundation grants IRI-9109116 and DDM-
9112458.

References

[1] A. A. Amini, S. Tehrani, T. E. Weymouth. Using dynamic programming for minimizing

28

[4]

[5]

[6]

[7]

[10]

[11]

the energy of active contours in the presence of hard constraints. In Proceedings, 2nd

Int’l Conf. on Comp. Vision, pages 95-99, 1988.

A. Blake, R. Curwen, and A. Zisserman. Affine-invariant contour tracking with auto-
matic control of spatiotemporal scale. In Proceedings, Int’l Conf. on Comp. Vision,

Berlin, Germany, May 11-14, 1993, pp. 421-430.

L. D. Cohen. On active contour models and balloons. In CVGIP: Image Understanding,
53(2):211-218, March 1991.

E. D. Dickmanns, and V. Graefe. Dynamic monocular machine vision. In Machine

Vision and Applications, 1:223-240, 1988.

O. D. Faugeras. Three-Dimensional Computer Vision. Cambridge, MA: MIT Press,
1993.

G. Hager, S. Puri, and K. Toyama. A framework for real-time window-based tracking

using off-the-shelf hardware. Yale Tech Report: Yale-TR-988, 1993.

J. Huang and G. Hager. Tracking tools for vision-based navigation. Submitted to Int’l
Conf. on Intel. Robot and Sys., 1995.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active contour models. In Intl J. of
Comp. Vision, 1:321-331, 1987.

D. G. Lowe. Robust model-based motion tracking through the integration of search and

estimation. In Int’l J. of Comp. Vision, 8(2):113-122, 1992.

N. P. Papanikolopoulos, P. K. Khosla, T. Kanade. Visual tracking of a moving target
by a camera mounted on a robot: a combination of control and vision. In IEEE Trans.

on Robotics and Automaton, 9(1):14-35, February, 1993.

A. A. Rizzi and D. E. Koditschek. An active visual estimator for dexterous manipula-

tion. In IEEFE Int’l Conf. on Robotics and Automaton, 1994.

29

[12] D. Terzopoulos and Szeliski. Tracking with Kalman snakes In Active Vision, ed.
A. Blake and A. Yuille. Cambridge, MA: MIT Press, 1992.

[13] C. Tomasi and T. Kanade. Detection and tracking of point features. Carnegie-Mellon
Tech Report, CMU-CS-91-132, April, 1991.

[14] D. J. Williams and M. Shah. A fast algorithm for active contours and curvature esti-
mation. In CVGIP: Image Understanding, 55(1):14-26, January 1992.

30

