Abstract

This paper presents some practical ways of using polynomial preconditionings for solving large
sparse linear systems of equations issued from discretizations of Partial Differential Equations.
For a symmetric positive definite matrix A these techniques are based on least squares
polynomials on the interval [0,b] where b is the Gershgorin estimate of the largest eigenvalue.
Therefore, as opposed to previous work in the field, there is no need for computing eigenvalues of
A. We formulate a version of the conjugate gradient algorithm that is more suitable for parallel
architectures and discuss the advantages of polynomial preconditioning in the context of these
architectures.

Practical use of polynomial preconditionings
for the conjugate gradient method

Youcef Saad
Research Report YALEU/DCS/RR-282
July 24, 1984

This work was supported by the ONR grant number N000014-82-K-0184 and by NSF Grant
number MCS-8106181.

1. Introduction

When combined with a suitable preconditioning, the conjugate gradient method constitutes one
of the most powerful techniques for solving large sparse symmetric positive definite linear systems
of equations. However, most of the preconditionings have originally been designed for scalar
computers and much work must be done to reformulate them or develop new ones that are more
suitable for the new generation of computers. One attractive possibility considered by several
authors 1, 3, 5, 8, 10, 19] is the use of polynomial preconditionings. Given a symmetric system
Ax=f, the principle of polynomial preconditioning, which goes back to Rutishauser [16], consists
in solving the (preconditioned) linear system s(A)Ax=s(A)f, where s is some polynomial, usually
of low degree. The polynomial s is chosen so that the matrix s(A)A has an eigenvalue
distribution that is favorable to the conjugate gradient method, i.e. so that the conjugate
gradient method applied to the preconditioned system converges rapidly. In the classical context
of scalar computers, there is little reason for using polynomial preconditionings because the
conjugate gradient method is an optimal process and the total number of matrix by vector
multiplications required by the conjugate gradient method applied to the preconditioned system
s(A)Ax==s(A)f will be higher than that the nonpreconditioned system Ax=f. The loss incured by
a larger number of matrix-vector multiplications may in some cases be offset by the smaller
number of inner products required when polynomial preconditioning is used but the overall
performance is not likely to be much different in those cases. Moreover, incomplete factorization
based preconditionings are then quite effective, and are usually prefered to polynomial

preconditionings.

Jordan [10], reports some experiments on the CRAY-1 showing that polynomial
preconditionings are competitive on vector computers. He concludes that more work is needed to
simplify the derivation of ‘good’ polynomials. One of our main goals is to propose a class of

effective polynomials that are easy to derive and that do not require eigenvalue estimates.

In addition to their importance for vector computers polynomial preconditionings are attractive
for parallel architectures. As will be seen, when A is block tridiagonal, a great deal of parallelism
can be achieved when computing s(A)Av. A few ideas describing how to take advantage of

polynomial preconditionings in this particular context will be seen in Section 3.

In the first part of this paper we focus on the problem of choosing a good polynomial s. The
classical choice is to take s(A) so that the residual polynomial R(\) = 1-As(\) minimizes

IIR(M)|l, over all polynomials R of degree not exceeding k and so that R(0)=1, where [l is
the infinity norm on some interval [a,b] containing the spectrum of A, with 0<a<b [16). This
leads to the well known Chebyshev iteration. In this paper we suggest using a polynomial s that
minimizes the L,-norm |[R(M)||,, with respect to some weight function w defined on an interval
[a,b] that contains the spectrum of A. The idea of using the Ly-norm instead of the infinity norm
goes back to Stiefel [20] and was recently suggested for polynomial preconditioning by Johnson,
Micchelli and Paul [8]. An important observation made by Stiefel is that a and b need not be
accurate estimates of the smallest and the largest eigenvalues of A as long as [a,b] contains the
spectrum of A.Indeed, while it is necessary for Chebyshev iteration that 0<a<b, for the
Ly-norm there is no such restriction and one can simply use the interval which is provided by
Gershgorin’s theorem. For example, we may use an interval of the form [0,b] when it is known
that A is positive definite and that b is an upper bound for the largest eigenvalue provided e.g.
by Gershgorin’s theorem. The Gershgorin bounds can be obtained as the matrix A is built and
therefore there is no need for an adaptive scheme which may considerably slow down the flow of

computations in vector or parallel machines.

One might ask whether we loose efficiency when using least squares polynomials instead of
Chebyshev polynomials since we require less information, i.e. since we require Gershgorin values
instead of eigenvalues. In fact, an interesting revelation from the numerical experiments is that
the usual optimal parameters a=\,=the smallest eigenvalue of A and b=Ay=the largest
eigenvalue of A, used in the Chebyshev iteration, do not in general minimize the total number
of conjugate gradient iterations required for convergence. If these values were used, then our
experiments show that the least squares polynomial approach performs better, not worse as might
have been expected, than the more complicated Chebyshev polynomial approach. The above
optimal parameters are known to minimize the condition number of the iteration matrix As(A),
as was proven by Johnson, Micchelli and Paul [8]. However, the condition number does not
matter as much as the overall distribution of eigenvalues. For this reason it is clear that it will be
difficult to compute the best parameters, i.e. the parameters a and b that maximize the rate of
convergence. This constitutes the main drawback of Chebyshev polynomial preconditioning.
The numerical experiments indicate that the least squares polynomials perform quite well in spite

of the fact that they do not require eigenvalue estimates.

The second part of this paper will discuss the practical implementation of polynomial

preconditionings in parallel computation. Although there are many possible implementations, our

idea rests on the simple principle, which is not completely rew, that when A is block tridiagonal

then one can perform the products Av, A%v,..AXy concurrently.
2. Polynomial Iteration and Polynomial Preconditicning

2.1. Basic theory

Consider the linear system

Ax=f, (1)
where A is symmetric positive definite. An efficient technique for solving (1) is the conjugate

gradient method applied to the preconditioned system:

QlAx=Q'f (2)
where Q! is some approximate inverse of A, for which systems of the form Qy==1: are easy to

solve.

The matrix Q is refered to as the preconditioning matrix and a classical example is the
incomplete Choleski factorization of A [12]. Although the preconditioned system (2) is no longer
symmetric, symmetry can be recovered by using the inner product (x,y)Q = (Qx,y) instead of the
Euclidean inner product in the conjugate gradient method [12]. It is assumed that Q7 !A is self-

adjoint and positive definite for this inner product.

Incomplete factorization preconditionings are very powerful techniques in scalar machimes but
do not vectorize well and may not be the best choice for super computers. Some newly developed
preconditionings do, however, vectorize fairly well. Among them let us mention the vectorizable
version of the incomplete Choleski factorization proposed by Van der Vorst [21]. In [10] a few

ways of adapting classical preconditioners to vector and parallel computers are compared.

Several authors have suggested using polynomial preconditionings, that is taking Q—IES(A),
where s is some polynomial see [5, 8, 10]. The simplest such polynomial suggested by Dubois et

al. [5], is given by the Neuman series

s(A) =1+ N+ N2 4 .+ Nk
where N = I - A is assumed to be such that ||N||<1, which is often verified.

More efficient polynomials can be obtained if one knows good estimates a and b of the smallest

and the largest eigenvalues of A.Indeed, let O(A)={)‘i}i-l,..N be the spectrum of A with
2 <X, SAy- Let s(A) be any polynomial of degree not exceeding k-1 and consider the matrix
Q'A=s(A)A of the preconditioned system (2). The purpose of the preconditioning is to
transform the eigenvalue distribution into one that is more favorable to the conjugate gradient
method. For example, we could choose the polynomial s so that |[I-s(A)A|| is minimum, where

||-|| represents the the 2-norm. Noticing that

[-s(A)A|| = , max | 1= Xs(N) |, (3)
it is clear that a go<;d polynomial s(\) would be one for which
max 1=V], (4)
A€ [ab]

is minimum over all polynomials of degree <k-1, where [a,b] is an interval that contains o{A)
with 0<a<b. It is then well known that the best such polynomial is such that 1-As(\) is an
appropriately scaled and shifted Chebyshev polynomial of degree k of the first kind, see [2]. This
constitutes the foundation of Chebyshev iteration [6] and was also considered for polynomial
preconditioning [8, 10]. In fact it can be shown [8] that when a=\, and b=y, the resulting
preconditioned matrix minimizes the condition number of the preconditioned matrices of the
form As(A) over all polynomials s of degree <k-1. However, an interesting numerical observation
is that when used in conjunction with the conjugate gradient method the best polynomial, i.e. the
one which minimizes the total number of conjugate gradient iterations s far from being the one
that minimizes the condition number. The behavior of the polynomial preconditioned conjugate
gradient is not simple to analyse. Thus, if instead of taking a=X\, and b=My we took [a,b] to be
slightly inside the interval [\ l’)‘N]’ we would achieve faster convergence in general.
Unfortunately, the true optimal parameters, i.e. those that minimize the number of iterations of
the polynomial preconditioned conjugate gradient method are not known and we do not know of

any way of obtaining them.

Several authors have also considered instead of (4) an Ly-norm over the interval [a,b] with
a=>\l, b=XAy with respect to some weight function w [8, 17,18, 20]. Johnson, Micchelli and
Paul have experimentally shown that the resulting preconditionings may lead to faster

convergence than the Chebyshev based ones [8].

A further disadvantage of the approaches described above is that the parameters a and b which
approximate the smallest and largest eigenvalues of A, are usually not available beforehand and

must be obtained in some dynamic way. This slows down the process and makes it unattractive

for supercomputers where one should avoid to halt the flow of computation.

In order to overcome the difficulty of computing the parameters a and b, Stiefel suggested to
use for a and b the values provided by an application of Gershgorin's theorem. Thus, the
parameter a which estimates the smallest eigenvalue of A, may be nonpositive even when A is a
positive definite matrix. However, when a<0 the problem of minimizing (4) is not well defined,
i.e. it does not have a unique solution. This is due to the non strict-convexity of the uniform

norm. Stiefel then suggests to use the L,-norm on [a,b] with respect to some weight function

w(\).
Consider the inner product on the space P, of polynomials of degree not exceeding k:

b
<pa> =1 pAay) W))
where w()\) is some non negative weight function on (a,b). We will denote by ||p||,, and call w-

norm the 2-norm induced by this inner product.

From the above discussion, we seek the polynomial s ,(\) which minimizes

[[-Xs(MIl,, “ (6)
over all polynomials s of degree <k-1. We will call s, ; the least squares iteration polynomial, or
simply the least squares polynomial and will refer to R (A\)=1-)s_,(\) as the least squares
residual polynomial. A crucial observation made by Stiefel is that, as opposed to the classical
approach using the infinity norm, the least squares polynomial is now well defined for arbitrary
values of a and b. As will be shown, s,_,(A) will constitute a good approximation to A7l as the
degree k-1 increases. Computing the polynomial sk_l()‘) is not a difficult task when the weight

function w is suitably chosen. This will constitute the object of the next section.

2.2. Computation of the least squares polynomials
There are at least three ways of computing the least squares polynomial defined in the previous
section:
1. By using the kernel polynomials formula [20]:
RN = £ a0]/ [Ea(] 7)
in which the q,'s represent a sequence of polynomials orthogonal with respect to the

weight function w(X).

2. By generating a three term recurrence satisfied by the residual polynomials

R,(}) [20]. Indeed, it is known that the residual polynomials are orthogonal with
respect to the new weight function Aw()). For more details see Stiefel [20].

3. By solving the corresponding normal equations [17]:

<l—xsk_l(k), XQJ-(X) >=0, j=0,1’2’nk"1 (8)
where Qj, j=1,.k-1 is any basis of the space P, , of polynomials of degree <k-1.

See [17] for the treatment of a similar problem in a slightly more general context.

Each of these three approaches is useful in a different context. Approach 1 is general and is
useful for computing explicitly least squares polynomials of low degree. For high degree
polynomials the last two approaches are to be prefered for numerical stability. Approach number
2 is restricted to the case where a>0, while approach number 3 is more general. We should
point out that the degrees of polynomial preconditioners are often low, e.g. not exceeding 5 or 10

so we will describe the first formulation in more detail.

Let q(X), i=0,1,..n,.. be the orthonormal polynomials with respect to w()\). It is known that
the least squares residual polynomial R, () of degree k is determined by the kernel polynomials
formula (7). To get s, ,()\) simply notice that

5a® = (1=RO) /A =[ZqOM]/] Eafof]

with () = (g (0}-g;(\)/A
which allows to compute s, ; as a linear combination of the polynomials t()\). Thus from the
orthogonal polynomials q, one can compute the desired least squares polynomials. The

polynomials q; satisfy a three term recurrence of the form :

Bir1%41(N) = O—e)g(N) - Big; ,(A) , i=1.2...

from which we derive the following recurrence for the t's:
Bipitiv1i(A) = (=a (M) - B¢, (M) + q(0), i=12..

The weight function w will be chosen so that the three term recurrence of the orthogonal
polynomials q, is explicitely known and/or is easy to generate. One interesting class of weight

functions that satisfy this requirement is considered next.

2.3. Choice of the weight functions

In this section we assume that a=0 and b=1. Consider the Jacobi weights :

w(\)=A>"1(1-)\)?, where >0 and § 2—%—. 9)
For these weight functions, the recurrence relations are explicitly known for the polynomials that
are orthogonal with respect to w()\), Aw()\) or A®w()\), thus allowing the use of any of the three
methods described in the previous section for computing 8,.1(A). Moreover, from a result of (8],
the matrix As (A) is known to be positive definite when A is positive definite and
a-12 8 2-4

The following explicit formula for R, ()\) can easily be derived from the explicit expression of
the Jacobi polynomials [4] and the fact that {R, } is orthogonal with respect to the weight Aw(\):

k . .
Ry = & sl (10 (-0 (10)
where
koK) = (5 ’ﬁ “‘_‘+_”
) 17 0 j414a

From (10) it is easy to derive the polynomial 8 1(M)=(1-R,(N\))/X ‘by hand’ for small degrees.

As an example, when a=1/2 and f=-1/2 we get the following first four polynomials :

so(A) = 4/3

8,(A) = 4 - (16/5)A

sy(\) = 228 - 56 X + 32 \?]

ss(\) = 2 [80 - 216 X + 288 A2 - 128 A3]

Recall that the above polynomials correspond to the interval [0,1]. For a more general interval
of the form [0,b], a change of variable must be applied to map the variable in [0,b] into [0,1], i.e.
the k'! best polynomial for the interval [0,b] is l%'sk-l()‘ /b). The plots of the residual polynomials
R (), k=2, 3,.. 10, for the above weight functions are presented in the next three figures. The

interval considered is [a,b]=[0,10]. The polynomials 8, (A) k=1,2..,10 have been computed by the

method of the previous section and are listed in the appendix.

Note that we have taken a=1/2 and f=-1/2 as an example only because this choice leads to
a very simple recurrence for the polynomials q;, which are the Chebyshev polynomials of the first

kind. We will also use this selection for the numerical experiments in Section 4. Jonhson,

Micchelli and Paul [8] have taken as an example a=1, and #=0 which corresponds to the
Legendre weight. An interesting problem from the practical viewpoint is to determine what is a

'good’ choice for a and S.

2.4. Theoretical considerations

An interesting theoretical question is whether the least squares residual polynomial will become
small in some sense as its degree increases. Consider first the case 0<a<b. Since the residual
polynomial R, minimizes the norm [|R|| associated with the weight w, over all polynomials R of

degree <k such that R(0)=1, the polynomial (1-)\/c) where c=(a+b)/2, satisfies:

IR, < I a=Ne)< I,
< |l [(b-a)/(b+a) ¥ || =x [(b-a)/(b+a) ¥

where & is the w-norm of the function unity on the interval [a,b]. Hence, the (known) result that

the norm of R, will tend to zero geometrically as k tends to infinity.

Consider now the case a=0, b=1 and the Jacobi weight (9). Then for this choice of the
weight function, the least squares residual polynomial is known to be p,()\)/p,(0) where P is the
k' degree Jacobi polynomial associated with the weight function w(\)=\1-\)?, [20].
Consider the 2-norm of such a residual polynomial with respect to this weight. From [4] and

after a change of variable that maps the interval [-1,1] into [0,1] we obtain:

P = i)

where I' represents the I" function, and

Il p ” k+a+1 k+4+1
k E+a+3+l +4+a+1

Hence:
a+1) 1k+8+1 k+1
I p/ml0) I = +a+B+1HfE+a+%+li Ik+a+1)

For the case a=1/2 and #=-1/2 this becomes

[%312?! i

Therefore, the w'-norm of the least squares residual polynomial will converge to zero like 1/k
as the degree k increases. This is not as fast as when a>0 but we must remember that the

condition p(0)=1, implies that the polynomial is large in some interval around the origin.

(HA8WET} ¥

LAMBDA

C = DEGREE 4

B = DEGREE 3,

DEGREE 2,

A=

Figure 2-1: Residual polynomials Ry, for k=2, 3 and 4.

R" (LAMBDA)

10

L !
I‘ / \\ ’ X
AN . i S <9 /%0 11
“t _,\E"\ 7 Teeeaet N \
LAMBDA

D = DEGREE 5, E = DEGREE 6, F = DEGREE 7

Figure 2-2: Residual polynomials R,, for k=5, 6 and 7.

R (LAMBDR)

1.0

P I o e o v e

11

G = DEGREE 8,

H = DEGREE 9.

I = DEGREE 10

Figure 2-3: Residual polynomials Ry, for k=38, 9 and 10.

1

s
/ ‘« N N T yr“‘\ -
AN I N, NN LT ¢ /\\\) \/
I BN LS 2 LNy L L/u \1'1‘4 |]
. ’ S . /
2\ 3 t/ e :xs» DN
NN -~ —~—
Seer™NNea
LAMBDA

12

The case a<0<b is more difficult to study. Clearly, the problem is to analyse the numbers

b

min [(M) wo(X) dX
PEP,, p(0)=1 a

as k increases to infinity, where w, is some weight function. By the change of variable

p=(\-a)(b—a), these numbers are transformed into:

1

k()= min [|p(p)]® w(u)dp
PEPy, p(7)-1 0

where w(p)=w()\) and y=-a/(b-a) is inside [0,1]. A detailed analysis by Nevai [14] has shown

that this function of 4, called the Christoffel function, decreases to zero like 1/k, when w is a

Jacobi weight.
3. Polynomial preconditionings and parallel processing

3.1. Parallel computation of p(A)v

Consider a linear system Ax=f issued from the discretization of a partial differential equation
in two or three dimensions. With a suitable ordering of the nodes, the matrix A is block-
tridiagonal and often of very large size. We would like to show how to exploit the polynomial
preconditioning discussed in the preceding sections to solve these linear systems. A critical part
in the realization of the conjugate gradient method lies in the computation of s(A)Av for any
given vector v, where p(A)=As(A)=s(A)A is the polynomial preconditioned matrix. Because of
the particular structure of A, a great deal of parallelism can be achieved in the computation of
p(A)v. In the following description we will assume that the degree of p is 3. We will call v the

block dimension of A and m the dimension of each block, i.e. we have N=uym.

Let v be any vector and let w=Av, z=A%v=Aw, t=A%v=Az. We partition all the vectors
according to the block-structure of A and denote by v, W, Z, t., i=1,...v, the block entries of v,
w, 1, and t respectively. Notice that the computation of any block-entry w; of w=Av, requires
only the knowledge of the block-entries vip V;and v, +1- Then a key observation is the following:
while we compute w, from Vop V;and v, +1 Ve can at the same time compute z, o from w,,, W, o
w;,,and t, , from z, ., 2. ,, 2, ,. This is illustrated in Figure 3-1 where we assume that we perform
the computations from top to bottom. These three computations can obviously be performed
independently from each other by three different processors. This simple idea is not completely
new as a similar principle was already used in a different context in 1963 by Pfeifer [15] who

suggested performing simultaneously several steps of the three line cyclically reduced SOR

13

v w=Av z=A%y t=Ady
Y1 vi 4 21

vy ¥, Iy | =7,

Vg vy z, t‘a

V4 ¥y | 7722 ty
Vg we Zg t5

Vg | ==> v zg .

vy vy .

v .

A1 82
B; A2 83
B; A3 B4
BI A4 B5
B; A5 B6
IS
B Ay B
Figure 3-1: Simultaneous computation of Av, A%v and A3y
method.

Concerning the entries of the matrix A, note that in order to compute w, we only need the
blocks A;, B, and B; +1- Likewise, we need B, 5 A, and B, | to compute %, , and we need B, ,
A, and B, 4, to compute t, Hence, the computation can be pipelined by holding 4 blocks in
each processors and moving everything to the left by two blocks (A; and B;,) at each time step
as is shown in Figure 3-2. Although only three of the four blocks in each processor are used, this
organization simplifies the data flow of the matrix entries. Meanwhile, the vectors move only by
one block at a time. Figure 3-2 illustrates two successive steps of the process. Note that the
computations in each processor are identical but use three different sets of data. Processor P, has

the task of computing w=Av, processor P, computes z=Aw, and processor P4 computes t=Az.

As soon as a component is computed, it is sent to the processor on its left. For example, as the

14

step 6
M1 M2 M3
<---- Al, B2, A2, B3 A3, B4, A4, BS A5, B6, A6, B7, . . <== A7, B8
<-=-- 21, 22, 23, w3, w4, ub vb, v6, v7 .. <= 8
<-t2
P3 24— P2 w6 Pl
step 7
M1 M2 M3
<---- A2, B3, A3, B4 A4, BS5, A6, B A6, B7, A7, BS, . . <-- A8, B9
<---- 22, 23, z4, w4, wb, wb v6, v7, v8 .. €== vo
<-t3
P3 25+ P2 ———uw74 P1

Figure 3-2: Parallel processing for computing p(A)v

figure shows, when the computation of wg is completed, Wg is moved to processor P,, where it
will be used in the next step together with w 4 and Wy to produce z5. Simultaneously, z, is moved
to P, and t,, the final result, is moved to some host processor that will complete the conjugate

gradient step as will be discussed shortly.

In the network described by the figure, the processors P, P,, P, may represent vector or array
processors with their own memories M;, M,, M, sufficiently large to hold four blocks of A. In [11]
Jordan describes a technique for computing w=Av that only requires two blocks of A at a time,
namely A, and B,,, to get ome corresponding bloc of w.This amounts to separating the

computation of wizB’EVi-l+Aivi+Bi+lvi+l i=1,2,..v into
i =Wt AY + B vin (11)

~ T
i1 =By (12)
with %, =0. With such a technique we would only need two blocks of A in each processor. The

vector W, +1 is not moved to the left but will remain in the same processor to compute w, +1 by

15

(11) in the next time step.

The advantages of the approach outlined in this section are the following:
1. A high degree of parallelism is reached. The processors are idle only during a very
small portion of the total time spent to compute p(A)v, namely at the beginning and

at the end of the computation.

2. The computation involved in each of the processors is a highly vectorizable process.
Thus, each processor can represent a vector or array processor and this can be quite
important for very large problems, e.g. those issued from finite difference

discretizations of three dimensional PDE'’s.

3. The data communication required is regular. Moreover, a large part of the data

transfer can easily be overlapped with computation.

We have just described how to compute the vectors Av, A%v, A%v but in reality we need to
compute the vector t=p(A)v where p is some polynomial of the form p(A) = o, A+ azkz +

o + o] . Therefore, we will not compute the vectors w=Av, z=Aw, t=Az, but rather the

vectors:
wi=a,v+Av (13)
ti=a, V+AWw (14)
ti=a,v+Az (15)
t = ayt, (16)

which result from the application of Horner's scheme for evaluating a polynomial. The resulting
modification to the above scheme requires the transfer of the additional vector v through the

three processors, and is straight-forward.

3.2. Application to the conjugate gradient method
We now turn to the implementation of the polynomial preconditioned conjugate gradient

method a classical version of which can be described as follows:

16

Algorithm 1

1. Start: Choose x(9) and compute r(o):=s(A)(f—Ax(°)). Set v(o):=r(°),p(°):=(r(°),r(°)).

2. Iterate: For j=1,2.. until convergence do

tl) .= s(A)A vU) (17)
al):=p0) (£ 0) vli)y (18)
xU+D) .= () 4 o) y0) (19)
i+ .— H)_g0) ¢0) (20)
pUtD) = (+D) 41y, 40) .— pUt 1,00 (22)
vitD) = fli+1) 4 g0) y0) (23)

The inner products in (18) and (22) constitute two bottlenecks in the above algorithm. Indeed,
as the algorithm is presented, we must proceed as follows. As the blocks of the vectors v and t
emerge from the pipeline of Figure 3-2 we must compute the partial inner product in (18)
corresponding the these blocks. The blocks are then stored back, into memory awaiting for the
completion of the partial inner products. After the » partial inner products have been computed
and added up, the vectors t and v are then recalled one block at a time and the scalar by vector
products (19), (20) will be performed.

A similar remark holds for the computation of the inner product (22). However, an interesting
observation is that there is an alternative way of computing ﬁ(j) which avoids this second
bottleneck. Indeed, let ri*!) and rl) be two successive residual vectors, and t(j)=p(A)v(j),
a(j)=(r(j),r(j))/(t(j),v(j)), where v0) is the conjugate direction at step j. Since the two vectors rl)
and r0+Y) are known to be orthogonal, we have from (20)

(r(i+l)’,.(.i+l)).,.(,.(i),r(i)) = [aW]? (£0) ¢),
Hence, another way of obtaining the inner product (r(j“),r(j“)) is through the formula:
(rU+D) (i+1)) — [(00 ¢@)) — () £0)y . (24)

As a consequence (r(j“),r(j“)) is available from (r(j),r(j)) and (t(j),tm). The fundamental

difference with the usual way of computing (r(j“),r(j"'l)) is that (t(j),t(j)) can be computed

17

simultaneously with (t(j),v(j)), i.e. it can be accumulated as the blocks of the vectors tU) come out
of the network of Figure 3-1 one by one. A similar observation was made by Johnsson [9] while
Van Rosendale [22] studied the inner product data dependencies in the conjugate gradient

method in a more general and theoretical way.

The following algorithm implements the above approach:
Algorithm 2

1. Start: Choose x(9) and compute r(o):=s(A)(f—Ax(°)). Set, v{0):=(0), p(o):=(r(°),r(°)).
2. Iterate: For j=1,2.. until convergence do
a) Compute in parallel
tl) .= s(A)A v0) (25)
b) Compute in parallel:
(¢ vy | (26)
(tW 0y | (27)
then compute

ali) .= p0) (¢l yli)y,
0 (¢ £0))

AU .= i 0y -1 (28)
pU+D) .= ,00) 40)

¢) Compute in parallel:
xUHD .= x()4ql)y0) : (29)
ri+D) .= p)_q (D)) (30)
v+ D) . pli+1)4 g()y6) (31)

Note that because of roundoff, the equation (28) could lead to a negative value for ﬂ(j). The
effect of round-off can be reduced by a periodic application of the less effective formulas of
Algorithm 1. In any case the sign of ﬂ(j) should be checked before applying the result to the next

equations and if this sign is negative then ﬂ(j) should be recomputed by the classical formulas of

18

Algorithm 1.

This second form of the conjugate gradient algorithm is also to be prefered on vector
computers such as the CRAY-1. Indeed, in that situation the expressions ‘in parallel’ in the
above algorithm should be interpreted in the sense that the presence of the operands in the vector
registers must be exploited to perform the desired computations at once thus economizing vector
'load’ and ’store’ operations. Practically, this can be achieved in FORTRAN by baving a single
DO loop for (26) and (27) and another single DO loop for (29), (30) and (31).

Pk | == --{P2|--|P1 Cluster of array processors
Compute t=p(A)v=As(A)v.

Host processor
H Computes a, B, x:=x-av,
r:=r—at, v:=r-fv.

Figure 3-3: A parallel architecture for the polynonial
preconditioned conjugate gradient method
Figure 3-3 shows a network of processors for realizing the above conjugate gradient algorithm.
The first part represents the pipelined module described in Figure 3-2 consisting of k linearly
connected processors P,.. P.. The second part is a host processor, denoted by H in the figure,
which realizes steps 2-b and 2-c of Algorithm 2. Processor H need not hold the matrix A but

only the vectors x, r, v and t. It may itself consist of one or more aITay processors.

An interesting question is how does this compare with the conjugate gradient algorithm
without preconditioning. The following is a rough estimate of the time spent to execute one step
of the polynomial preconditioned conjugate gradient method. Assume, that H and each of the
P;’s are similar and that all can perform the product of two vectors of length m, or the product
of a vector by a scalar, in an average time of r;m, and an inner product in an average time of

T,m. These times are assumed to include data transfers. Furthermore, assume that A is a five

19

point discretization matrix. Taking into account the combinations (13)-(15), the computation of
of each block of p(A)v, can be achieved in time 6m7, in each processor. Since the time to make
the first block available, i.e. the start up time, is k(6mr,) and since we have v blocks to treat,
P(A)v can be computed in time 67, mk+6r, my=[67,+k/v|N.

After the computation of each block of the vector t=p(A)v is completed, this block is sent to
H to begin computing the inner products (t,v) and (t,t) of (26) and (27). Each partial inner
product costs mr,. However, assuming that this time is not larger than 6mr,, we see that the
computation of the inner products can be overlapped with the computation of t. The only time
that is really spent is the start up time in H, which is mr, for each of the inner products (26) and
(27), i.e. 2mr, altogether. The rest of the conjugate gradient calculations (29), (30), (31)
consumes a time of 3r,N. Therefore, an estimate of the time spent to perform one iteration of

the polynomial preconditioned conjugate gradient algorithm is :
r=N[(9+k/v)r, + (2/v)r,]

With a single processor, a conjugate gradient step would require 57N (for the matrix by vector
product) + 27,N (for the inner products (18), (22)) + 37N (for (19), (20), (23)) which sums up to
87;N+27,N. This is slightly larger than the previous case when k << v and 7, and 7, are of the
same order. Hence the speed up is of the same order as the ratio of the total number of
preconditioned conjugate gradient steps over that of the non-preconditioned conjugate gradient
steps. Although it is difficult to a priori estimate this ratic, we can say that it is of the form
74/(k+1) where 7 is a scalar larger than one. Often 4 will be between 1 and 2, sometimes close to

one. In an example shown in Section 4, v is around 1.2.

The above comparison uses a very simple model. An advantage of the multiprocessor described
above and not stressed in the comparison is that the matrix is accessed only once to perform k
matrix by vector products, and then moved in a uniform way. With a single processor we would
have to access the matrix k times to perform k similar matrix by vector products. This will be
reflected by smaller times r, and 7, in a multi-processor environment than in a single processor

environment, and this was not taken into account in the above simplistic comparison.

20

4. Numerical experiments

In this section we describe a few numerical experiments in order to point out some additional
facts about polynomial preconditionings. All tests have been performed in double precision on a
VAX-11-780 computer for which the double precision mantissa is 56. The least squares
polynomials refered to in this section are those associated with the Jacobi weight with a=1/2

and #=-1/2 given as an example in Section 2.

4.1. Varying the degree k
The purpose of the first experiment is to illustrate the behaviour of the polynomial
preconditioned conjugate gradient method as the degree of s, , varies. Consider the 1200x1200

block tridiagonal matrix:
A = Block-Tridiag [B,, A, B, || , i=1,.»
with A, = Tridiag [-1,4,-1],

and B;=Diag(-1).
resulting from the 5-point discretization of the Laplacian operator on a rectangle. The dimension
of each of the blocks is m=40, i.e. the block-dimension of A is ¥=30. We tested the polynomial
preconditioned conjugate gradient method on the system Ax=f and have used for a and b the
Gershgorin values a=0, b=8. The right hand side is chosen to be f=A e, where e=(1,1,l..1)T.
The initial vector is a random vector. The algorithm is stopped as soon as the approximate
solution xU) satisfies ||f~Ax{) ||/[|f~Ax(®)||<e, where e=10"%. These residual norms are actually
computed at each (preconditioned) conjugate gradient step. Note that in a realistic
implementation we need not compute these actual residual vectors because we can either use the
generalized residual vectors r(j)=sk(A)(f-Ax(j)) or use a classical implementation of the
preconditioned conjugate gradient algorithm in which both the actual residual and the
generalized residual are available, at the expense of a little more storage, e.g. see [12]. The plot
of Figure 4-1, shows the number of iterations for all values of the degree k of p (A)=As, (A)
between 1 and 10. Note that k=1 means that s _, is a constant and corresponds to the

nonpreconditioned conjugate gradient algorithm.

On the same figure we have plotted the total number of matrix by vector multiplications
needed for convergence, i.e. the numbers k(IT+1) where IT is the number of iterations. Note

that except for the first 3 degrees, the total number of matrix by vector multiplications changes

NUMBER BF ITERATIBNS

140

120

100

21

—

DEGREE @F P

R - CG ITERATIANS N PRECENDITIENED PREBLEM VERSUS DEGREE oF P
B - TBTAL NUMBER BF MATRIX-VECT@R MULTIPLIES VERSUS DECREE @F P

Figure 5-1: Iterations versus degree of preconditioning

22

relatively little which is why the number of iterations drops like 1/k as k increases. The
polynomials s, . have been determined by the kernel polynomial formulation described in

Section 2.2 .

4.2. Varying the parameter a

In the next experiment we illustrate the behaviour of the polynomial preconditioned conjugate
gradient method as the parameter a varies. It is known that the performancee of the Chebyshev
iteration algorithm [6, 7] depends critically on a being an accurate approximation of the smallest
eigenvalue \,. We would like to show that the number of steps of the polynomial preconditioned
conjugate gradient method, depends very little on the accuracy of a as an approximation to the
eigenvalue A;. The linear system tested is the same as above, and so are the tolerance ¢ and the
initial vector x,. The value of the parameter b is fixed to 8 and a is varied from 0.0 to 1.3 . The
larger values of a are more widely spaced than the first ones. We have tried three different
degrees: k=3, k=6 and k=10. The results are shown in Figure 4-2, in which we plot the total
number of CG iterations to achieve convergence. Notice that around the smallest eigenvalue
which is Xl~1.613x10'2, there is little change in using different values of a. Amazingly, even for
quite large values of a, the performance is little affected. For k=3, for example, there is hardly
any difference in performance for a=0.0 through a==1.3. We attribute this phenomenon to the
fact that the polynomials change very little when the parameter a moves around the origin to its
right. We believe that this phenomenon will also be verified for other choices of the Jacobi
weights such as the Legendre weight although this remains to be verified. This would mean that
we expect the preconditionings suggested here to perform as well as those of [8] in spite of the

fact that they require no eigenvalue computation.

4.3. Comparison with Chebyshev polynomizl preconditioning

The next experiment compares Chebyshev polyncmial preconditionings with the least squares
polynomial preconditionings and reveals an interesting phenomenon which does not seem to have
been pointed out in the litterature. Let us consider the problem tested in Section 4.1 with the
same dimension N=1200, the same right hand side f and initial vector X, and the same stopping
criterion. If we try the Chebyshev polynomial preconditioning with a=0.016~\, and
b=7.984~\y, we find that for a polynomial As(\) of degree 5, the method converges in a total

of 165 matrix by vector multiplications versus 120 for the least squares polynomial

23

40 T T T T T T T T T T T T T
38 - -
______________ A -
36 e et e e e T -1
34 n
32+]
30 .
n 28 .
=z
E B -
— 26 |- .
o
b L
w
z -
(o]
o -
10 i L]]]]] 1] 1 1 1 1 1 i
0 .2 .4 .6 8 1.0 1.2 1.4

PARAMETER A

A - DEGREE oF P

"
w

B - DEGREE @F P

]
o

C - DEGREE @F P = 10

Figure 5-2: Behavior of the least squares polynomial preconditioning as the
parameter a varies

24

preconditioning using a==0, b=8 as is reported in Section 4.1. Redoing the experiment with
several different values for the parameter a, b being fixed, we find, to our surprise, that a=\, is
not the best possible value for a. Indeed, Figure 4-3 shows that as a increases the performance
improves drastically in the beginning and then starts deteriorating slowly as a becomes too large.
In the plot the value of the parameter b is fixed to be 7.984 throughout and a is varied from 0 to
1. The best value for a is around a==0.2 which yields convergence in a total of 110 matrix by
vector multiplications. This phenomenon can be explained as follows. By taking a slightly larger
than X,, we obtain a matrix As(A) that has a few ‘large’ eigenvalues around one but the
remainder of the eigenvalues are smaller than with a=)\l. This situation is more favorable for
the conjugate gradient method than when there are no ‘large’ eigenvalues but the whole spectrum
is wider as occurs when a moves towards the origin. The same experiment is repeated for the
degree k==10. The conclusions to be drawn from these experiments are the following:
1. The usual optimal parameters a==\, and b=MAy used in Chebyshev iteration are no
longer optimal in Chebyshev polynomial preconditioned conjugate gradient method.
When b is fixed, the true optimal parameter a is likely to be larger than A;- We do

not know of any way of determining the actual optimal parameters a and b.

2. The least squares polynomial preconditioning with the simple parameters a=0, b=8
given by a Gershgorin argument performs nearly as well as the best performing
Chebyshev polynomial preconditionings using the parameters a==0.2 for k=5 and
a==0.1 for k=10.

Note that these observations are not isolated. Therefore, not only is the Chebyshev polynomial
approach difficult to optimize but even when optimized, the result is not significantly better than
the simpler least squares polynomial approach. Using the eigenvalues A, and Ay as optimal

parameters for Chebyshev preconditioning may yield poor convergence.

Finally we would like to close this section by mentioning that G.Meurant [13] recently
performed some interesting experiments on the CRAY-I and CYBER 205 vector machines which
show that polynomial preconditionings of the type proposed in this paper compare quite well with
other vector machine oriented preconditionings. His final conclusion, however, is that there is no
winner as performances depend heavily on the architecture as well as the data. An important
advantage of polynomial preconditionings is that whereas classical preconditionings must start by
computing an approximate factorization, polynomial preconditionings do not require any sort of

preprocessing. It should be pointed out that in most cases the computation of an incomplete

25

200 T T T T T T '

180

180

170 | -7

160

150

140

130

MATRIX BY VECTBR MULTIPLICATIBNS

120

110

100 1 1 1 Il Il 1 l 1 1 1 1 ! Il] 1 1 1 1 L

.1 .2 .3 .4 .5 .6 .7 .8 .9
PARAMETER A

A - DEGREE @F P

i
[42]

B - DEGRELE @F P = 10

Figure 5-3: Behavior of Chebyshev polynomial precohditioning as the
parameter a varies

.1

26

factorization is not a vectorizable process, and can take a substantial portion of the overall
computing time. The timings reported in [13] do not account for preprocessings. Two other
advantages of the least squares polynomial preconditionings described in this paper are their

simplicity and their generality.

Ackowledgements. The author has benefited from valuable discussions with Prof. Martin
Schultz, Prof. Stan Eisenstat and Dr. Gerard Meurant.

27

5. Appendix

This appendix gives the least squares polynomials up to the degree 10, when we use the Jacobi
weights with a=%— and ﬂ=——%—. We chose to develop the formulas for the interval [0,4] as they are
simpler to write down. Moreover, we rescaled the polynomials for simplicity. More precisely the
k-th degree polynomial in the list below must be multiplied by the factor 4/(3+2k) to obtain the
least squares polynomials s, as defined in Section 2. Note, however that a scaling factor is
ﬁnimportant. if one wants to use these polynomials for preconditioning. The polynomials have
been obtained by a simple FORTRAN program based on the kermel polynomial approach
described in sectopn 2.2. Finally, recall that a change of variable is necessary if b5£4 to map the
interval [0,b] into [0,4], i.e. for a genaral interval one must take the polynomial s, (4\/b).

s;(A)= 5- X
s,(\) = 14 —=7X +\?
ssA) = 30 — 27\ +9x2-)3
s\) =55 — 77X+ 442211 X3 4+ !
ss(A) = 91 —182 X + 156 \Z— 65 A3 + 13 A% _)\
sg(A) = 140 - 378 X + 450 22— 275 X3 + 90\t - 155 + S
s;0) = 204 - 714 X + 1122)% — 935 N3 + 442 M - 119 0% + 178 — \7
sg(A) = 285 — 1254 X + 2508 A2 — 2717 X3 + 1720 *
—-665\° + 152 X8 — 1927 4+)8
sf(\) = 385 — 2079 X + 5148 A2~ 7007 X3 + 5733 A4
—2940 X% + 95208 — 18927 + 21)% —)9
s,o(N)= 506 — 3289 X + 9867 A2 —16445 A% + 16744 *

- 10948 N5 + 4692 2% — 1311 N7 + 23008 —23)% + \IO

[1]

[2]

(8]

(4]
[5]

[6]

7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

28

References

L.M. Adams. [lterative algorithms for large sparse linear systems on parallel computers.
Ph.D. Thesis, University of Virginia, Applied Mathematics, 1982. Also available as NASA
Contractor Report # 166027.

C.C. Cheney. Introduction to Approzimation Theory. Mc Graw Hill, N.Y., 1966.

P. Concus, G.H. Golub, G. Meurant. Block preconditioning for the conjugate gradient
method. Technical Report LBL-14856, Lawrence Berkeley Lab., 1982.

P.H. Davis. Interpolation and Approzimation. Blaisdell, Waltham, Mass., 1963.

P.F. Dubois, A. Greenbaum, G.H. Rodrigue. Approximating the inverse of a matrix for use
on iterative algorithms on vectors processors. Computing 22:257-268, 1979.

G.H. Golub , R.S. Varga. Chebyshev semi iterative methods successive overrelaxation
iterative methods and second order Richardson iterative methods. Numer. Mat 3:147-168,
1961.

A.L. Hageman and D.M. Young. Applied Iterative Methods. Academic Press, New York,
1981.

O. G. Johnson, C.A. Micchelli and G. Paul. Polynomial Preconditionings for Conjugate
Gradient Calculations. SIAM J Numer. Anal. 20:362-378, 1983.

L. Johnsson. Highly concurrent algorithms for solving linear systems of equations. In
Elliptic problem solvers II, Proceedings of the elliptic problem solvers con ference,
Monterey CA., Jan 10-12 1983, G. N. Birkhoff & A. Schoenstadt ed., Academic Press,
1983, pp. 105-126.

T. L. Jordan. Conjugate gradient preconditioners for vector and parallel processors. In
Elliptic problem solvers II, Proceedings of the elliptic problem solvers con ference,
Monterey CA., Jan 10-12 1983, G. N. Birkhoff & A. Schoenstadt ed., Academic Press,
1983, pp. 127-139.

T. L. Jordan. A guide to parallel computation and some Cray-1 experiences. In Parallel
Computations, Garry Rodrigue ed., Academic Press, 1982, pp. 1-50.

J.A. Meijerink and H.A. van der vorst. An iterative solution method for linear systems of
which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31(137):148-162, 1977.

G. Meurant. Vector Preconditioning for the conjugate gradient on the CRAY-I and CDC
Cyber 205. In Proceedings of the 6-th international colloqguium on scientific and
technical computation, INRIA ed., , 1984, pp. .

P.G. Nevai. Distribution of zeros of orthogonal polynomials. Trans. of the Amer. Math.
Soc. 249 # 2:241-261, 1979.

C.J. Pfeifer. Data flow and storage allocation for the PDQ-5 program on the Philco-2000.
Communications of the AC M 6:365-366, 1963.

[16]

(17]

[18]

(19]

(20]

[21]

[22]

29

H. Rutishauser. Theory of Gradient Methods. In Refined Iterative Methods for
Computation of the Solution and the Eigenvalucs of Self-Adspint Boundary Value
Problems, Institute of Applied Mathematics, Zurich, Basel-Stuttgart, 1959, pp. 24-49.

Y. Saad. Iterative solution of indefinite symmetric systems by methods using orthogonal
polynomials over two disjoint intervals. SIAM J.on Numerical Analysis 20:784-811,
1983.

D. C. Smolarski. Optimum sems-tterative methods for the solution of any linear algebraic
system with a square matriz. Technical Report UIUCDCS-R-81-1077, University of Illinois
at Urbana-Champaign, 1981. PhD Thesis.

So Cheng Chen. Polynomsial scaling in the conjugate gradient method and related topics
tn matriz scaling. Technical Report CS-82-23, The Pennsylvania state University,
1982. PhD Thesis.

E.L. Stiefel. Kernel Polynomials in Linear Algebra and their Applications. U.S. NBS
Applied Math. Series 49:1-24, 1958.

H.A. Van der Vorst. A vectorizable version of some ICCG methods. SIAM J. Stat. and
Scs. Comp. 3:350-356, 1982.

J. Van Rosendale. Minsmizing inner product data dependecncies sn comjugaie gradient
steration. Technical Report 172178, ICASE-NASA, 1983.

