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Abstract—

Universal networks offer the advantage that they can execute programs written
for simpler architectures without significant run-time overhead. In this paper we
investigate simulations of tree machines; the fact that divide-and-conquer algo-
rithms are programmed naturally on trees motivates our investigation.

Among various proposals for parallel computing the boolean hypercube has
emerged as a particularly versatile network. It is well known that programs for
multi-dimensional grid machines, for example, can be executed on a hypercube
with no communications overhead by embedding the grid as a subgraph of the hy-
percube. Our first result is that a program for any tree machine can be executed
on the hypercube with constant overhead. More precisely, every cycle of a syn-
chronous binary tree can be simulated in O(1) cycles on a hypercube, independent
of the shape of the tree. The algorithm to embed the tree within the hypercube
runs in polynomial time. We also give efficient simulations of arbitrary binary
trees on the complete binary tree, the FFT and shuffie-exchange networks.

1 Introduction

A number of supercomputer architectures interconnecting hundreds or thousands
of processors have been proposed in recent years. Prominent is the boolean hy-
percube, different versions of which have been built at Intel, N-cube, BBN, and
Thinking Machines. The hypercube offers a rich interconnection topology with
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high communication bandwidth, low diameter, and a recursive structure natu-
rally suited to divide-and-conquer applications. More importantly, the hypercube
supports efficient routing algorithms and can therefore simulate any realistic par-
allel machine efficiently. Using Batcher’s deterministic sorting scheme or Valiant’s
randomized message routing algorithm for instance, the hypercube can simulate a
PRAM, and hence any realistic parallel machine with only a small polylogarithmic
multiplicative increase in time. This universality property makes the hypercube
extremely attractive for parallel computing.

Many parallel architectures can be simulated on the hypercube without the
logarithmic increase in time. For example, every 29! x - - - x 29~ grid is a subgraph
of the 2% node hypercube. Such multi-dimensional grids can therefore be sim-
ulated on a hypercube with no communications overhead. The importance of grid
algorithms to scientific applications coupled with the capability of a hypercube to
simulate grids of different aspect ratios has often been cited as an important con-
sideration in building hypercubes. Johnsson [12] gives a survey of various efficient
matrix algorithms on the hypercube.

What other networks can be simulated on a hypercube with little or no com-
munications overhead? This question remains largely unexplored. In this paper
we take the first step to investigate simulations of binary trees within the hy-
percube. Highly parallel divide-and-conquer algorithms can be conveniently pro-
grammed on an abstract binary tree machine, as can concurrent data structures
[1, 9]. While the complete binary tree is suitable for a number of applications,
there are instances when the divide-and-conquer tree is not complete. For exam-
ple, in finite-element computations the tree generated by recursively decomposing
a region into smaller subregions is, in general, neither complete nor binary. This
paper considers “static” simulations only; we assume that the binary tree is fixed
in size and shape and does not evolve in time. We also assume that all nodes of
the tree (and not just the leaves) are active simultaneously, as is the case when
different computations are pipelined through a single fixed tree. Our main result
is that the hypercube can simulate every binary tree with only a small constant
factor overhead in communications cost. This improves results of Bhatt and Ipsen
[4] who give a simulation with communications overhead loglog N + O(1).

For many years graph theorists have been interested in constructions of univer-
sal graphs for important families of graphs. Chung and Graham [5] briefly describe
some of the early work in this area. The archetypical problem is: given a class ¥
of graphs on NV nodes, construct a universal graph H on N nodes with the fewest
edges necessary so that every graph G in V¥ is a subgraph of H. The subgraph
property is attractive in the context of parallel computing because it implies no
communication overhead in simulating any graph in ¥.




The case when V¥ is the set of N node trees has received considerable attention.
Following [6, 7], Chung and Graham [8] constructed a universal graph for trees with
O(N log N) edges, which is optimal up to constant factors for trees with unbounded
degree [5]. For the case when V¥ is the class of trees of bounded degree, we give
a bounded-degree universal graph. Since our graph has bounded-degree, it has
a linear number of edges, thus improving the previous bound for arbitrary trees.
Friedman and Pippenger [10] have recently shown that an expanding graph with
N nodes and O(N) edges is universal for binary trees with aN nodes (0 < o < 1).

The remainder of this paper is organized as follows. Section 2 gives definitions
and illustrates simple embeddings of binary trees within the hypercube. Section 3
sketches the combinatorial argument basic to our embedding technique of Section
4 in which we describe how to simulate any binary tree on the hypercube with
constant communication overhead. Section 5 describes the new construction of a
bounded-degree universal graph for trees. Section 6 concludes with a number of
extensions and open questions.

2 Definitions

The problem of simulating one network by another is modeled as a graph embedding
problem. An embedding < ¢,p > of a graph G = (Vg,Eg) into a graph H =
(Va,Eng) is defined by an injective mapping from Vg to Vg, together with a
mapping p that maps (u,v) € Eg onto a path p(¢(u),4(v)) in H that connects
#(u) and @(v). The dilation of the edge (u,v) under < ¢,p > equals the length
of the path p(¢(u),#(v)) in H. The dilation of an embedding < ¢,p > is the
maximum dilation, over all edges in G, under < ¢,p >.

We measure the quality of an embedding with three cost functions — ezpansion,
dilation, and load-factor. Following Rosenberg [13], define the ezpansion of an
embedding < ¢,p > of G into H to be the ratio of the size of Vg to the size of
Vi. Intuitively, expansion measures processor utilization. The load-factor A(e) of
an edge € in H is the number of paths that pass through e which are images of
edges in G, i.e., A(eg) = |{e € Eg : p(e) contains eg}|, and the load-factor A of
an embedding is defined to be the maximum load-factor over all edges in H.

Our model of synchronous parallel networks assumes that a processor (node
of G or H) can communicate with each of its neighbors in one clock cycle, so
that edges serve as bidirectional links. We restrict attention to simulations in
which each cycle of G is simulated by a series of cycles of H, before the simulation
of the next clock cycle of G is begun. For an embedding < ¢,p > of G, each
communication across an edge in e € Eg is effected by transmitting the message
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Figure 1: The dilation 2 inorder embedding.

along the path p(e) in H.

Suppose we are given an embedding of G in H with dilation d and load-factor
A. It should be clear that the time to simulate one cycle of G on H can be no less
than the dilation d. Furthermore, if every node in G communicates with each of its
neighbors in one cycle, then as many as A messages will pass across some edge in H
in the same direction, so that the simulation must take at least ) cycles. Similarly,
each message can be delayed at most A cycles in a single queue so that if d is the

dilation then d\ cycles are sufficient to simulate one cycle of G. Summarizing, we
have:

Lemma 1. Let XA be the load-factor, and d the dilation of an embedding of G in

H. If T cycles of H suffice to simulate any cycle of G using this embedding, then
max{d,A\} < T < d\.

To illustrate our definitions with an example, consider the embedding of Figure
1 of a complete binary tree within the hypercube. The nodes of the tree are
numbered inorder — each node of the tree is mapped to the node in the hypercube
with the corresponding address. Each edge from a node to its left child is mapped
to the corresponding hypercube edge between the images of the two nodes, while
the edge between a node and its right child is mapped to the path from the right
child to the left child, and from the left child to the parent. The expansion,
N/(N - 1), is the minimum possible while the dilation equals 2. The load factor
also equals 2, but there are no queueing delays and two cycles of the hypercube
suffice to simulate one cycle of the complete binary tree.

Since an N — 1 node complete binary tree is never a subgraph of the N node
hypercube for ¥ > 8 (14], any embedding of a large complete binary tree in
the hypercube with expansion 1 must have dilation at least 2. In this sense, the
inorder embedding of Figure 1 is optimal. There is, however, a much more efficient
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Figure 2: 4 spanning tree S, of the hypercube.

embedding. Bhatt and Ipsen [4] show that the N node tree Sjog N of Figure 2 is a
spanning tree of the N node hypercube. As a corollary, the N — 1 node complete
binary tree can be embedded in an N node hypercube with only one edge of dilation
2, and the with unit load-factor everywhere. In fact, this embedding is unique.
Observe also that with expansion 2, the tree can be embedded with dilation 1.

Unfortunately, we do not know if arbitrarily structured binary trees can be effi-
ciently embedded in such an elegant manner. We can use the well-known property
that removing a single edge can separate a binary tree into two components each
containing at least [n/3] nodes. By recursively embedding the split components
within smaller hypercubes and translating one cube so that the nodes of the cut
edge are adjacent in the new dimension, we obtain the following result.

Theorem 2. Every N node binary tree can be embedded with unit-dilation in
a hypercube with O(N'!) nodes.

Although Theorem 2 gives a unit-dilation embedding, the expansion (~ N-71)
is too large for the embedding to be useful in practice. In the next two sections we
relax the unit-dilation requirement slightly, and show that every binary tree can
be embedded with O(1) dilation, expansion and load-factor.




3 The decomposition lemma

To embed an arbitrary N node binary tree T within the hypercube we proceed in
two steps. In the first step T is decomposed and efficiently embedded within an Vv
node thistle tree; an efficient embedding of the thistle tree within the hypercube
in the second step induces an efficient embedding for T. This strategy is similar
in spirit to the VLSI layout techniques of [2], with the thistle tree playing the role
of the tree-of-meshes network. Combinatorial techniques developed previously for
VLSI layout [2] apply in a straightforward way to the results in this section, and
we will only sketch some of the proofs in this abstract. This section gives the
combinatorial lemmas basic to our result; thistle trees and their embeddings are
discussed in the next two sections.

Lemma 3. Let T be any N node binary tree each of whose nodes 13 colored with
one of k colors. Let n; be the number of nodes of color i, 1 <i <k, Y;n; = N.
By removing klog N or fewer edges, T can be bisected into two components of sizes
[ N/2],[N/2] such that, for each i, 1 < i < k, each component has at least |n;/2]
nodes of color 1.

Lemma 4. Every N node binary tree T can be mapped onto an N node complete
binary tree C so that at most 6log % + 18 nodes of T are mapped onto any one
node of C at distance t from the root, and so that any two nodes adjacent in T are
mapped to nodes at most distance 8 apart in C.

Proof. The idea is to recursively bisect T, placing the successive sets of bisector
nodes within successively lower levels of C, until T is decomposed into single nodes.
For example, the nodes placed at the root of C bisect T into two subgraphs T}
and T5. Similarly, nodes mapped to the left child of the root bisect T; and nodes
mapped onto the right child bisect T;. In addition, at level 1 of C we map nodes of
T (that have not already been mapped within levels i — 1,1 — 2) that are adjacent
to nodes mapped at level ¢+ — 3 of C. This ensures that nodes adjacent in T will
be mapped to nodes of C at most distance 3 apart.

To keep the number of nodes of T mapped to a level ¢ node in C within the
required bounds, we use Lemma 4 with 3 colors. The following procedure describes
how this is done.




. Step 1. Initialize every node of T to color A, bisect T', and place the bisector nodes
at the root (level 1).

. Step 2. For each subgraph created in the previous step, recolor every node adjacent
to the bisector in the previous step with color 0, and place a 2-color bisector for the
subgraph at the corresponding level 2 node.

. Step 8. For each subgraph created in the previous step, recolor every node of color A
adjacent to the bisector in the previous step with color 1, and place a 3-color bisector
for the subgraph at the corresponding level 3 node.

. Step t. (log|T| > t > 4). For each subgraph created in the previous step, place every
node of color t (mod 2) at the corresponding level ¢ node, recolor every node of color
A that is adjacent to one of color t — 1 (mod 2) with color ¢t (mod 2), and place a

3-color bisector for the remaining subgraph at the corresponding level ¢ node.

If n; is the maximum number of nodes mapped to a level ¢ node of C, then we
have n; = log N, ny = 2log -’%’-, n3 = 3log %, and because we use a 3-color bisector
at each step, in general we have:

n; < 3log X + 3ni-s,
from which the result follows. ]

The decomposition is obtained in time polynomial in the size of T because, for
fixed k, a k—color bisector for a tree can be found in polynomial time.

.4 Embeddings in the hypercube

The decomposition obtained in the previous section motivates the definition of
thistle trees. The thistle tree T}, of height A is obtained by starting with a complete
binary tree of height h and, to each node at height ¢ (leaves are at height 1),
1 < ¢ < h, attaching ¢ — 1 additional leaves. The thistle tree T5 is shown in
Figure 3. A simple calculation shows that the thistle tree Tjog 4 of height log N
has 2N - log N — 2 nodes. ’

The decomposition of Lemma 4 is invoked to embed an arbitrary N node binary
tree within the thistle tree. By mapping the nodes of T that are mapped to the
same internal node in Lemma 4 onto the corresponding thistle in the thistle tree
(with at most O(1) nodes of T at a single thistle) we can obtain an embedding
with expansion 1 and dilation no greater than 5. In this embedding the thistles at
the top levels may have multiple nodes of T embedded within them, but there is



Figure 3: The thistle tree Ts.

a corresponding deficit at thistles at the bottom of the thistle tree. By “pushing”
the excess level-by-level down the tree, we can establish the following result.

Lemma 5. Every N node binary tree T can be mapped onto a thistle tree with
ezpansion 1 and O(1) dilation.

It remains to embed the N node thistle tree within the hypercube in an efficient
manner. To this end, consider the inorder numbering of an N /2 node complete
binary tree, as shown in Figure 4. It is not hard to see that each node u is within
distance 1 (in the N/2 node hypercube) of every node along the rightmost path
in the left subtree of u. Embed the thistle tree so that the centre of each thistle
maps to the corresponding node in the complete binary tree, and each leaf maps
to a distinct node in the rightmost path of the left subtree of the central node.
Notice that the length of this path always equals the number of leaves hanging off
the central node in the thistle. At this point each node of the hypercube has at
most two thistle tree nodes mapped onto it. Now add another N/2 subcube and
project each leaf of a thistle onto this “shadow” tree — this gives us an embedding
of the thistle tree with expansion 1 and dilation 2. Together with Lemma 5, this
guarantees an embedding of arbitrary T with expansion 1 and O(1) dilation.

A more careful analysis in Lemma 5 shows that nodes u,v adjacent in T are
mapped to thistles at most 6 levels apart. An interesting property of the inorder
numbering is that the set of nodes obtained by picking a node and its descendants
at distances 1,2,... ,t induce a t+1 dimensional subcube (with one node missing),
so that any two nodes at most ¢ — 1 levels apart are within distance t+ 1 in the
hypercube. Therefore, by our earlier remark, the distance between the central
nodes of the thistles for u and v are distance 8 apart in the hypercube. Since
every central node is within distance 2 of its leaves, the dilation of the overall
embedding is at most 10. It is now straightforward to find paths in the hypercube
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between adjacent nodes of T so that the load factor is small. Summarizing, we
have our main result of this section.

Theorem 6. Every N node binary tree can be embedded in a hypercube with
ezpansion 1, dilation 10 and O(1) load-factor.

Ciio '
Figure 4: Embedding the thistle tree within the complete binary tree.

Together with Lemma 1, we have thus shown that every binary tree machine
can be simulated with O(1) communication overhead on a hypercube. The em-
bedding can be computed in polynomial time because the bisection in Lemma 3,
and consequently all other computations, can be computed in polynomial time.

5 An optimal universal graph

A graph H is said to be universal for a family of N node graphs if every graph in
the family is a subgraph of H. The subgraph property is extremely strong (and
attractive in applications) since it is equivalent to embeddings with unit dilation
and load factor.

The problem of constructing N node universal graphs with fewest number
of edges for all N node trees has received considerable attention. Following the
work of [6, 7] Chung and Graham (8] constructed a universal graph for trees with
O(N log N) edges. This bound is optimal, to within constant factors [5].

For binary trees, however, smaller universal graphs exist. Any N node binary
tree can be embedded within an IV node thistle tree with dilation 5. By connecting
every pair of nodes that are at most distance 5 apart in the thitle tree, we obtain
an N node graph with O(N) edges that contains every N node binary tree as a
spanning tree. However, the degree of the root is O(log N) so that although this
universal graph is sparse, its nodes have unbounded degree.

There do however exist graphs with bounded-degree that are universal for all
binary trees. This section gives the construction. First we need a few definitions.



Definition. A graph G(V,E) is said to be full if for every V! c V, [V'| < |V|/2,
the number of edges between V and V' is at least |V'|.

We observe in passing that there is a constant d such that for every m, there is
an m node full graph with maximum degree d. In fact, any expander can be used
for constructing full graphs.

The universal graph I' on N nodes is obtained as follows. For simplicity, we
will assume that N = 2% — 1. Start the construction with a complete binary tree
on N nodes. Then add edges so that the nodes at level k (a constant specified
later) form a full graph on k nodes. Repeat this for nodes at levels 2k, 3k, ... .
Call the resulting graph T.

Next, add extra edges so that the nodes at levels k, 2k, ... ,log N —s (k divides
log N — s and s is a constant specified later) collectively form a full graph. Call
the resulting graph I';. Finally, insert an edge between any pair of nodes within
distance ¢ of each other, where ¢ is a constant specified later. The resulting graph,
denoted T, is our universal graph. Observe that the maximum degree of any node
in T is no greater than (2d + 3)! which, of course, is a constant because d and ¢
are.

Of course, the construction given is primarily of theoretical interest because
of the large constants. In the following subsections we establish the main result
below.

Theorem 8. Every N node binary tree is a spanning tree of T.

5.1 Flow lemmas

The proof of Theorem 8 is somewhat involved, and requires a few combinatorial
lemmas concerning full graphs and trees. The intuition captured in the following
lemmas may be understood as follows. Suppose that we have mapped a subset
of the nodes of a tree T within a graph G, and we next wish to map a node v of
T onto a node of G in such a way that it remains “close to” its neighbors that
have already been embedded. If there is no place readily available, we can still
find a suitable place for v by “perturbing” the existing mapping slightly to make
room for v. The “fow lemmas” establish conditions under which this can be done
without dilating edges significantly.

Lemma 9. Let G be a full graph with mazimum degree d, and consider any
assignment of packets to nodes of G such that every node of G is assigned at least
[d/2] packets. Then for any disjoint subsets S and T of nodes such that | S |=|T|,
it 18 possible to redistribute the packets so that:
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every packet either stays stationary or moves to a neighbor in G,

the number of packets in each node in S decreases by 1,

e the number of packets in each node in T increases by 1, and

the number of packets in each node in V — (T U S) remains the same.

Proof sketch: The lemma is proved with a simple max-flow/min-cut argument.
Set up a flow problem with a supersource connected to each node in § and a
supersink connected to each node in T'. Assign unit capacity to each edge. Because
G is full, there is a 0 — 1 flow with value | S| between the source and sink. The
flow determines a 1-1 correspondence (along with edge-disjoint paths) from the
nodes in S to the nodes in T. By moving one packet forward along each edge that
has unit flow we can effect a reassignment of packets that satisfies the last three
conditions of the lemma.

Since every node in the flow graph (with the supersource and supersink) has
degree at most d + 1, at most |(d + 1)/2] = [d/2] packets will be removed from
any node of G during the reassignment process. Since every node of G initially
bas [d/2] packets, no packet need ever move more than one step. Hence the
reassignment also satisfies the first condition.

Lemma 10. Let G be an m node full graph with mazimum degree d, and consider
any assignment of packets to nodes of G so that node v; has a; packets, where
a; > [d/2] for 1 < i < m. Then, for any set of numbers {a} |1 < ¢ < m} for
which a; > [d/2] for 1 <1 < m, it is possible to redistribute the packets so that

e every packet 13 reassigned to a node which is at distance at most
max<i<m |@; — a}| from its original location in G, and

o the number of packets assigned to v; changes from a; to a}, for all1 < i < m.

Proof sketch: Apply Lemma 9 max;<i<m |@; — d}| times, each time decreasing
the maximum value of max;<i<m | @i — a}| by one, but otherwise preserving the
hypothesis of the lemma.

5.2 Decompositons revisited

To establish Theorem 8 we use a decomposition strategy different from that in
section 3. The following lemma is a simple extension of the 1/3 : 2/3 sepa.rator
theorem for binary trees and was observed previously in [3].
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Lemma 11. For every constant p < 1/2, there ezists a constant q such that any
m node two-colored binary forest with w nodes of color A can be partitioned into
two sets by the removal of ¢ edges so that each set has at least |pm| nodes and at
least |pw| nodes of color A.

We also require an additional, final lemma below.

Lemma 12. Every N node binary tree T can be embedded within Ty so that:

e every node in levels 0,k,2k,... ,log N — s of T'g is assigned at least [d/2]
and at most c¢; nodes of T, where ¢, is some constant,

e nodes of T are only assigned to nodes in levels 0,k,2k,... ,log N — s of T,

e nodes adjacent in T are assigned to nodes in T separated by distance at
most cg, for some constant cy.

Once Lemma 12 is established, it is easy to complete the proof of Theorem 8.

Proof of Theorem 8. First obtain the embedding of Lemma 12. Next, by

Lemma 10 we can use the edges of I'; — I'g to reassign the nodes of T' within I';
so that:

e every node in levels 0,k,2k,... ,log N — s — k of T'; is assigned
2% — 1 nodes of T,

e every node in level log N — s of T is assigned 2* — 1 nodes of T, and

e nodes adjacent in T are assigned to nodes in I'; separated by distance at
most c3, where c3 < ¢z + 2max(|2° — 1 - [d/2]],|2% - 1 - ¢1]).

At this point, we need only require that s > k and that 2¥ — 1 > [d/2] so that
the conditions of Lemma 10 are satisfied. Since k, s,d, c;, and c; are all constants,
we know that c3 also is constant. We now reassign nodes one more time so that
the mapping from T to I' is 1-1 and onto. This is done by arbitrarily assigning the
nodes of T on levels 0,k,2k,... ,log N — s of '; to their immediate descendants.
Once this is done, the maximum distance in I'; between any two nodes adjacent
in T will be at most c3 + 2s, which is constant. By setting ¢ = c3 + 2s in the
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to the corresponding node of 'y where the enclosing subforest is currently located,
making sure to map at least [d/2] nodes of T to each node on level k in Tp (if
_there are not enough red nodes, then use up some of the white nodes within the
same subforest to make up the total. We will show later that there are always
enough nodes overall so that this is possible).

After the mapping is completed for level k, recolor red all white nodes of T
that are adjacent to nodes already mapped and henceforth regard the collection
of subforests assembled at a single node of I'y as a single forest. Next, repeat the
process used on levels 1,2,... ,k for levels k+1,k+2,... ,2k,... ,log N — s where
s is a constant still to be specified. At every kth level we rebalance and coalesce
forests as on level k, and map all red nodes of T to the corresponding nodes of T'y.
At level log N — s all the unmapped nodes of T (both red and white) are directly
mapped to the corresponding node of I'g. Several details remain to be ironed out;
however, it should be clear that nodes adjacent in T are mapped to nodes which
are at most k levels apart in I'y.

The analysis needed to complete the proof is tedious, but not difficult. We
start by letting r;z be the maximum number of red nodes in any forest after all
partitioning, balancing, coalescing, mapping and recoloring is done at level tk of
To. Similarly, let 2;z be the maximum number of nodes (both red and white) in
the smallest forest at level k.

We will prove by induction that, for ik < log N — s,

Zik 2 2'"‘N/6,a.nd
rie < = 96(1 + r)z—kp-(k'f'ﬂogfd/?ﬂ'!'l)

Observing that ' > [d/2], we note that both statements are trivially true for
i = 0 and N sufficiently large. We next calculate bounds for rjz4+x and zjzix to
proceed with the inductive step.

By Lemma 11, we know that

riar1 S (1-pra+1+g

and therefore, each forest at level ik + k of T'g has at most (1—p)*r;z+ (1+q)/p red
nodes initially. The process of partitioning forests into subforests at level ik + k
cannot increase this value, but redistributing, coalescing and recoloring certainly
can. To measure their effect, we need to bound the number of subforests that are
located at any node following redistribution. This of course depends on the overall
number of subforests, which in turn depends on the size of the smallest subforest.

The size of the smallest subforest at level ik is z;z. Hence, the size of the
smallest forest at level ik+ 1 is at least pz;z — 1. Applying the argument recursively,
we find that the size of the smallest subforest at level ik+k (after all the subdividing
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construction of I', this will mean that T is a subgraph of I', thereby completing
the proof. =

-Proof of Lemma 12. We follow an approach similar to that in section 3. How-
ever, since we are allowed to place only O(1) nodes of T at any one node of T'o,
we cannot afford to bisect the tree at each step because that may require placing
placing ©(log N) nodes of T at the root of I'g. Therefore, instead of bisecting the
tree at each step, we separate it into proportional size components using Lemma
11, and continually balance the sizes of components as the embedding proceeds
towards lower levels of T'g.

Start by picking any [d/2] nodes of T and mapping them to the root (level 0) of
T'o. Color red those nodes of T that are adjacent to one or more of the nodes placed
at the root of I'g (all nodes are initially colored white). Next, fix p to any constant
greater than 1/3 and use Lemma 11 to partition the (as yet unmapped) nodes of
T into two sets, each with at least a fraction p of the total number of unmapped
nodes, and each with at least a fraction p of the total number of red nodes (always
rounded to the nearest integer, of course). One of the sets is distributed to the
left subtree of the root of I'g and the other set to the right subtree. By Lemma
11, no more than ¢ edges connect nodes in the two sets.

No nodes of T will be assigned to the next k — 1 levels of I'g, but we continue to
partition T into smaller and smaller sets. In particular, we first color nodes in the
“left set” of T (those unmapped nodes of T distributed to the left subtree of I'g
which are adjacent to nodes in the right set. We then use Lemma 11 to partition
the left and right sets each into two smaller subsets, one for each grandchild of
the root. Continue in this fashion, coloring nodes red as they become adjacent to
nodes in the opposite set and splitting the forests (sets) into smaller forests until
we have distributed a forest to each node on the kth level of I'g.

Although the nodes are split into roughly equal fractions (p : 1 — p) at each
level, the sizes of forests at the kth level could vary substantially (in fact, anywhere
between p* and (1—p)¥). Therefore, at this stage we balance the sizes of the forests
assigned to each node by redistributing forests among nodes at level k. To achieve
this balance, first use Lemma 11 to partition each forest into [d/2] subforests
(but do not distribute the subforests further down the tree). Next, partition each
subforest whose size is greater than 1/p times the size of the smallest subforest.
Observe that this does not affect the size of the smallest subforest.

We are now ready to apply Lemma 10, with each subforest represented as a
packet. In particular, we use Lemma 10 to redistribute subforests on the level so
that every node ends up with an equal number of subforests (to within one). We
then map all the red nodes of T (i.e., those adjacent to nodes in different subforests)
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at this level is complete) is, for p < 1/2, at least
z._kpk+[log[d/2]'| _ (1 _ p)—l > pk+[log|'d/2]]2—ikN/6 -9

For sufficiently large s (i.e., small enough 1), this is at least prthesld/2Ng—ik N /12
Hence, the number of subforests at this level is no greater than 12x 2 p=(k+[log[d/2]])
The maximum number of subforests located at any node after balancing is there-
fore no greater than

1+ 12 x 2~ Fp~(k+Nlog[d/211) < 94 i 9=k p—(k+(logld/21])

Consequently, the maximum number of red nodes in any forest after rebalancing
and coalescing is at most

((1 -p)fra+ (14 q)/p) 24 x 2~k p=(k+logld/2]])

Since mapping and recoloring can increase this at most by a factor of two, we
have:

Tik+k < 48(1 - p)"r,-,cz"‘p'(""'flotfd/m) +
48(1 + g)2~kp~(k+Tlog[d/211)

By choosing p > 1/3 so that (1 — p)/2p < 1, we have that for k sufficiently
large (in terms of p and d):

Tik+k < %T.‘k +48(1+ q)2"°p‘("+1+n°8rd/2ﬂ)’

and thus,
riksk < 96(1 + g)2 Fp~(k+1+[log[d/2]]) — 1

as claimed.

We next complete the inductive step for z;z4+r. Since the largest and smallest
subforests differ in size by at most a factor of 1/p, the size of the smallest forest
after balancing and coalescing is at least §(N — r'2/¥+¥)2-(+F)  the one-half in
front accounting for the fact that every node has the same number of packets to
within one. After mapping and recoloring, the size of the smalest forest is

zt'k-l-k Z E(N - rlzik+k)2—(ik+k) - rl.

With some additional calculations it can be checked that this is at least 2~ (*+¥) N /6
for p > 1/3 and sufficiently large (but constant) s, thereby completing the proof
of the claim.
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By choosing s sufficiently large, we have shown that every node at levels
0,k,... ,Jog N — s — k of Tg is assigned at least [d/2] and at most r' nodes of T.
Since s is constant, every node at level log N — s of I'g is aassigned between [d/2]
and c¢; nodes, where c; is some constant bigger than /. Moreover, nodes of T are
only assigned to nodes in levels 0,k,... ,log N — s of I'g. Hence it remains only to
show that nodes adjacent in T are assigned to nodes in Iy separated by distance
at most cg, for some constant c;. We already know that cs is at most k plus the
distance subforests are allowed to move during the rebalancing step at every kth
level. By Lemma 10, this distance is at most the largest number of subforests at
any node before rebalancing. By the construction, this is at most some constant
determined by p,d,k and s. m

6 Extensions and conclusions

This paper gives the first non-trivial simulations of structures other than grids
in the hypercube. The decomposition lemma (Lemma 4) for binary trees also
provides optimal embeddings of binary trees within other networks. For example,
we can show that every NV node binary tree can be embedded within an N node
complete binary tree with expansion 1 and dilation O(loglog N). This settles a
conjecture of Hong, Mehlhorn and Rosenberg [11] who showed a lower bound of
Q(loglog N) for this problem. By embedding a complete binary tree within the
shuffle-exchange graph with expansion 1 and dilation 2, we obtain O(loglog N)
dilation for arbitrary trees embedded within the shufle-exchange graph. Similarly,
we have recently shown that an N node complete binary tree can be embedded
with constant expansion and dilation within the FFT network; once again, it
follows that any N node binary tree can be embedded with constant expansion
and O(loglog N) dilation within the FFT graph. We leave open the question
whether these bounds are optimal to within constant factors.

All our results on embeddings within the hypercube extend to bounded degree
graphs with O(1) separators, and are not restricted to binary trees. While our
simulations are optimal to within constant factors, there is much room for reducing
the overhead in expansion and dilation further. It would be satisfying to discover
simpler ways to embed binary trees in the hypercube. For example, we do not
know of any binary tree that cannot be embedded in the hypercube either with
expansion 1 and dilation 2 or with expansion 2 and dilation 1.

The construction of (unbounded degree) universal graphs with few edges for
binary trees based on the decomposition lemma also extend to bounded-degree
trees. We can also construct graphs with O(N log N) edges that are universal for"
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bounded—degree planar graphs with N nodes. We leave open the question whether
this bound is optimal to within constant factors.
An important problem concerns efficient simulations of planar graphs on the
~hypercube. To our knowledge, only the problem of embedding grids has been
studied previously. Planar graphs arise in many scientific applications involving
two-dimensional finite-element analysis. Similarly, little is known regarding lower
bounds on embeddings. For example, we can prove that every N node graph with
minimum bisection (N) requires dilation Q2(log N), the maximum possible. To
our knowledge, no other lower bounds on embeddings in the hypercube are known.
In this paper we have only considered injective mappings of static structures.
Depending upon the application, there are many interesting models. For example,
if the leaves of a binary tree represent active processes and internal nodes are
waiting processes, then only the leaves need be mapped to distinct nodes. In
other applications, the tree may be much larger than the underlying network
in which case we need to minimize dilation as well as maintain load balance.
Embedding dynamically changing structures within the hypercube is important in
many applications, and little is known in this area. Also interesting is the problem
of on-line embeddings, in which the tree to be embedded grows one node at a time.
“We can show that any N node network for which every N node binary tree can
be embedded on-line as a spanning tree must contain Q(N?) edges. In contrast,
“Friedman and Pippenger [10] show that if the size of the tree is small (a constant
‘fraction of N) then O(N) edges suffice.
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