Yale University
Department of Computer Science

Solving Banded Systems on a Parallel Processor

S. Lennart Johnsson and Jack J. Dongarra

YALEU/DCS/TR-519
1987

Parallel Computing 5 (1987) 219-246 219
North-Holland

Solving banded systems
on a parallel processor *

Jack J. DONGARRA and Lennart JOHNSSON

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844,
and Computer Science Department, Yale University, New Haven, CT 06520, U.S.A.

Abstract. In this paper we examine ways of solving dense, banded systems on different parallel processors. We
start with some considerations for processors with vector instructions, then discuss various algorithms for the
solution of large, dense, banded systems on a parallel processor. We analyze the behavior of the parallel
algorithms on distributed-storage architectures configured as rings, two-dimensional meshes with end-around
connections (tori), boolean n-cube configured architectures, and bus-based and switch-based machines with
shared storage. We also present measurements for two bus-based architectures with shared storage, namely, the
Alliant FX/8 and the Sequent Balance 21000.

Keywords. Solving large, dense banded systems, parallel processors, distributed-storage architectures, perfor-
mance measurements, Alliant FX /8, Sequent Balance 21000.

1. Introduction

The solution of banded systems of equations is important in many areas of scientific
computing. We restrict our attention here to matrices that are symmetric positive definite or
diagonally dominant. With the coming of parallel processors, algorithms for the solution of
these problems have been the subject of many studies [1,8,25,28,32]. In this paper we look at an
implementation that uses a partitioning scheme essentially equivalent to incomplete nested
dissection. This approach divides the work into sections, reduces the sections independently in
parallel, performs nearest neighbor communication among processors to compute part of the
solution, and carries out independent operations to determine the complete solution to the
original problem.

2. Sequential case

LINPACK [5] includes routines to solve banded systems of linear equations. The matrices
can be of a general nature or symmetric positive definite. The algorithms for the banded
problem in LINPACK are based on the vector operation from the BLAS [29] called a SAXPY,
(y « y + ax). This operation forms the computational kernel in the form of a rank-1 update of
a submatrix of size m? for a banded matrix A of order N and half bandwidth m during the k th
step of the reduction.

* Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38, and in part by the Office of Naval Research under
Contract N00014-84-K-0043.

0167-8191,/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

220 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 1
Performance for the CRAY X-MP-1 (order 5000. symmetric positive definite matrix)
Half bandwidth LINPACK Mflops improved Improved
CAL BLAS FORTRAN MV CAL MV
8 4 5 11
16 6 12 27
22 7 17 41
44 12 . 40 84
62 15 54 108
128 26 86 141
200 38 103 149

Since much data are updated at each step, this algorithm suffers in terms of performance on
most sequential computers. This effect of poor performance is most pronounced on vector
architectures that have vector registers. On such machines the largest bottleneck is in memory
traffic.

To substantially reduce memory accesses, the algorithm can be reorganized using matrix-vec-
tor multiplication as the computational kernel, instead of rank-1 updates [6,7]. This technique
reduces the number of storage accesses from O(Nm?) to O(Nm) through vectorization.

Table 1 shows the performance differences from this approach.

We can exploit a modest amount of parallelism by performing, say, the matrix-vector
operations in terms of independent inner products. An additional amount of parallelism can be
exploited by factorizing the matrix from both the top and the bottom simultaneously. When the
factorization reaches the middle, a small block matrix must be factored. The backsubstitution
then proceeds from the middle and works toward the top and bottom in parallel. It is
important to note that the number of floating-point operations is exactly the same in this
approach as in the conventional factorization. (This two-way factorization resurfaces from time
to time. Jim Wilkinson describes this as an approach used in the early days of computing to
reduce overhead associated with the looping [4]. LINPACK uses this algorithm to solve
symmetric positive definite tridiagonal systems of equations. Evans and Hatzopolus [10]
describe the algorithm as a folding technique.)

We consider this algorithm as the best we can do on a sequential computer. The amount of
work, in terms of operations performed, is m(m + 1)(N — (2m + 1) /3) additions and multipli-
cations for the factorization of symmetric positive definite matrices and m*(2N — 1) — (4m? —
1)m/3 for an arbitrary banded matrix of size N and half bandwidth m. The number of
additions /subtractions and multiplications for each solve is 2m(2N —m — 1).

3. Parallel algorithms

For computer architectures that provide a large number of processors, algorithms can be
employed that exploit the independence of operations in eliminating single variables and the
independence of operations in eliminating different variables [12,14,19,21,22,30,42,43). For a
narrow banded matrix the potential concurrency is largely due to the independence of
operations in eliminating different variables, whereas for a matrix with a half bandwidth equal
to VN or larger the concurrency due to the independence of operations in the elimination of a
single variable dominates.

If only the complexity of the parallel arithmetic is considered, as would be reasonable for a
shared-memory machine with very high communication bandwidth which allow conflict-free
access to data, then the speedup from concurrent elimination of single variables is linear. The

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 221

speedup is measured as the time for sequential elimination divided by the time for concurrent
elimination. On the other hand, the speedup from exploiting the independence of operations in
eliminating different variables always is sublinear, since more operations are required to find
the solution. The maximum speedup in the latter case is in the range 1/2(N/m)/log(N/m) to
(N/m)/log(N/m) for N/m processors, with a minimum efficiency of O(1/log(N/m)). In the
former case the maximum speedup is m?, with an efficiency equal to 1 [23].

The graph representation of a banded matrix constitutes a perfect elimination graph [34]. and
Gaussian elimination without pivoting constitutes a perfect elimination order. Hence, there is
no fill-in. Concurrent elimination of different variables, on the other hand, generally does not
constitute a perfect elimination order; the total number of arithmetic operations performed and
the storage required by the concurrent algorithm are higher than for the sequential algorithm.
However, the time to solve the banded system should be greatly reduced for sufficiently many
processors. In the case of a tridiagonal system, odd-even cyclic reduction requires approxi-
mately 17N operations compared to 8N for Gaussian elimination, but the parallel arithmetic
complexity for cyclic reduction is 11 log N in 2log N steps (or 12 log N in log N steps).
Classical Gaussian elimination is a sequential method and required 8N operations in 2.V steps.
The two-way Gaussian elimination is also a perfect elimination order. The partial arithmetic
complexity is 4N during N steps.

Unfortunately, for many architectures, ignoring the cost of communication and the effects of
vector features and storage hierarchy is not a good approximation of reality. Communication
bandwidth, overhead in communication, routing conflicts, and bank conflicts, as well as
overhead for vector instructions (should such be available), are important factors in choosing
an optimum algorithm. We will focus on the communication issue. We carry out a simple
analysis for two algorithms exploiting the independence of operations in eliminating a single
variable, and one algorithm exploiting the independence of operations in eliminating different
variables. We discuss ring, mesh, hypercube and shared-memory architectures.

4. Concurrent elimination of a single variable
4.1. One-dimensional partitioning

A one-dimensional partitioning of the matrix in the column or row direction is feasible in
the case of a ring of processors, as shown in Fig. 1.

The partitioning can be done either cyclically or consecutively [27]. In cyclic partitioning by
columns, column j is allocated to processor j mod P, where P is the number of processors
labeled from 0 to P—1. In consecutive partitioning, column j is assigned to processor
(jP/(m+1)) mod P (assuming for simplicity that m+ 1 is a multiple of P). Cyclic and
consecutive partitionings are illustrated in Fig. 2.

Consecutive partitioning is akin to a block-oriented algorithm. It leads to a lower utilization
of the array, but requires fewer communications in a packet-oriented mode of operation where
a block corresponds to a packet.

Fig. 1. A ring of processors with distrib-
uted storage.

222 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Fig. 2. Cyclic and consecutive one-dimen-
cycLic CONSECUTIVE sional partitioning.

In cyclic partitioning a processor first computes the pivot column of the left factor L, then
performs its part of the rank-1 update of the m by m submatrix; in other words, it updates
(m+1)/P—1 columns of length m. After the processor storing the pivot column has
computed a new column of L, it transmits the column to the processor with the next higher
index modulo P (to the right). The receiving processor forwards the column to the next
processor, and performs a rank-1 update on (m + 1)/P columns of length m. Assuming a time
t, for addition/subtraction and multiplication and a time #4 for division, and no vector
features in the processors, the arithmetic complexity is approximately (74 +2(m+1)/P +
1)mt,)N for a nonsymmetric matrix. The communication complexity is approximately (mz, +
7)N, 7 is the communications overhead (startup) and 7. is the transmission time for a
floating-point number. We assume that the architecture is of the MIMD type [11] and that
communication and arithmetic operations are pipelined. The speedup is approximately P if
only the arithmetic complexity is considered, but may be poor if the communication complexity
dominates. That is, if (mt, + 7)N > (14 + 2(m + 1)/P + 1)mt,)N, then P> 2m?t,/(mt + 7).

In consecutive partitioning the processor holding the pivot block, factors it, and transmits
the factor to the ‘next’ processor in a way analogous to the cyclic partitioning. The arithmetic
complexity is approximately (t4+ (3(m+1)/P—P)2m+1)/2Pt,)N for an unsymmetric
matrix and the communication complexity (mt.+ (P/m)7)N. Pipelining of arithmetic and
communication operations is assumed for these complexity estimates. The arithmetic complex-
ity is approximately 1.5 times that of cyclic partitioning for P << m, but the number of startups
in communication is reduced by a factor of P/m.

4.2. Two-dimensional partitioning

In the case of a two-dimensional mesh-configured set of processors, a two-dimensional
partitioning of the matrix can be beneficial [25]. This partitioning can also be performed
cyclically or consecutively. We assume for simplicity that the matrix has the same number of
super- and subdiagonals, and that the processor mesh has VP mnodes in each coordinate
direction. Figure 3 illustrates the matrix partitionings.

In cyclic partitioning the processor holding the pivot element sends it in the column
direction (or row direction) to compute a set of elements of L, then proceeds to compute the
elements of a column of L that it stores ((m+ 1)/ VP —1). The processor that receives the
pivot element forwards it and computes (m+ 1)/ VP elements of the column of L that
corresponds to the pivot element. The communication is confined within columns. As the

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 223

oo|or lozloo} ol ioz|
S o e e e
1o]1t]iz|10] 11]12]10]
—++—-+4-r+
20|21 1222021 |22]20| 21
-4
oolm Ioz|oo|os |02 0olo1 02|
-+ -+
)i |izholi|izlioli | 2|0l
I
20121 |22l 20121 |22 20121 | 22| 20} 21 |
R
|0|lozI
\i

T
|

cYcLic CONSECUTIVE

Fig. 3. Cyclic and consecutive two-dimensional partitioning.

elements of L are computed, they are sent to the ‘next’ processor within the row. The mesh of
processors performs a rank-1 update; each processor updates (m + 1)2/P clements. The
arithmetic complexity for the cyclic partitioning is approximately (z4+ (2(m + 1)/ VP + 1)(m
+1)/VPt,)N for an unsymmetric matrix, and the communication complexity is ((m +
1)/VP t.+27)N assuming concurrent communication in the row and column directions. If
communication is restricted to one direction at a time, then the data transfer time is doubled
and there is a total of N additional startups. The arithmetic complexity is approximately the
same as in the one-dimensional cyclic partitioning, but the communication complexity is
different. The number of elements transmitted over a channel between a pair of processors is
reduced by a factor of VP, but the number of communication startups is doubled.

In the case of two-dimensional consecutive partitioning the processor holding the pivot
block factors it and passes the left factor to the next processor (right) in the same row, and the
right factor to the next processor (down) in the same column. The receiving processor forwards
the factors and performs a forward solve. Then a block rank-1 update, a rank (m + 1)/ VP
update, is performed by all processors. The arithmetic complexity of this block algorithm is
approximately (z4+ (11(m + 1)2/P—9(m+1)/VP +1)3t,)N and the communication com-
plexity ((3(m+1)/VP —1)/2t.+21/P /(m+ 1)) N. The arithmetic complexity is approxi-
mately twice (11,/6) that of cyclic partitioning. The number of startups is reduced by a factor of
(m+1)/VP compared to the two-dimensional cyclic partitioning, and by a factor of VP /2
compared to the one-dimensional consecutive partitioning. The time for transfer of matrix
elements is approximately 1.5 times that of the two-dimensional cyclic partitioning.

4.3. Boolean n-cube

In a boolean n-cube multiprocessor [38] the processing nodes form the corners of a
n-dimensional boolean cube. Each node has a fanout of n; the diameter is n, the average
distance between nodes n/2, the total number of edges 72"~ ", and the number of disjoint

224 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

paths between any pair of nodes n [25,36]. A boolean cube can simulate a ring and
two-dimensional mesh preserving the nearest-neighbor connection property by using a binary-
reflected Gray code [35], as observed, for example, in [26,31]. Of the partitioning strategies
discussed above, consecutive two-dimensional partitioning is preferable if the startup times
dominate the time for arithmetic, whereas cyclic two-dimensional partitioning is preferable if
startup times can be ignored.

In the n-cube there is also the potential for reducing the data transfer time by using the
additional communication paths between a pair of nodes [17,24,36]. Moreover, a boolean
n-cube can simulate many other graphs than rings and meshes with no (or at most a constant)
slowdown. In particular, complete binary trees [2,4,26] can be embedded effectively, and
algorithms based on the divide-and-conquer strategy, such as (block) cyclic reduction and
nested dissection-based elimination schemes, are candidates for efficient boolean n-cube
algorithms. The partitioning algorithm described in the next section belongs in this category of
algorithms.

Since the partitioning method leads to a reduced block tridiagonal system, we now indicate
how a (block) tridiagonal system can be solved effectively on a boolean n-cube (see [20,26] for
details). The mapping of the block rows uses the binary-reflected Gray code for the initial
assignment of partitions to processors. A block cyclic reduction algorithm is used to exploit
concurrency. By the Gray code embedding and the first reduction step only implies nearest-
neighbor communication. It can be shown that the communication in subsequent steps is
always between processors at distance 2 from each other. This property can be used for an
in-place algorithm. It is also possible to divide the distance 2 communication into two
nearest-neighbor communications such that after an exchange step the equations. participating
in the next reduction step are in a subcube of half size. Hence, during the reduction process,
subsets of equations are recursively assigned to subcubes such that any subset is mapped to a
subcube in a binary-reflected Gray code order. The recursive assignment requires a simple
exchange operation between certain adjacent processors. Each processor can determine whether
it will perform an exchange operation and with what processor from its address and also the
reduction (backsubstitution) step to be performed. The same local information suffices to
determine the communication for the reduction (backsubstitution) operations themselves. The
exchange algorithm moves even equations to even processors (and odd equations to odd
processors). The considered bit-field is reduced by one for each reduction step. One step of the
exchange algorithm is illustrated for a 3-cube in Fig. 4.

In the n-cube algorithms based on binary-reflected Gray codes, full advantage can be taken
of truncated cyclic reduction. Each reduction step is carried out on all relevant equations
during the same time step. Hence, truncating the reduction after r <n steps reduces the total
time proportionally.

3 2 2 3 Fig. 4. Recursively assigning equations to
nodes through exchange operations pre-
EXCHANGE serving adjacency.

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 225

STORAGE

Fig. 5. Global-storage architecture with a
bus.

The block cyclic reduction algorithm as outlined above exploits the independence of
operations in the elimination of variables corresponding to different blocks. It is also possible
to exploit the independence of operations for the elimination of a single variable if additional
processors are available. A two-dimensional mesh is suitable for the latter form of concurrency.
By assigning log 3m* dimensions of the boolean cube for the embedding of 3m X m meshes
and log P dimensions for the partitions, both forms of concurrency can be maximally
exploited.

We will analyze the complexity of the partitioning method in some detail in Section 5. For
further details see [23,26].

4.4. Global storage architectures

For global storage architectures there are two basic approaches: the use of a common bus
for processor-to-storage communication (Fig. 5), and switch-based architectures (Fig. 6).

The bus type of global-storage architecture is typical when the number of processing
elements in few, as in the CRAY’s, Sequent Balance 21000, Encore Multimax, and Alliant

SWITCH

Fig. 6. Global-storage architecture with a
switch.

226 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 2

Partitioning Rel. time for Rel. time for Rel. time for
arithmetic comm. startups data transfer

Cyclic 1-d 1.0 m/2VP VP

Cyclic 2-d 1.0 m/VP 1

Consecutive 1-d 1.5 \/}_’/2 \/}_"

Consecutive 2-d 2 1 B=VP /m)/2

Global storage, bus 1.0 2m/\P 2my/P

Global storage, switch 1.0 2 2m /P

FX /8 computers. The switch type of global storage architectures is typical for architectures
"conceived as highly parallel, as in the NYU Ultracomputer [15,37], the RP3 by IBM [33], and
the BBN Butterfly [3].

In an architecture with global storage and limited local storage the computations for
exploting the independence of operations in the elimination of a single variable can be
organized such that the processors first share in the computation of a new column of L, then
share the computation for the rank-1 update. The arithmetic complexity is (t3+(@2m+
1)m/Pt,)N. The communication complexity for the bus architecture is (max((m + 1)? /Pt ,(m
+1)%1,) + 1, + (1es/tep P+ 1)T)2N, where 7, is the time to transfer one floating-point num-
ber to or from a processor and . the same time for the storage. For the switch-based
architecture the communication time is ((m + 1)?/Pt.27)2N. More accurate models of the
Alliant FX series are presented by Jalby and Meier [18], who also describe efficient dense
matrix routines for that architecture. Sorensen [40] has devised effective matrix routines for the
HEP [9], which is a switch-based architecture with local storage.

4.5. Complexity analysis for the concurrent elimination of a single variable

The complexity estimates for the concurrent elimination of a single variable on different
architectures can be summarized as in Table 2.

The conclusion from the analysis so far is that for the distributed storage architectures the
cyclic partitioning yields the lowest arithmetic complexity because of less idle time. The total
number of arithmetic operations is independent of the partitioning. Cyclic two-dimensional
partitioning has the smallest time for data transfer because of the highest degree of pipelining.
However, cyclic partitioning suffers from a large number of communication startups, and with
significant startup times consecutive partitioning may yield a lower total complexity.

The algorithms have been described for a consistent use of the cyclic and the consecutive
storage schemes. For a given set of architectural parameters the minimum time is likely to be
achieved by a combination of the two strategies.

5. Concurrent elimination of variables

For the concurrent elimination of different variables the algorithm in [21] partitions the
system of equations into sets of consecutive equations (see Fig. 7). The computations in
different sets can be performed independently to a very large extent. The algorithm is a variant
of substructured elimination or incomplete nested discussion.

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 227

8
N \
\ Fig. 7. Partitioning of the matrix.

The algorithm proceeds in four phases:
Phase 1: Factor each partitioned matrix.
Phase 2: Apply factors to pieces of the matrix to decouple the solution.
Phase 3: Form a reduced matrix, and solve this matrix problem forming part of the solution.
Phase 4: Backsubstitute to determine the remaining parts of the solution.
Each of these phases is discussed in detail in the following subsections.

5.1. Phase 1

In Phase 1, each section of the matrix (block 4,) is decomposed. This phase can be carried
out on each section totally independently of the other sections; there is no communication
between sections. At the end of this phase each section has the LU decomposition as part of the
matrix. The amount of work for each section is m(m + 1)(k —(2m+ 1)/3) addition and
multiplications for symmetric positive definite matrices and m*(2k — 1) — (4m*—1)m/3 for an
arbitrary banded matrix of size k and half bandwidth m, where k is the order of the matrix
A; -

5.2. Phase 2

In Phase 2, the factors generated in Phase 1 are applied to the matrix. This can be viewed as
premultiplying each section of the matrix in Fig. 7 by diag(4 ,.T‘l, I,). The resulting matrix has
fill-in from G; < 4; C; and F, < 4 ,.jllA i The fill-in is diagrammed in Fig. 8. Again in this stage

there is no communication between sections. The operation count for this phase is 2m(Qk — m
—1)@m + r) for r right-hand sides.

5.3. Phase 3

Phase 3 has two parts. First, the system is decoupled and a reduced system is solved, forming
part of the original solution. This part of Phase 3 involves zeroing submatrix 4,, . Zeroing can
be accomplished by simple block elimination with the block above 4, . This results in some
fill-in below G, of the form G/ « G/ — 4, G, and a modification of 4,,, such that 4, < 4, —
A, F,. These operations are independent for each i and can proceed in parallel for all sections.
No communication is required.

The second part of Phase 3 involves zeroing B, using the block from below. This results in a

full-in above F,,, of the form F/, < F/’,— B,F,,; and modification of A4, such that

228 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

2] M
22 | B

i+l

/

Fig. 8. Matrix after Phase 2.

A, < A,,— B,G,,,. Here interpartition communication must take place to perform the update
of block A4, and forming of blocks F

At this point the matrix has the form shown in Fig. 9.

The last set of m rows of each partition together form a system of mP equations in the last
m variables of each partition. The matrix has been decoupled, and a reduced block tridiagonal
matrix can be formed. When this block tridiagonal system is solved, the partial solution to the
original matrix problem at these positions are formed.

The amount of work for this portion of the algorithm depends on the size of the block
tridiagonal system and the method used to solve the system. The blocks are of size m X m, and
there will be P block rows, where P is the number of partitions made in the original matrix. If
we fix the order of the original matrix and look at what happens as we increase the number of
partitions, we see that more effort will go into solving the reduced system.

The communication complexity and the parallel arithmetic complexity for the solution of the
block tridiagonal system depend on the architecture [26]. The number of block row communi-
cations in sequence depends on the method chosen and the architecture. It varies from « log P,

2
)

i+l
Fig. 9. Matrix after the first part of Phase
3.

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 229

where a falls in the interval 1-8 for block cyclic reduction and suitable architectures such as
binary tree, shuffle-exchange, and boolean cube interconnected processors. For shared-memory
architectures it is necessary that the bus/switch/storage bandwidth is proportional to 2P to
realize 2 log P communication start-ups. For two-way block Gaussian elimination the number
of block row communications is P for a linear array and 2 P for a shared-memory architecture.
The parallel arithmetic complexity of block cyclic reduction is (26m>/3 + 8m?r)(log P — 2) +
16m> /3 + lower order terms and for two-way Gaussian elimination (8°/3 + 3m?r)(P — 1) +
lower order terms, r is the number of right-hand sides. The parallel arithmetic complexity of
block cyclic reduction is always lower than that of two-way block Gaussian elimination. On
most architectures the number of communication startups in sequence is also less for block
cyclic reduction.

Detailed complexity estimates for both block Gaussian elimination and block cyclic reduc-
tion are given in [21] for a variety of architectures.

5.4. Phase 4

Given the solution to the block tridiagonal system, the complete solution to the original
matrix can be found by a simple backsubstitution. Phase 4 can be done without communication
of information from one section to another. This phase requires 4mkr operations, where r is the
number of right-hand sides.

5.5. Complexity of concurrent elimination of different variables through partitioning

The parallel arithmetic complexity corresponding to the above partitioning strategy is given
below:
Phase 1: m(m+ 1)(N/P —m— (2m+ 1)/3) for a symmetric matrix,
m?(2(N/P — m) — 1) — (4m* — 1)m/3 otherwise;
Phase 2: m(2(N/P —m)—m—1)(3m+2r);
Phase 3: 2m(m + 1)(m + r) + block trid. solve for a symmetric matrix,
2m(m + 1)(2m + r) + block trid. solve for an unsymmetric matrix;
Phase 4: 4m(N/P — m);
where

P =number of partitions,

N =order-of the matrix,

m =half bandwidth,

r =number of right-hand sides,
P <N/m.

For the above complexity estimates it is assumed that there is one processor per partition.
The complexity of Phases 1, 2, and 4 has terms inversely proportional to the number of
partitions, whereas the complexity of Phase 3 has terms that increase as a function of P. Hence,
there exists a trade-off between time for the solution of the reduced system and the time
required in the substructured elimination. The optimum number of partitions for linear arrays
and shared-memory systems with a bandwidth independent of P is of order \/N/m, whereas
for boolean cubes, binary trees, shuffle-exchange networks and shared-memory systems with a
bandwidth proportional to P the optimum number of partitions is of order N/m [30].

The parallel arithmetic complexities can be reduced further by performing operations on
blocks concurrently, i.e., by parallelizing dense matrix factorization, solve and multiplication
along the lines described for banded systems in Section 4. Such parallelization leads to
increased communication complexity.

230 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor
5.6. Algorithm properties

The partitioning strategy yields algorithms that have two significant properties:

(1) If the original matrix is symmetric, then the reduced block tridiagonal matrix is
symmetric [21]. This is not the case with the partitioning employed by [8,28]. (Also if the
original is diagonally deminant, so is the reduced system.)

(2) If the matrix is symmetric, then the condition number of partitioned matrices, (4,,), is
never worse than that of the original matrix. This follows from the eigenvalue interacting
properties of symmetric matrices.

The reduced system can be solved using block cyclic reduction. The advantage is that this
phase can easily be parallelized.

The partitioning algorithm described here uses an elimination order that can be obtained
through incomplete nested dissection [13]. A banded matrix with half bandwidth m corre-
sponds to a graph in which each node is connected to ‘all its preceding m nodes as well as to all
its succeeding m nodes, except for the first and last sets of m nodes. Separators are of size m.
The block matrices 4;,, correspond to the edges between the nodes of a separator and the
adjacent left and top triangular blocks to edges to one set of n/P — m nodes. Choosing
separators as bisectors recursively yields a complete binary tree as an elimination tree (Fig. 10).

The elimination order of the algorithm corresponds to the elimination of the leaf variables
-prior to the elimination of any variables of the internal nodes of the elimination tree. No
particular order is implied for the elimination of variables in different leaf nodes, but the
variables within a leaf node of the elimination tree are eliminated in order of increasing (or

Fig. 10. Elimination tree generated by
recursive bisection (incomplete nested dis-
cussion).

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 231

decreasing) labels. The elimination of the variables corresponding to the internal nodes from
the leaves towards the root corresponds to the elimination order of block cyclic reduction,
whereas an elimination in inorder yields block Gaussian elimination [27].

6. Complexity of the different strategies for concurrent elimination

The number of communication startups for the partitioning method described in Section 5 is
potentially a factor of am log P/(2NVP) less than that of the consecutive two-dimensional
partitioning, which has the fewest startups of the algorithms exploiting the independence of
~ operations for the elimination of a single variable. The data transfer may be a factor of

am log P/(NYP) times that of the consecutive two-dimensional partitioning. To fully realize
this potential, the communication bandwidth of the architecture must be proportional to P, a
configuration most easily accomplished in a network architecture.

We conclude that with respect to the communication complexity, algorithms exploiting the
independence of operations for eliminating different variables offers substantial reductions
compared to algorithms exploiting the independence of operations for eliminating single
variables for most banded matrices.

The comparison with respect to the arithmetic complexity is not so favorable. The substruc-
tured elimination causes substantial fill-in. Indeed, the arithmetic complexity of Phases 1 and 2
alone is approximately 4 times that of the sequential algorithm for the general case (for

'N/P — m equations), and 7 times for the symmetric case. Hence, the efficiency
(speedup /(number of processors)) is limited, and the number of processing elements required
to achieve any speedup is expected to be at least 5 to 10 if communication complexity and the
time for the reduced system solve are included. A very modest speedup can be expected on
current global storage with bus architectures because of the number of processors available.
The situation for distributed storage architectures is more favorable in that they offer a larger
number of processing elements.

Both kinds of concurrency can clearly be exploited simultaneously. The arithmetic complex-
ity is reduced and the communication complexity increased. Exploiting both forms of concur-
rency may, however, represent a problem with respect to available compilers on some machines
unless some other device is used to gain access to the parallel features [9] (such as the Alliant).

7. Experiments

The partitioning algorithm has been implemented on two shared-memory systems, the
Sequent Balance 21000 (with 10 processors) and an Alliant FX /8 (with 8 vector-processors,
with a vector register size of 32 elements) '. Results from the methods described in Section 4
are presented in the following two subsections.

7.1. Concurrent elimination of variables

7.1.1. Phase 1: Factorization

For Phase 1, a LINPACK routine is called. The peak performance of the band algorithm
from LINPACK on the Alliant FX/8 is about 3 Mflops [18], which is also achieved for some
phases of the algorithm. The vector features and the cache of the architecture have interesting
effects on the performance, as indicated by the data for one processor as given in Table 3.

1 For the case m =1 (tridiagonal systems) also on the Intel iPSC/d7 and the Connection Machine [16].

232 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 3
Execution time for factorization (in' seconds) on Alliant FX /8, one processor used
m P=1 P=2 P=4 P=8 P=16
2 N=1000 0.18 0.18 0.20 0.18 0.18
N = 2000 0.40 0.38 0.38 0.40 0.40
N = 4000 0.77 0.77 0.77 0.78 0.80
N = 8000 1.53 1.55 1.55 1.55 1.60
8 N=1000 0.42 0.42 0.40 0.40 0.37
N = 2000 0.83 0.83 0.85 0.83 0.83
N = 4000 1.67 1.68 1.70 1.70 1.75
N = 8000 337 3.40 3.43 347 3.63
16 N =1000 0.80 0.80 0.77 0.68 0.53
N = 2000 1.62 1.58 1.57 1.53 1.45
N = 4000 - 3.20 3.18 322 3.23 3.30
N = 8000 6.47 6.47 6.50 6.63 6.97
32 N=1000 1.72 1.63 1.40 0.98 0.33
N = 2000 3.47 342 317 2.70 1.90
N = 4000 7.05 6.85 6.77 6.30 5.38
N = 8000 14.55 14.68 14.65 14.92 15.55

For a small bandwidth the effect on the execution time due to an increased number of
partitions is small. The total number of arithmetic operations is approximately 2m?*(N — (P —
1)m). The overhead in managing loop iterations seems to dominate. But, for a half bandwidth
of 32, the number of arithmetic operations is reduced significantly. The reduced number of
arithmetic operations is part of the explanation for the reduced execution time for increasing P
even if only one processor is used for the factorization. However, the reduction is much larger
than predicted from the number of arithmetic operations alone as seen from Table 4. The
running time is normalized to the time for P =1 for each N and m. The measured relative time
is given first, the predicted (1 — (P — 1)m/N) second.

Table 4
Relative execution time (measured:predicted) for factorization on Alliant FX /8, one processor used
2 N=1000 (1:1) (1.11:1) (1:0.98) (1:0.97)
N =2000 (0.95:1) (0.95:1) (1:0.99) (1:0.98)
N = 4000 1:1) 1:1) (1.01:1) (1.04:0.99)
N = 8000 (1.01:1) - (1.01:1) (1.01:1) (1.05:1)
8 N=1000 (1:0.99) (0.95:0.98) (0.95:0.94) (0.88:0.88)
N =2000 (1:1) (1.02:0.99) (1:0.97) (1:0.94)
N = 4000 (1.01:1) (1.02:0.99) (1.02:0.99) (1.05:0.97)
N = 8000 (1.01:1) (1.02:1) (1.03:0.99) (1.08:0.99)
16 N =1000 (1:0.98) (0.96:0.95) (0.85:0.89) (0.66:0.76)
N = 2000 (0.98:0.99) (0.97:0.98) (0.94:0.94) (0.90:0.88)
N = 4000 0.99:1) (1.01:0.99) (1.01:0.97) (1.03:0.94)
N = 8000 1:1) (1:0.99) (1.02:0.99) (1.08:0.97)
32 N=1000 (0.95:0.97) (0.81:0.90) (0.57:0.78) (0.19:0.52)
N = 2000 (0.99:0.98) (0.91:0.95) (0.78:0.89) (0.55:0.76)
N = 4000 (0.97:0.98) (0.96:0.98) (0.89:0.94) (0.76:0.88)

N =38000 (1.01:1) (1.01:0.99) (1.03:0.97) (1.07:0.94)

233

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

‘d JO uonounj e se 10ss3001d U0 UO UONEZIIOE] JOJ dwn AnedY 11 “Sig

suo1}1yod jo dequnu
0°st o°st 0°¥1 o°gt ozt o'un o.m- o.bn a..o o.-s 0°9 0°s g o’s) 4

[l ' i 1 I A 'l i 'l A

o
0008-N'"Zg-u" o [“
B 000y=NZe=0_a | 4
~_ 000Z-N‘ce=0"m_ (29
~ 000T=N‘gs=d"c | *§
~ 0008=N'9T-0 & | &
. 000b=N"91=U_ 1 fo§
~_ 0007=N"9T=0 e [@ 2
e 000I-N‘SI=W o | %
e 000B-N78=W > | o 8
> 000Y=N"8=0 0 [a&
~ MD0Z=N8=" & | &
T~ oooT/wm:H o o3
~_ 0008=N"2g=W_x_ ['4
B e Z000y-N'Z=u o | T E
—-— ~. 0002-NTe-w"v | @
T . 000I-N‘e-u "o o™
——— ~~. XJNT :
of
Io‘ml

0’1

U
1t

pejopeyd

-
.
N

234 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 5
Floating-point operations per second (kflops) for factorization on Alliant FX/8, one processor used
m P=1 P=2 P=4 P=8 P=16
2 N=1000 44 -4 40 44 43
N = 2000 40 42 42 40 39
N = 4000 42 42 42 41 40
N = 8000 42 41 41 41 40
8 N =1000 303 301 313 305 314
N = 2000 308 307 298 301 294
N = 4000 306 304 299 298 286
N = 8000 304 301 298 293 279
16 N =1000 633 626 635 686 794
N = 2000 629 641 638 639 643
N = 4000 638 640 629 620 593
N = 8000 632 631 627 611 575
32 N=1000 1164 1202 1335 1725 4039
N = 2000 1168) 1172 1236 1731 1779
N = 4000 1156 1183 1184 1244 1390
N = 8000 1123 1110 1106 1074 1008

The effect on performance of an increased value of P is most dramatic for m = 32, but
significant even for m =16. For large values of N (N =28000 in our experiments) the
performance degrades with an increased number of partitions, but for fewer than N = 4000
equations the improvement is markedly better than predicted from arithmetic work alone.
Figure 11 illustrates this point.

The execution rate, number of floating-point operations per second, increases with decreas-
ing N for all values of P and m, see Table 5. The largest dependence on N is measured for
m=32 and P=16. On the Alliant FX/8 using only FORTRAN the maximum observed
floating-point rate was 4 Mflops for 1 processor, and the lowest was 40 kflops a difference of a
factor of 90. For 8 processors the maximum floating-point speed for factorization using
LINPACK varied from 193 kflops (m=2) to 16.1 Mflops (N = 2000, m = 32). The perfor-
mance can be improved considerably by careful data management and assembly coding [18].

The rate of floating-point operations is shown in Fig. 12.

The minimum execution time for factorization on 2, 4 and 8 processors is given in Table 6.
The numbers within parentheses gives the number of partitions for which the minimum time
was achieved. -

The speedup is summarized in Table 7. Though the execution times are repeatable the total
execution times for N and m small is cause of some imprecision in the speedup figures. The
efficiency for P =4 is in the range 75-90%. For P = 8 the efficiency is rather unsatisfactory,
55-85%.

For the Sequent Balance 21000, which does not have vector features, the measured
performance increase for Phase 1 as a function of the half bandwidth was a factor of 6 for
m =2 to m = 32. The actual floating-point performance increased from about 5 kflops to about
30 kflops per processor. The execution time was proportional to the size of a partition.

The speedup as a function of the number of partitions for Phase 1 was proportional to P for
all values of m and N for the Alliant, except for N =8k and m =2, which produced
anomalous data, probably because of the cache conflicts. The speedup for the Sequent Balance
21000 was superlinear for m = 32. The speedup increased with decreasing system size. The
speedup for m = 2 was slightly sublinear for N = 2k and strongly sublinear for smaller systems.
We cannot account for this phenomenon.

235

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

‘uonez110108) uunp Jossadold suo uo paads jurod-3uneoly padNyoy 7L Si1g

suo1313Jod jo Jequnu

0°st 0°st o.w- o°ct o021 o°l 0°01 0°s 0‘¢ 0°4 0’9 o°s

o
.
[2]
o
.
~N
o
.
-

()8 4

N 1 A 1 A 4 A A A S 1 +
o
&

0008-N mmle o

000¥=N"_ 2e="" o

0002-N“2s=0"m
000T=N‘gse-T "1
0008-N"91-4
000%=N'91-% 0O
0007=N"91-u
000T=N"g1-u
0008-N" g=u
0007 =N"g=U
000Z=N" =W
0001=N78=u
~0008=N“2=u
~000E=N"Z=" "
_0002~N’ N4$A|m|

“000T-N‘g-¥ o
X3ANI

m]y::]

DXDDDXDQ

* »
.Jl. B——a—-

B 1
*00SC 0°000C ©0°00SZ 0°000Z 0°00S1 0°0001

B

0°005% 0°000F O

2od

qouedo qu

d suoq

0°00S 0°0
_Buqqo014

(988 /8007 43) puodes Je

236 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 6
Execution time for factorization (in seconds) on Alliant FX /8
m 2 proc. 4 proc. 8 proc.
2 N=1000 0.08 (4) 0.05 (16) 0.033 (16)
N = 2000 0.18 (4) 0.13(16) 0.083 (16) :
N = 4000 0.38 (2,4,8,16) 0.25 (16) 0.17 (16) i
N = 8000 0.77 (2,4) 0.52 (16) 0.33 (16)
8 N =1000 0.20 (8.16) 0.10 (4,8,16) 0.067 (8.16)
N = 2000 0.42 (4,8) 0.22 (4,8) 0.12 (8,16)
N = 4000 0.85 (2,4,8) 0.45 (4,8) 025 (8)
N = 8000 1.70 (2) 0.92 (4,8) 052 (8)
16 N =1000 0.26 (16) 0.13(16) 0.083 (16)
N = 2000 0.75 (16) 0.38 (16) 0.25 (16)
N = 4000 1.62 (2) 0.88 (4,8) 0.57 (8,16)
N = 8000 3.28 (2) 1.80 (4) 118 (8)
32 N=1000 0.18 (16) 0.10 (16) 0.083 (16)
N = 2000 1.00 (16) 0.57 (16) 0.38 (16)
N = 4000 2.80 (16) 1.65 916) 1.18 (16)
N = 8000 7.80 (2) 4.72 (16) 347 (8)

7.1.2. Phase 2: Local solution

The essential computation in Phase 2 is a solve operation in each partition. Fill-in is
generated, and the total amount of work increases with P approximately as 6m>N(1 — 1/P).
- Table 8 shows the measured running times for Phase 2 with relative running times normalized
to P =2 given within parenthesis.

As seen from the table the growth rate predicted from the arithmetic complexity alone is
fairly accurate, except for N <8000 and M > 8. The approximate rate of floating-point
operations varies as shown in Table 9.

Table 7
Speedup on Alliant FX /8
m P=2() P=4(15) P=8(175) P =16 (1.875)
2 N=1000 0.13 (1) 0.18 (1.38) 0.18 (1.38) 0.20 (1.54)
N = 2000 0.27 (1) 0.37 (1.37) 0.40 (1.48) 0.42 (1.56)
N = 4000 0.55 (1) 0.72 (1.31) 0.80 (1.45) 0.83 (1.51)
N = 8000 1.10 (1) 1.47 (1.324) 1.62 (1.47) 1.67 (1.52)
8 N =1000 0.50 (1) 0.68 (1.36) 0.73 (1.46) 0.73 (1.46)
N = 2000 1.05 (1) 1.43 (1.36) 1.57 (1.50) 1.58 (1.50)
N = 4000 212(1) 2.98 (1.41) 3.28 (1.55) 3.33(1.57)
N = 8000 433 (1) 6.10 (1.41) 6.87 (1.59) 7.02 (1.62)
16 N =1000 1.23 (1) 1.62 (1.32) 1.63 (1.33) 1.37(1.11)
N = 2000 2.55(1) 3.58 (1.40) 3.70 (1.45) 3.47 (1.36)
N = 4000 5.20 (1) 7.50 (1.44) 8.22(1.58) 7.88 (1.52)
N = 8000 10.57 (1) 15.45 (1.46) 17.38 (1.64) 17.58 (1.66)
32 N=1000 3.62 (1) 440 (1.22) 3.67(1.01) 1.78 (0.49)
N = 2000 7.55 (1) 10.57 (1.40) 10.07 (1.33) 7.55 (1.00) _
N = 4000 15.37 (1) 22.20 (1.44) 24.37(1.59) 21.28 (1.38)

N = 8000 31.03 (1) 46.15 (1.49) 52.65 (1.70) 52.07 (1.68)

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 237

Table 8
Measured running times (in seconds) for solve on Alliant FX /8, one processor used
m P=2Q1) P=4(15) P =8(1.75) P =16 (1.875)
2 N=1000 013 (1) 0.18 (1.38) 0.18 (1.38) 0.20 (1.54)
N = 2000 0.27 (1) 0.37 (1.37) 0.40 (1.48) 0.42 (1.56)
N = 4000 0.55 (1) 0.72 (1.31) 0.80 (1.45) 0.83 (1.51)
N = 8000 1.10 (1) 1.47 (1.324) 1.62 (1.47) 1.67 (1.52)
8 N=1000 0.50 (1) 0.68 (1.36) 0.73 (1.46) 0.73 (1.46)
N = 2000 1.05 (1) - 1.43(1.36) 1.57 (1.50) 1.58 (1.50)
N = 4000 212 (D) 2.98 (1.41) 3.28 (1.55) 3.33(1.57)
N = 8000 4.33 (1) 6.10 (1.41) 6.87 (1.59) 7.02 (1.62)
16 N =1000 1.23(1) 1.62(1.32) 1.63(1.33) 137 (1.11)
N = 2000 2.55(1) 3.58 (1.40) 3.70 (1.45) 3.47 (1.36)
N = 4000 5.20(1) 7.50 (1.44) 8.22 (1.58) 7.88 (1.52)
N = 8000 10.57 (1) 15.45 (1.46) 17.38 (1.64) 17.58 (1.66)
32 N=1000 3.62(1) 4.40 (1.22) 3.67(1.01) 1.78 (0.49)
N = 2000 7.55(1) 10.57 (1.40) 10.07 (1.33) 7.55 (1.00)
N = 4000 15.37 (1) 22.20 (1.44) 24.37 (1.59) 21.28 (1.38)

N =8000 31.03 (1) 46.15 (1.49) 52.65 (1.70) 52.07 (1.68)

The floating-point rate generally increases with m and P, and decreases as a function of N. L
For m =2 the rate is about 3 times higher than the factorization rate, approximately 40%
higher for m =8, about the same for m =16, and only 65% of the rate for factorization for
m = 32. The rate varies by a factor of 8 (compared to a variation by a factor 90 for the
factorization). The floating-point rate is shown in Fig. 13.

The speedup for the solve routine if the number of partitions matches the number of
processing elements is expected to be 1.5, 3, 7, and 15 for P=2, P=4, P=38, and P =16,
respectively, compared to the one-processor case (with the corresponding value of P). Note
that the total work increases with P. The speedup with P being equal to the number of

Table 9
Floating-point operations per second (kflops) for solve on Alliant FX /8, one processor used
m P=2 P=4 P=8 P=16
2 N=1000 122 131 151 142
N = 2000 118 129 138 139
N = 4000 116 133 139 143
N = 8000 116 130 138 143
8 N=1000 406 436 449 427
N = 2000 391 _ 425 441 444
N = 4000 390 416 433 445
N = 8000 383 407 419 433
16 N =1000 619 668 691 666
N = 2000 612 638 683 695
N = 4000 608 624 648 687
N = 8000 602 614 629 649
32 N=1000 782 862 915 740
N = 2000 790 804 879 953
N = 4000 796 806 813 891
N = 8000 799 796 793 816

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

238

*J05$3001d U0 U0 A0S pIEMYOB(Q puE pIemioj jo ael jutod-Suneolq ‘g1 ‘314

suo13130d jo Jequnu

0’9l 0°s! 0°¥1 o°€l ozl o'n 0°01 0°6 0°'e 0°L 09 0°S oy o’ 0z
[A L ' 'l ' ['l ' ' 'l A ' L L.
ee——— == = *

0008-N'2g-%_ o

000%=N c5=4_1o -

000T=N'ce=u_ =

000T=-N"2¢~0" @

0008=-N"9I-¥ @ 5

000b=N‘S1=w O

boom; 1)

000T=N‘91=W_O —

0008=N"8=% \ ka\nm\\\\\n\h\#
5 St i == -

00QZ=N"8=W_"2a

000T=N"8=%_0

0008=N"g=%_x

000%=N"c-u a

000Z-N‘2g=w v
- 0001-N‘g=W o @ —
¥ L
mv/I/

T—_ - - - - - - - - - S e
S S —=
l.ll\l.l\.\‘\l\l\}l!l/l/ . \\\\\\\:\ \.ﬁ\.\

o«-—— T T A

- ——

-

0°006 0°008 0°00/ 0°008 O'N'E 0°00F 0°00¢ _0°00Z 0°001
(oes/8doq3) puoses ued suoqipusedo quiod_Buqqooqy

1

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 239

Table 10
Execution times (in seconds) for solve on Alliant FX/8
m) 2 proc. 4 proc. 8 proc.
2 N=1000 0.10 (16) 0.067 (16) 0.033 (16)
N = 2000 0.23 (8.16) 0.15 (16) 0.10 (16)
N = 4000 0.47 (16) 0.30 (16) 0.20 (16)
N = 8000 0.93 (16) 0.62 (16) 0.40 (16)
8 N=1000 0.40 (16) 0.20 (16) 0.12 916)
N = 2000 0.88 (16) 0.47 (16) 0.30 (8.16)
N = 4000 1.87 (16) 1.02 (16) 0.62 (8.16)
N = 8000 3.97 (16) 2.13(16) 1.27 (8.16)
16 N=1000 0.78 (16) 0.42 (16) 0.25 (16)
N = 2000 1.92 (16) 1.07 (16) 0.70 (16)
N = 4000 4.47 (16) 2.47 (16) 1.58 (16)
N = 8000 9.73 (16) 5.27 (16) 3.37(16)
32 N=1000 0.98 (16) 0.53 (16) 0.32 (16)
N = 2000 4.27(16) 2.45 (16) 1.65 (16)
N = 4000 12.25 (16) 6.87 (16) 4.58 (16)
N = 8000 28.35 (16) 15.52 (16) 10.45 (16)

partitions is P/(3m) compared to the sequential algorithm, which amounts to a slow-down for
the cases reported here. The figures in parenthesis in Table 10 for the execution time for the
different number of processors give the numer of partitions for which the minimum execution
time was achieved. The fact that P = 16 seemingly always is the best of the considered values is
in part due to the fact that the compiler failed to properly parallelized one loop. The speedup is
summarized in Table 11.

The speedup for 2 processors is 80-100% of the theoretical value,for 4 processors 60-100%,
and for 8 processors 40-80%. Part of the reason for the discrepancy between the expected
speedup and the measured speedup for the solve phase is due to the characteristics of the

Table 11
Speedup of solve on Alliant.FX/8
m 2 proc. 4 proc. 8 proc.
2 N=1000 1.30 1.94 3.93
N = 2000 117 1.80 2.70
N = 4000 117 1.83 2.75
N = 8000 1.18 1.77 2.75
8 N=1000 1.25 2.50 4.17
N = 2000 1.19 223 3.50
N = 4000 113 2.08 3.42
N = 8000 1.09 2.03 341
16 N =1000 1.58 293 4.92
N =2000 1.33 238 3.64
N = 4000 1.16 211 3.29
N = 8000 1.09 2,01 3.14
32 N=1000 1.82 3.36 5.56
N = 2000 1.77 3.08 458
N = 4000 1.25 224 3.36
N = 8000 1.09 2.00 297

240 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

compiler for the Alliant FX/8. It parallelizes one loop level (outermost unless instructed
otherwise). It fails to parallelize the solve code for two partitions, since the code handles the
fill-in corresponding to a distinct set of solution variables in each iteration. Writing the code
such that each loop iteration contains only the operation for one partition forces the introduc-
tion either of conditionals to handle the first and last partition which are special cases, or
sequential code outside the loop for these partitions. In either case the compiler either fails
completely to parallelize, or has to be ‘tricked’ into parallelizing the code properly. For
sufficiently large values of P this problem should be of minor influence.

A second reason for the discrepancy is due to data transfer rates between main memory and
cache memory, and between cache memory to the vector registers. The data transfer rate from
the cache memory to the processor’s registers is 376 Mbytes/s and from main memory to cache
memory is 188 Mbytes/s. The cache itself can hold 128 kbytes of data (16k words). The
machine architecture is balanced between the execution rate of the 8 processors and the
transfer rate from cache, however if the data request is not in cache and a ‘real’ memory
reference is required there is an imbalance. When 8 processors are active, each requesting one
operand of a vector operation from memory and the operand is in the cache, the cache can
supply the processors with data at 376 Mbytes/s to achieve the peak performance of about 5.9
Miflops per processor (46.4 Mbytes/s/processor). When a data reference is not in the cache
memory and thus the requested data must come from main memory, the transfer rate is cut in
half to 188 Mbytes/s. With four or less processors active the rate from memory can keep up
with the execution rate from the active processors, however as more processors are active and
request data from memory the mismatch between the transfer rates and execution speed
becomes apparent and the execution rate drops.

To overcome this limitation the algorithm must be reorganized to get more reuse of the data
which in this case means matrix-matrix operations. The net effect for our program is to have
poor performance relative to the speedup measurements.

The efficiency of the partitioning method is critically dependent on the time for the solve
routine compared to the factorization routine for small values of P. Most of the time spent in
the solve routine is due to fill-in, that is, the price paid for the partitioning strategy (or the

Table 12
Solve/factorization (time in seconds) Alliant FX /8 one processor used
m P=2(15) P=4(225) P =8(2.625)
2 N=1000 1.25 1.34 1.00
N = 2000 1.28 1.15 1.20
N = 4000 1.24 1.20 1.18
N = 8000 121 1.19 1.21
8 N =1000 2.00 2.00 1.79
N = 2000 2.10 214 2.50
N = 4000 2.20 227 2.487
N = 8000 2.34 2.32 244
16 N =1000 3.00 323 3.01
N = 2000 2.56 2.82 2.80 -
N = 4000 2.76 2.81 2.1
N = 8000 297 2.93 2.86
32 N=1000 5.44 5.30 3.86
N =2000 4.27 4.30 4.34
N = 4000 4.38 4.16 3.88

N = 8000 3.63 3.29 3.01

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 241

Table 13

Phase 2 /phase 1 on Sequent Balance 21000

m N =2048 N =1024 N=512 N =256
2 2.78 2.89 2.5 2.9
5 413 43 4.0 4.1

16 4.46 44 44 4.7

32 4.61 4.6 4.6 -

nested dissection elimination order). For all partitions but the first and last the ratio of the
arithmetic complexity for the solve to that of factorization is approximately 3. For one
processor the ratio is 3(1 — 1/P). '

As can be seen from Table 12 the relative solve time is lower than expected for m = 2, higher
than expected for m =8 and P =2, and slightly lower than expected for m =38, P> 2. For
m>38 the relative solve time is higher than expected, and significantly so for m = 32.
Consequently, the LINPACK-based parallel algorithm performing concurrent elimination of
variables is less time-consuming than predicted for small bandwidths. With the exception of the
N =8k case Phase 2 on the Alliant requires less time than predicted, if overhead is ignored.
Note that the ratio is relatively independent of N, as expected, and also (approximately)
independent of m. It is also interesting to note that the ratio is approximately the same for
m =2 and m = 32, but is higher for intermediate values (by 30-50%). For the Sequent Balance
21000 the ratio is generally higher than expected, and increases as a function of m, with a
relatively small increase for m > 8, see Table 13.

7.1.3. Phase 3: Solution of the reduced block tridiagonal system

For block Gaussian elimination the expected solution time is proportional to P and m>. The
measured performance is approximately linear in P, but doubling the bandwidth only quadru-
ples the solution time on the Alliant, see Table 14. Being inherently sequential, with the
exception for the possibility to perform two-way elimination, the execution time should be
independent of the number of processing elements, since no parallelization of block matrix
(LINPACK) operations is performed. The measurements occur with the predicted behavior.

The block cyclic reduction solver requires the same number of arithmetic operations for
P =2 and P=4. The total number of arithmetic operations for P =8 is higher. The block
cyclic reduction solver requires approximately 1.26 times as many operations as the block
Gaussian elimination solver, but the parallel arithmetic complexity is lower. However, the
Alliant compiler did not manage to parallelize our cyclic reduction code. The running time for
P =4 was approximately 1.15 times that of the Gaussian elimination code, and for P = 8 it was
approximately 1.52 for 1 processor, 1.42 for 2 processors, and 1.40 for 4 or more processors.

For the Sequent Balance 21000 the dependence is approximately linear in P and approxi-
mately cubic in m, see Table 15.

Table 14
Time for block Gaussian elimination on Alliant FX/8
m P=2 P=4 P=8 P=16
2 0 0 0 0
8 0 0.03 0.06 0.13
16 - 0.01 0.08 0.22 0.50

32 0.03 0.3 0.90 2.00

242 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 15

Time for block Gaussian elimination on Sequent Balance 21000

m P=4 P=8
2 0.005 0.075
8 0.583 1.25

16 3.60 7.65

32 25.25 53.63

7.1.4. Phase 4: Back substitution
The time for Phase 4 is small relative to the time for the other phases and offers no
particular insight.

7.1.5. Total time for the partitioning method

The total time required to solve the different banded systems using block Gaussian
elimination for the reduced system is given in Table 16.

Our implementation of the partitioning strategy on the Alliant FX /8 yields a speedup for
P>1, m=2 for P>4, m=38, and for P > 8, m = 16. For half bandwidth 32 there is a slight
speedup for N > 4000, and a slight slowdown for smaller systems. The total time for the
partitioning method on the Alliant is shown as a function of P with N as a parameter in Fig.
14 for m=2 and m = 32.

7.2. One-dimensional partitioning

As an alternative to the concurrent elimination of different variables, a one-dimensional
partitioning can be used for the concurrent elimination of a single variable. Table 17 gives the
result from performing column operations in parallel.

For a small bandwidth the parallelism for the column partitioning is very limited, and as
seen for the case m = 2 the execution time does not decrease beyond the time for 2 processors.

Table 16
Total time (in seconds) to solve using block Gaussian elimination on Alliant FX /8
m P=1 P=2 P=4 P=8
2 N=1000 0.27 0.25 0.18 0.12
N = 2000 0.52 0.48 0.32 0.23
N = 4000 1.00 0.92 0.60 0.42
N = 8000 1.98 1.83 1.20 0.80
8 N=1000 0.50 0.75 0.42 0.30
N = 2000 1.00 1.47 0.82 0.52
N = 4000 2.00 297 1.62 0.98
N = 8000 4.02 5.98 322 1.93
16 N =1000 0.93 1.68 0.98 0.75
N = 2000 1.87 345 1.92 1.35
N = 4000 3.67 6.98 381 2.55
N = 8000 7.38 13.98 7.55 4.97
32 N =1000 1.92 : 425 2.67 2.12
N = 2000 3.87 8.53 5.35 3.97
N = 4000 782 18.43 10.73 7.63

N = 8000 16.08 39.55 22.03 15.55

243

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

"8/X UBI[Y Y1 UO Jwn uonn(os [e10] p1 31

sJossedoud jo Jequwnu
e.p- m..u e..m m..« o'y st [< - 4 {1 4 m..— ol

a

2}
0 ! a
000Z=N‘g1-u_ @
000T=N"gI~W o
»

a

7oy

a

X

0008~-N"8-u
000%~=N"g-w
000Z=N"g=u
NO0T-N’g=-u
0008=-N"¢C~u

_000%=N‘Z=W O

000Z-Ng=u"v

000T-N‘g=u¢"T
X3ANI

1

/
/
~
0°C
008 UY 8su9

/
~
0°sz

N

244 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

Table 17
One-dimensional partitioning (time in seconds) on Alliant FX /8
m P=1 P=2 P=4 P=8
2 N=1000 0.28 0.25 0.23 0.23
N = 2000 0.55 0.48 0.45 0.43
N = 4000 1.07 0.97 0.85 0.87
N = 8000 2.12 1.87 1.70 1.70
8 N=1000 0.58 0.40 0.31 0.32
N = 2000 1.13 0.80 0.63 0.60
N = 4000 2.23 1.55 1.25 1.15
N = 8000 442 312 2.48 2.30
16 N =1000 1.08 0.67 0.48 0.42
N = 2000 2.08 1.30 0.93 0.80
N = 4000 417 2.62 1.88 1.58
N = 8000 8.37 522 3.73 313
32 N=1000 2.07 118 078 0.62
N = 2000 4.10 2.35 1.55 1.22
N = 4000 8.75 5.00 3.23 2.48
N = 8000 19.77 11.45 7.80 5.97
Table 18
N = 2000, m=32 n=2000, m=16 n=2000, m=38
1 2 4 8 1 2 4 8 1 2 4 8
Factor 113 55 28 13 30 15 8.1 47 10 5 2.7 1.3
Solve 535 269 129 59 147 75 37 19 42 22 1.3 8.5
Reduce 0.5 4 11 25 0.06 0.6 1.6 3.7 0.02 0.1 0.27 0.6
Backsolve 3 5.3 2.8 2.4 1.6 2.6 1.2 0.6 0.8 1.4 0.6 0.3
Total 658 343 180 112 181 97 51 32 54 30 18 13

For m = 8 the time decreases for up to 4 processors; the speedup is a factor of 1.8. For a half
bandwidth of m = 32, the speedup is 3.4.

Comparing the execution times for our implementations of the partitioning method with the
one-dimensional partitioning, we conclude that for a small bandwidth the concurrent elimina-
tion of multiple variables yields a lower execution time for any number of processors, whereas
for a half bandwidth of 8 it has a lower execution time first for 8 processors (the maximum on
the Alliant FX/8). For a larger bandwidth the one-dimensional partitioning always gave a
lower execution time. ‘

The results of the experiments are listed in Table 18.

8. Conclusion

We have described and analyzed algorithms for the concurrent solution of banded systems
of equations. A concurrent algorithm based on a partitioning strategy equivalent to elimination
by nested dissection has been implemented on two shared-memory machines with limited
parallelism. The partitioning method offers a low communication complexity compared to
concurrent elimination of single variables, and has numerical advantages over some previously
implemented partitioning methods.

J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor 245

The arithmetic complexity of the parallel algorithm is higher than that of standard direct
solvers for band matrix problems. At least 5 processors are needed for the parallel arithmetic
complexity to be lower than that of standard Gaussian elimination.

Because the computation of the fill-in is relatively more efficient than the factorization for
small bandwidths the measured running time shows that our LINPACK-based implementation
of the partitioning algorithm on the Alliant FX/8 has a lower execution time than the
sequential algorithm (using LINPACK) for any number of processors. However, for band-
widths approaching the length of the vector registers, the factorization routine uses the
architecture more efficiently than the solve routine, and the computation of the fill-in is
relatively more expensive than predicted, moving the break-even point for the partitioning
method to a higher number of processors than predicted. Indeed, for m = 32 the break-even
point occurs at 8 processors in our implementation. Part of the reason for the higher than
predicted break-even point is the fact that the compiler failed to parallelize some computations
that can be done in parallel. Another reason is the mismatch between the transfer rate to the
processors from the cache memory and the main memory. If several loop levels could be
parallelized, then a higher processor utilization and lower execution time are likely. (The
current Alliant compiler allows parallelization only of one loop level.)

The one-dimensional partitioning yields a speedup that is insignificant for a half bandwidth
of m=2, but is 3.4 for 8 processors and a half bandwidth of m =32. Consequently, the
concurrent elimination of multiple variables yields a lower execution time for any number of
processors for a half bandwidth of 2, for 8 processors at a half bandwidth of 8. Since the
Alliant is limited to 8 processors we were unable to establish a break-even point for larger
bandwidths.

Acknowledgment

We would like to thank Tom Hewitt from Cray Research for his assistance with the CRAY
data.

References

[1] C. Ashcroft, Parallel reduction methods for the solution of banded systems of equations.

[2] S.N. Bhatt and LC.F. Ipsen, How to embed trees in hypercubes, Department of Computer Science, Yale
University, Report YALEU /CSD /RR-443, 1985.

[3] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar, Performance measurements on a
128-node butterfly parallel processor, Proc. 1985 IEEE International Conference on Parallel Processing (1985)
531-540.

[4] S.R. Desphande and R.M. Jenevin, Scalability of a binary tree on a hypercube, University of Texas at Austin,
Report TR-86-01, 1986.

[5] J. Dongarra, J. Bunch, C. Moler and G. Stewart, LINPACK Users’ Guide (SIAM, Philadelphia, 1976).

[6] J. Dongarra and S.C. Eisenstat, Squeezing the most our of an algorithm in Cray Fortran, ACM Trans. Math.
Software 10 (3) (1984) 221-230.

[7] J.J. Dongarra, F.G. Gustavson and A. Karp, Implementing linear algebra algorithms for dense matrices on a
vector pipeline machine, SIAM Rev. 26 (1) (1984) 91-112.

[8] J.J. Dongarra and A. Sameh, On some parallel banded system solvers, Parallel Comput. 1 (3) (1984) 223-235.

[9] J. Dongarra and D. Sorensen, On environment for implementing explicite parallel processing in Fortran, ANL
MCS, T™M 79, 1986.

[10] D. Evans and M. Hatzopoulos, The solution of certain banded systems of linear equations using the folding
algorithm, Computer J. 19 (1976) 184-187.

[11] M.J. Flynn, Very high-speed computing systems, Proc. [EEE 12 (1966) 1901-1909.

[12] M.W. Gentleman, Implementing nested dissection, Department of Computer Science, University of Waterloo,
Research Report CS-82-03, 1982.

246 J.J. Dongarra, L. Johnsson / Solving banded systems on a parallel processor

[13] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (1973) 345-363.

[14] A. George, M. Heath, J. Liu and E. Ng, Sparse Cholesky factorization on a local-memory multiprocessor, SIAM J.
Sci. Statist. Comput., to appear.

[15] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph and M. Snir, The NYU
Ultracomputer— Designing an MIMD shared memory parallel computer, JEEE Trans. Comput. 32 (1983)
175-189.

[16] W.D. Hillis, The Connection Machine (MIT Press, Cambridge, MA, 1985).

[17] C.-T. Ho and S.L. Johnsson, Tree embeddings and optimal routine in hypercubes, Yale University, Department of
Computer Science, Report in preparation.

[18] W. Jalby and U. Meier, Optimizing matrix operations on a parallel multiprocessor with a memory hierarchy,
Center for Supercomputer Research and Development, University of Illinois, 1986.

[19] S.L. Johnsson, Gaussian elimination on sparse matrices and concurrency, Caltech Computer Science Department
4087. TR : 80, 1980.

[20] S.I. Johnsson, Odd-even cyclic reduction on ensemble architectures and the solution of tridiagonal systems of
equations, Department of Computer Science, Yale University, Report YALEU /CSD /RR-339, 1984.

[21] S.L. Johnsson, Fast banded systems solvers for ensemble architectures, Department of Computer Science, Yale
University, Report YALEU /CSD /RR-379, 1985

[22] S.L. Johnsson, Dense matrix operations on a torus and a boolean cube, Proc. National Computer Conference
(AFIPS, Chicago 1985).

[23] S.L. Johnsson, Communication efficient basic linear algebra computations on hypercube architectures, Depart-
ment of Computer Science, Yale University, Report YALEU /CSD /RR-361, 1985. .

[24] S.L. Johnsson, Band matrix systems solvers on ensemble architectures, Yale University, Report
YALEU/CSD/RR-388, 1985.

[25] S.L. Johnsson, Solving narrow banded systems on ensemble architecture, ACM Trans. Math. Software 11 (1985).

[26] S.L. Johnsson, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci. Statist. Comput. (1986).

[27] S.L. Johnsson, Data permutations and basic linear algebra computations on ensemble architectures, Department
of Computer Science, Yale University, Report YALEU /CSD/RR-367, 1985.

[28] D. Lawrie and A. Sameh, The computation and communication complexity of parallel banded system solves,
ACM Trans. Math. Software (1985).

[29] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basnc linear algebra subprograms for Fortran usage, ACM
Trans. Math. Software (1979) 308-323.

[30] J.W.H. Liu, Computational models and task scheduling for parallel sparse Cholesky factorization, Department of
Computer Science, York University, Downsview, Ontario, Technical Report CS-85-01, 1985.

[31] O.A. McBryan and EF. Van de Velde, Hypercube algorithms and implementations, Courant Institute of
Mathematical Sciences, New York University, 1985.

[32] U. Meier, A parallel partition method for solving banded systems of linear equations, Parallel Comput. 2 (1985)
33-45.

[33] G.F. Pfister, W.C. Brantley, D.A. George, S.I. Harvey, W.J. Kleinfelder, K.P. McAuliffe E.A. Melton, V.A.
Norton and J. Weiss, The IBM research parallel processor prototype (RP3): Introduction and architecture, Proc.
1985 IEEE International Conference on Parallel Processing (1985) 764-771.

[34] R. Read and D.J. Rose, Graph Theory and Computations (Academic Press, New York, 1973) 183-217.

[35] E.M. Reingold, J. Nievergelt and N. Deo, Combinatorial Algorithms (Prentice-Hall, Englewood Cliffs, NJ, 1977).

[36] Y. Saad and M.H. Schultz, Data communication in hypercubes, Department of Computer Science, Yale
University, Report YALEU /DCS /RR-428, 1985.

[37] J.T. Schwartz, Ultracomputers, ACM Trans. Programming Languages Systems 2 (1980) 484-521.

[38] C.L. Seitz, The cosmic cube, Comm. ACM 28 (1) (1985) 22-33.

[39] B.J. Smith, Architecture and applications of the HEP multiprocessor computer system, Real-Time Signal
Processing 1V, Proc. of SPIE (1981) 241-248.

[40] D.C. Sorensen, Buffering for vector performance on a pipelined MIMD machine, Parallel Comput. 1 (1984)
143-164.

[41] J. Wilkinson, Private communication, 1976.

[42] O. Wing and J.W. Huang, A computational model of parallel solution of linear equations, JEEE Trans. Comput.
29 (1980) 632-638.

[43] P.H. Worley and R. Schreiber, Nested dissection on a mesh-connected processor array, Stanford University,
Center for Large Scale Scientific Computation, CLaSSiC-85-08, 1985.

