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Abstract

We give an overview of recent developments in iterative methods for solving the sparse
nonsymmetric linear systems that arise from the discretization of non-self-adjoint elliptic
problems. We consider Krylov subspace methods, including conjugate gradient-like methods, the
adaptive Chebyshev method, and a new hybrid Chebyshev/gradient technique. We discuss
several preconditionings that can be used with all these methods, and compare the performance
of the methods and preconditionings in solving a model elliptic problem.
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1. Introduction
The numerical solution of non-self-adjoint elliptic boundary value problems requires the
solution of systems of linear equations of the form
Ax = b, (1)
where A is a large sparse nonsingular nonsymmetric matrix of order N. In most cases, direct
methods for solving (1) entail an LU-decomposition of A, which can be prohibitively expensive for
large problems. Iterative methods have low storage requirements, but must converge rapidly to
be effective. Very effective iterative methods exist for solving the symmetric positive-definite
linear systems arising from the discretization of self-adjoint elliptic problems (see e.g. [12]), but
little of the convergence theory carries over to the nonsymmetric case. In this paper, we discuss

recent progress in the development of iterative methods for solving nonsymmetric systems.

Progress has been made along two directions:
1. basic sterative methods, i.e. techniques for computing the i'th approximate solution

x; from previously computed quantities; and
2. preconditioning techniques, in which an auxiliary operator Q is used to generate an
equivalent linear system such as
AQk=b, x=Qk
that is in some sense easier to solve.

In general, these two approaches are independent: any basic iterative method can be combined

with any preconditioning technique.

Most of the effort in basic iterative methods has been directed toward Krylov subspace
methods, in which x, is chosen from the translated Krylov space x; + §;, where
i-1
S, = span{rg,Ar,..., A’ T},
and 1, = b - Ax,.

(CG) [13], producing a method that needs no a priori parameter estimates. One such method,

One approach has been to generalize the conjugate gradient method

which depends explicitly on preconditioning by the symmetric part of A, was proposed by Concus
and Golub [2] and Widlund [24]. More flexible methods include a collection of CG-like methods
based on a truncated or restarted Gram-Schmidt-like computation, developed by several authors
1, 5, 6, 18, 23, 25, 26]; and the biconjugate gradient method, originally proposed by Fletcher [10]
for symmetric indefinite systems (see [6, 12] for other references). A second important approach
is Manteuffel’s adaptive Chebyshev method [14, 15], which inherits certain asymptotic properties

from the Chebyshev polynomials but requires estimates for the eigenvalues of A.

Most of the preconditionings used for nonsymmetric systems are straightforward
generalizations of techniques for symmetric systems. For general matrices, they include
incomplete factorizations, such as those developed by Dupont, Kendall and Rachford [4],
Gustafsson [11], and Meijerink and van der Vorst [16]. Special techniques applicable to



discretized elliptic problems include partial elimination (construction of a “reduced system;’
see [12]) and fast direct methods [3, 6].

In this paper, we describe what we regard as the most salient features of the basic iterative
methods, present some recent enhancements, and briefly discuss some preconditioning techniques.
In Section 2, we describe representative examples and properties of the Krylov subspace methods.
In Section 3, we discuss a new hybrid Chebyshev/CG-like method recently developed by Elman,
Saad and Saylor [7]. In Section 4, we discuss the incomplete factorization and reduced system
preconditioning techniques. In Section 5, we present some numerical experiments in which the
methods discussed are used to solve a two-dimensional non-self-adjoint elliptic boundary value

problem, and in Section 6, we present some open questions.

2. Krylov Subspace Methods
In this section, we consider three Krylov subspace methods: two different generalizations of

the conjugate gradient method, and the adaptive Chebyshev method.

For symmetric positive-definite systems, the conjugate gradient method computes the unique

1/2 is smallest. We refer to this as a “global”

point in x, + S; whose A-norm (x-x;,A(x-X;))
property of CG: at step i, it solves an i-dimensional minimization problem. CG accomplishes
this with a small amount of work per step (5N multiplications plus a matrix-vector product) but

without a priori parameter (e.g. eigenvalue) estimates.

These properties of rapid convergence, low cost per step, and independence of parameter
estimates have led to efforts to generalize CG. One type of generalization sacrifices global
properties to retain low cost per step. By way of introduction, consider the following
method [5, 6]:

Algorithm 1: The generalized conjugate residual method (GCR).
Choose x;,. Compute r, = b-Ax,. Set py =r.
FOR i=0 STEP 1 UNTIL Convergence DO

a; = (r,Ap,)/(Ap,Ap)),

X1y = X; + a.p;
Tipr = T - %APp
i)
bf) = - (Ary,  Ap)/(Ap Ay,

- > b
Pir1 = Tipr T 2 B By

This method is convergent if the symmetric part (A+AT)/ 2 is positive-definite. The directions
{pi} are constructed to be ATA-orthogonal, and as a result, the choice of the steplength a; is such
that x; , is the point in x + S; | with smallest residual norm lIr;;(lly- Thus, GCR is optimal
with respect to the residual norm. Unlike CG, however, GCR achieves global optimality at a



high cost: the recurrence for p; ; requires O((i+1)N) operations and storage. Though optimal,

GCR is not practical if more than a few (say, twenty) iterations are required.

Indeed, as Faber and Manteuffel [9] have recently shown, except in special cases there are no
optimal CG-like methods with short recurrences for nonsymmetric matrices. However,
nonoptimal but effective techniques that do not require parameter estimates have been developed
by forcibly limiting the cost per step. For example, the direction update can be truncated so that
most k <« N previous directions are used after iteration k:

Piy1 = Tiyr + jzi‘ﬂb}‘) p;-

In this case, the iterate X, is a local minimum, the point in

+1

X, + span{p, ;,...,p;}
whose residual norm ||r;_ , ||, is minimized. Alternatively, with a maximum of k directions saved,
GCR can be restarted every k+1 steps. We refer to the truncated and restarted versions of GCR
as Orthomin(k) and GCR(k) respectively. One matrix-vector product is required at each step (see
Table 1). Let M denote the symmetric part of A, and R the skew-symmetric part (A-AT)/2.
When M is positive-definite, the residuals generated by both methods satisfy [5, 6]

A (M)? . .
I, < J1 - o — P2irglly, (2)
XM (M) ()
where X . (M) and A (M) denote the smallest and largest eigenvalues of M, respectively, and

p(R) denotes the spectral radius of R. Hence, both methods are convergent. In practice, we have
found this bound to be pessimistic and these methods to be effective solution techniques (see [6]
and Section 5).

A second generalization of CG is the biconjugate gradient method (BCG) [10], which attempts
to impose a global condition with short recurrences.
Algorithm 2: The biconjugate gradient method.
Choose x;. Compute ry = b-Ax,. Set p, = Iy Ty =Ty, By = Py

FOR i1=0 STEP 1 UNTIL Convergence DO

a; = (5,r)/(P,AP)),

Xip1 = Xt Py

Tipr = T - AP, F =T - AT,
i1 = (yprip )/ (5m),

Piy1 =Ty + APy Piy1 =Tiyy t Bp;

The introduction of the auxiliary vectors {f;} and {p} results in the construction of the auxiliary

Krylov space

S, = span{rO,ATro,...,(AT)"lro}.




The choice of the scalars {a;} and {f.} establish the global Galerkin conditions
(r,v)=0, vE€ §i’ (r,v)=0, vES,.

However, these relations are imposed at the cost of an extra matrix-vector product, by AT, at
each step (see Table 1). Morever, although BCG can in principle be applied to any nonsingular
linear system, little is known about convergence. We know of no error norm that is
monotonically decreasing, and although the method will terminate after at most N iterations, it

may break down with a;=0 before the solution is found. (See [12, 19].)

A contrasting approach is Manteuffel’s adaptive Chebyshev method [14, 15], which displays
rapid convergence at low cost per step but is highly dependent on parameter estimates. This

method generates a sequence of iterates {xi} whose residuals satisfy
r, = Ci(A)r,, (3)
where C, is a scaled, translated i'th-degree Chebyshev polynomial:

Cfz) = Ti(dT'z) / Ti(g-). (4)

The scaling and translation depend on locating an ellipse E that is small in a certain sense which
encloses the spectrum of A but whose interior does contain the origin; d is the center of E, and
d+c are its foci. Rapid convergence follows from the asymptotic optimality in L of the
Chebyshev polynomials on ellipses in the complex plane [15]. Moreover, the three-term

recurrence for Chebyshev polynomials induces a three-term recurrence

Xp1 =X F oy + Bxex ), (5)
in which the scalars a;, f; are computed with scalar arithmetic, so that the work per step is lower
than for the CG-like methods. (See Table 1.)

The drawback is the explicit dependence on the ellipse parameters ¢ and d, which are
computed from the extreme eigenvalues of A. Starting with (possibly arbitrary) initial values for
¢, d, the adaptive Chebyshev method estimates these eigenvalues dynamically for systems where
the symmetric part is positive-definite [14]. With given values for ¢, d, the generated residuals

satisfy
I, & S(A)iro, i—o00, (6)

where S(A) is the linear operator induced by
o o d-z + [(d-2)? - ¢2)1/2
(z) =S 4(z) = d + [d2- i

That is, the residuals resemble the vectors generated by the power method for S(A). If some

eigenvalue of S(A) has modulus greater than one and r, has a component in the corresponding
eigenvector, then the residuals will diverge but will eventually become rich in that eigenvector.
In this case, the residuals can be used to compute estimates for the eigenvalues of S(A). These

are then used to compute eigenvalue estimates for A, which in turn are used to compute new



ellipse parameters. The Chebyshev iteration is then restarted with the new ellipse parameters.
Note that since the eigenvalue computation is based on a variant of the power method, this
computation will actually be facilitated if the residuals are allowed to diverge. Numerical
experiments [6] indicate that the norms of the residuals generated by the adaptive Chebyshev
method may increase by several orders of magnitude before good parameters are obtained, but

that convergence is rapid afterwards (see Section 5).

Table 1: Work and storage costs.

Table 1 contains the work (number of floating point multiplications and divisions) and storage
costs (not including storage for A, b) of the methods of this section. Matrix-vector products are
counted separately: Av denotes a matrix multiplication by A and ATy denotes a matrix

multiplication by AT,

3. A Hybrid Method

A method that attempts to combine two of the approaches of the previous section is the hybrid
Chebyshev/gradient method recently devised by Elman, Saad and Saylor [7]. It uses the basic
Chebyshev iteration (5) but replaces the Manteuffel adaptive procedure with a Lanczos-type
method that can be used to simultaneously estimate eigenvalues and improve the solution iterate.

Again, it is applicable to systems with positive-definite symmetric part.

In the hybrid method, the eigenvalue computation is performed by Arnoldi’s method [20],
which estimates the eigenvalues of A by reducing it to upper-Hessenberg form. Starting with an
initial vector v, with ||v,|l,=1, this method generates an orthonormal basis for the Krylov space

span{vl,Avl,...,Ak'lvl} by an iteration of the form
i1, iVier = AV - 2 vy

h
=1
The orthonormal matrix V, = [v,,...,v,] and the k’th order upper-Hessenberg matrix H, = [hij]

satisfy VEAVk = H,. Taking this relation as an approximate similarity transformation,

Arnoldi’s method uses the eigenvalues of H, as estimates for the eigenvalues of A.

Information obtained from Arnoldi’s method can be used as the basis of an iterative method

IThe overhead of 14N operations for the adaptive step is not included.



for solving (1). Given some initial guess, x,, let v, denote the normalized residual ry/|ry[l,- Then

the k Arnoldi vectors {vi}¥=l can be used to compute the point
X € xy+ span{ro,Aro,...,Ak'lro}

whose residual norm ||b-AX||, is minimized. Let ﬁk denote the (k+1)xk matrix obtained by

appending to H, a row with single nonzero entry h, +1k in column k. Then X is given by

where the scalars {ozi}g‘___,_l solve the least squares problem

min || ﬁka - lIrgll ey ”2
This is the generalized minimum residual (GMRES) method of Saad and Schultz [21]. It is
mathematically equivalent to GCR when the symmetric part of A is positive-definite, and it is

also applicable to arbitrary nonsingular matrices.

The hybrid method combines the Chebyshev method with the CG-like method GMRES, using
Arnoldi’s method for eigenvalue estimates. In the following simple form, the adaptive step is
invoked if the residual norm generated by the Chebyshev iteration exceeds a specified tolerance r
relative to the smallest residual encountered, or after at most n Chebyshev steps. It is also used

to generate initial eigenvalue estimates.2
Algorithm 3: The hybrid method.
Choose x,. Compute ry = b - Ax,.
UNTIL Convergence DO

Adaptive Step:  Set v, = the current normalized residual, perform k
Arnoldi/GMRES steps, and use the new eigenvalue estimates
to update (or initialize) the ellipse parameters.

Chebyshev Step: Seti . =i+n.

WHILE (|l /I, 7 50 i iy )
Compute x; by the Chebyshev iteration (5)-

The adaptive step uses (k2+4k+1)N multiplications and k matrix-vector products Av, plus kN

storage.

There are two advantages over the original adaptive Chebyshev method. First, by not using
the approximate powers of S(A) (6), the hybrid method is not as dependent on divergence of the
Chebyshev iteration for eigenvalue estimates. The use of Arnoldi’s method allows much more

stringent monitoring of the residuals [7]. Second, in addition to providing mew eigenvalue

2Manteuffel’s method for computing ellipse parameters from eigenvalue estimates is still used [15].



estimates, the adaptive step improves the quality of the approximate solution provided to the
next Chebyshev run. Indeed, the GMRES steps approximately annihilate the components in the

residual of the eigenvectors corresponding to the computed eigenvalue estimates [7, 21].

4. Some Preconditioning Techniques
In this section, we briefly describe some choices for the preconditioning operator Q. See [6] for

more details and other preconditionings.

One effective class of preconditionings is based on approximate factorization of A. Q is the
product of a lower-triangular matrix L and an upper-triangular matrix U that resemble the
factors obtained from Gaussian elimination but are forced to be sparse, so that the
preconditioned matrix-vector product AQ v is not too expensive. Suppose Z C {(i,j)|1<i,j <N}
is given. In the incomplete LU-factorization (ILU) [16], Lij and Uij are defined to be zero for (i,j)
€ Z, and [LU]ij = Ay for (i,j) ¢ Z. In the modified incomplete factorization, (MILU) [4, 11], an
attempt is made to compensate for the error caused by restricting the fill-in of the factors. [LU]ij
= A for (i,j) € Z and izj, but the diagonal L, is modified so that E (A [LU], ) = 0. Note
that these preconditionings can be defined for a.ny matrix. For example, the 7€ro pattern Z can
consist of the set of indices for which Aij=0' Locations of additional fill-in for matrices arising

from the finite-difference discretization of elliptic problems have been considered; see e.g. [11, 186].

When five-point (in two dimensions) or seven-point (in three dimensions) finite difference

schemes are used to discretize elliptic problems, the resulting matrices are two-cyclic, i.e., the

rows and columns can be permuted symmetrically so that (1) has the form

D, c, < (V)
A= ol ol
‘02 D2_ b b
where D, and D, are diagonal matrices. If
-D'll N
Q= ;
-C,D! 1
then the left-preconditioned system has the form
1 DlC x) DbV
1 1V1 1
v o | @]~ |beepmmf’
0 D,-C,DYC,| |x b'*-C,D}'b

in which the block unknowns x(!) and x(®) are decoupled. Block x® can be computed by solving

the reduced system

-¢,bilc,] x® =

[D,-C,D} b(2)-02D-11b(1)

(7)

whose order is typically approximately N/2. Block x, is then given by D'll [b(l)-Clx(z)].



Note that with this reduced system preconditioning, the coefficient matrix and right hand side
of (7) are formed explicitly. This enables (7) to also be preconditioned by, for example, an
incomplete factorization. If no second preconditioning is used, then the reduced system need not

be formed.

5. Numerical Experiments
In this section, we describe some numerical experiments for solving the two-dimensional elliptic
partial differential equation
(), - (@), + Alxtyu, + ()] + [1/(+xy)] = G, ®)
with the right hand side G chosen so that the solution is

X

u(x,y) = x €™ sin(nx) sin(ry).
We pose (8) on the unit square {0<x,y<1} with homogeneous Dirichlet boundary conditions and

discretize using centered finite differences on a uniform 47x47 grid, producing a linear system of
order N = 2209.

We present two sets of experiments, corresponding to the values =5 and 7=50 for the scalar
v in (8). In each case, we solve (8) using Orthomin(1), BCG, adaptive Chebyshev, and the hybrid
method with four Arnoldi vectors, together with the ILU preconditioning. In addition, we solve
the reduced system using Orthomin(1) and the ILU preconditioning. As a benchmark, we show
the performance of the conjugate gradient method applied to the normal equations of the ILU
preconditioned system.® Figures 1 and 2 graph work vs. residual norm (on a logarithmic scale)
for v=5 and =50, respectively. All overhead for computing preconditionings and adapting is
included in the operation counts. The tests were run on a VAX11-780 in double precision (55 bit

mantissa). More extensive experiments and details on implementation are given in [6, 7].

6. Open Questions
Two open questions are:

1. how well do these methods generalize for indefinite problems;

2. can strong error bounds be found.

Most of the iterative methods that we have discussed are rigorously applicable only when the
symmetric part of the coefficient matrix is positive-definite. There are two ways to handle
indefinite systems. One is to choose an accurate enough preconditioning so that the

preconditioned matrix AQ! has positive-definite symmetric part. We have, however,

3This method is equivalent to Paige and Saunders’ LSQR method [17], which is more stable but requires more work
per step. We also compared these two methods in these tests and found the residual norms to be nearly identical at
each step.
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encountered situations where apparently effective preconditionings lead to indefinite
preconditioned systems [6]. An alternative is for the basic iterative method to handle
indefiniteness. Several techniques may be applicable in this domain: the GMRES method
mentioned in Section 3; the incomplete orthogonalization method of Saad [18]; Orthodir,
proposed by Young and Jea [12, 26]; the biconjugate gradient method; a version of Broyden’s
method developed for sparse systems by Engleman, Strang and Bathe [8]; and a new adaptive
method devised by Smolarski and Saylor [22]. None of these ideas have been stringently tested,

though, and little is known about convergence rates.

Finally, the analysis of the CG-like methods [5, 6] and of the Chebyshev method [15] prove
that these techniques converge, but it is weaker than the analysis of methods for symmetric
positive-definite problems. We do not know whether existing error bounds, such as (2), are tight

or if there are stronger ones.
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