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ABSTRACT

PROBABILISTIC INDUCTIVE INFERENCE

Leonard Brian Pitt
Yale University
1985

Inductive inference machines are algorithms which accept as input only the values
of an arbitrary recursive function f, and attempt to synthesize programs which com-
pute f. The classes of functions which can be successfully inferred depends both on the
type of inference strategy employed, as well as the assumed “identification criterion,” or
definition of successful inference. v

In this dissertation we define probabilistic inductive inference machines, which follow
randomized strategies to infer functions. Let 0 < p < 1. We ask, for various iden-
tification criteria, whether a probabilistic inductive inference machine can infer larger
classes of functions if the criterion of successful inference is relaxed to allow inference
with probability at least p, as opposed to requiring certainty.

For the most basic identification criteria (EX and BC) we show that any class of
functions which can be inferred from examples with probability exceeding % can be
inferred deterministically, and that for probabilities p < % there is a discrete hierarchy
of inferability parameterized by p.

We characterize the power of the probabilistic computational model by showing that
the classes of functions inferable are identical to those classes inferable by teams of
inductive inference machines, a previously investigated computational model of infer-
ence allowing a finite number of different strategies to be run simultaneously. For the
criteria EX and BC we show in addition that frequency inference, a third model for
inference, gives rise to the same classes of inferable functions. This unifying characteri-
zation suggests that there is a notion of “uncertainty of success” which is invariant across

computational models of inference.
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Chapter 1

Introduction

1.1 Overview
Consider the following situations:

e A scientist investigates a phenomenon by performing experiments and discovers a

predictive theory of the phenomenon.
e A child implicitly acquires a grammar for English by listening to his elders.
» A test-taker determines the next value in a given sequence of numbers.

Each of these situations involves inductive inference — the process of determining a
general rule from examples of the rule, a task at which human beings are quite proficient.

If our main concern is not the agent doing the inference, but rather the process of
inference itself, then we find ourselves well within the domain of theoretical computer
science. Research from this vantage point focuses on both general theoretical properties
of inference techniques, and finding specific methods for inference within particular do-
mains. Inductive inference has applications in linguistics, artificial intelligence, pattern
recognition, cryptography, and the philosophy of science, among others.

To study inference formally, Gold 23] defines inductive inference machines (IIMs), an
abstract model of computation for doing inference. An IIM is essentially any algorithmic
device which attempts to infer rules from examples. In this model, a “rule” is any partial
recursive function ¢, and an “example” is a pair {(z,¢(z)) for some z in the domain of
. That this is a very general definition is clear, since any rule which might be useful (in

the sense of specifying how predictions are to be made) is essentially a partial recursive



function.! A predictive explanation for the rule ¢ is simply a program p which computes
@. Thus an IIM takes as input the values of some partial recursive function ¢, and
attempts to output a program p which computes ¢, based on the examples it has seen.
Note that if after seeing some finite number of examples, the IIM guesses the program
p, the very next example might be inconsistent with p. For this reason, the inference of
functions is seen as an infinite process, which occurs “in the limit”.

There are two standard criteria of successful inference {(or identification) in the limit
of an IIM on a given function ¢: EX and BC. EX-identification requires that the infinite
sequence of guesses of the IIM converge to a single program computing ¢, while BC-
identification requires only that after some finite initial segment, all the guesses be correct
(but possibly different) programs for . Let ID denote either of these identification
criteria. The class of functions ID(M) consists of those functions ¢ such that M ID-

identifies p. There are two associated identifiability classes:
ID = {U | U C ID(M) for some IIM M}.

Unfortunately, it has been shown [3,10] that there are classes of functions which are
not in either class ID, t.e. classes of functions for which no single inference strategy (IIM)
is correct. Thus no single strategy is general enough to infer every rule from examples,
and since the definition of an IIM allows as much power as a Turing machine (the “most
general” computing device), it is not likely that any other deterministic computational
model will allow inference of all possible rules. ‘

We are thus motivated to allow randomization as part of the inference machine, and
then ask: “are more classes of functions identifiable if we only require the inference
machine to be correct with some probability p < 1?” This is the main issue addressed
in this dissertation.

We define probabilistic IIMs, which are IIMs having the ability to flip a fair coin. A
probabilistic IIM P is allowed a (potentially infinite) sequence of 0-1 coin tosses. Now if
we fix the (infinite) input sequence of examples of some function ¢, then each 0-1 infinite
sequence of coin tosses determines a sequence of guesses of P, which may or may not
converge (in the EX or BC sense) to a program which computes ©. If we consider the
usual Borel measure on the infinite coin toss sequences, then the set of guess sequences
that converge to programs for ¢ is measurable, and is denoted Pr[P ID-identifies p].

For any value p > 0, the class ID,(P) consists of those functions ¢ such that Pr[P

We assume Church’s Thesis.



ID-identifies ¢] > p. Then the probabilistic identification class IDp4(p) is defined by

IDpos(p) = {U | U C ID,(P) for some IIM P}.

Our results give a description of the structure of the classes IDpns(p) as a function
of p. For both the EX and BC criteria there is a discrete hierarchy of classes, with
“breakpoints” at the values 3, %,%,... Thatis, forall n = 1,2,3,..., IDps(2) is a proper
subclass of IDN(-;_I;T); and if p; and p; are in the same half-open interval (;—i—i, 1} then

IDprot (P1) = IDpms (p2). Also, for both criteria, the sets of functions that can be identified
by some machine with probability p > % can be identified by some determintstic IIM.

This work is also one of unification, in that the precise statement of our main results
gives an equivalence between three different models of computation for inductive infer-
ence: probabilistic identification as described above, frequency identification introduced
by Podnieks [33], and identification by teams of machines introduced by Smith [35]. (It
also settles an open problem of Podnieks for frequency identification.) This is unusual,
for in many cases the introduction of new computational models for inductive inference

gives rise to new and “orthogonal” hierarchies of identifiability.

In addition to EX and BC, there are a number of different identification criteria which
have been previously investigated [10], with results reflecting the power and limitations of
different types of inference strategies. We apply the probabilistic model of computation
to many of these criteria, and give partial characterizations of the relationships between
probabilistic computation and other computational models including teams, frequency,

determinism, and nondeterminism.

This dissertation is organized as follows. In Chapter 2 we formally define the proba-
bilistic model of computation for inductive inference, as well as several other computa-
tional models. The general notion of an identification criterion is also discussed. Chap-
ter 3 contains our most central results showing the existence of a discrete probabilistic
hierarchy, and the equivalence of the probabilistic model with teams and frequency for
EX and BC. In Chapter 4 we apply the techniques developed in Chapter 3 to other
identification criteria. Finally, in Chapter 5, we conclude by summarizing our results,
and suggesting interesting areas for future research. We conclude this introduction with

a review of the relevant inductive inference literature.



1.2 Previous Work

The reader interested in a general introduction to inductive inference may find an ex-
cellent survey of both the theoretical and more concrete results in {1]. Here we review
previous work relating probability and inductive inference.

There have been a number of papers [12,22,25,27,40] involving the inference of stochas-
tic grammars from randomly generated words. The inference model used is generally a
deterministic one, whereas the function (grammar) is probabilistic. There is little rela-
tionship between the results describing effective techniques within this particular domain,
and the abstract probabilistic model and characterization presented here.

Valiant [39] describes “concept learning” a,lgdrithms for boolean formulae. In his
framework, examples of a concept (essentially a boolean vector of features) are provided
by Nature randomly and according to some unknown but predetermined probability
distribution. For certain classes of concepts (categorized by the types and sizes of the
boolean formulae which describe them), deterministic algorithms are given which (with
high probability) produce programs in polynomial time, which accurately classify exain-
ples and non—~examples of a concept with high probability. The domain here is interesting,
in that the criterion of success only requires the hypothesized program to be approxi-
mately correct (z.e. incorrect only on examples which have low probability (according to
Nature) of being encountered); moreover, a hypothesis need not be produced if the set
of examples seen are unrepresentative of the concept (i.e. have small total probability
according to Nature’s distribution.)

Work by Barzdin and Freivald [4], and Podnieks [34], has been concerned with the
use of randomization to reduce the number of “mind changes® required by an IIM to
identify functions. In their model, the IIM is required (with probability 1) to converge
to a correct hypothesis, but is allowed to flip coins in order to (on the average) reduce
the number of changes of hypotheses en route to a correct hypothesis. It is shown that
if the final hypothesis is required to come from a particular G6del numbering of the
partial recursive functions, then the upper and lower bound for the number of mind
changes required by an IIM to converge to a correct hypothesis for every function in
some recursively enumerable class of total recursive functions is n, where n is the index
of the function in the given numbering. Using a randomized strategy, however, this can
be improved to an expected value of logn.

A more recent paper by Wiehagen, Freivald, and Kinber [41] investigates the ad-

vantages of probabilistic inductive inference strategies over deterministic ones when the
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strategies are required to converge to a correct answer within some fixed number of
changes in hypotheses. It is shown that for all € > 0, and all n > 2, there are classes
of functions identifiable with probability at least 1 — ¢ with at most n mind changes,
but not by any deterministic strategy with at most n mind changes. Other results give
that even when relaxing the criterion of successful inference to allow success with prob-

ability p > -,1;, the speedup over deterministic strategies in the number of mind changes

1
2

which is a special case of our Theorem 3.21. We discuss their results in greater detail in

Section 4.3.1.

is at most linear. They also independently prove that EXpms(p) = EX when p >

Freivald [21] investigates probabilistic inference in the setting of finite computations.
In Freivald’s model, an IIM P finitely identifies a set of functions U with probability p, if
the probability is greater than p that P eventually halts and outputs a correct program
for f € U, given input/output examples of f. Freivald shows that if there is a probabilistic
IIM which finitely identifies some set of functions U with probability > %, then there
is a deterministic strategy finitely identifying U. He also gives a discrete hierarchy
parameterized by p of those classes of functions finitely identifiable by a single machine
with probability at least p. We review his results in more detail in Section 4.3.2, where
we also extend them. Freivald’s results for probabilistic finite identification motivated
our work, and although many of the techniques used in the finite case do not extend to
the limiting case, there is some overlap of ideas. In particular, the “threshold” programs

described in Section 2.2 are a particularly useful tool.






Chapter 2
Preliminaries

2.1 Notation and Definitions

Unfortunately, in any technical document, precision, clarity, and brevity necessitate the
introduction and use of many symbols. The reader is advised to keep a bookmark in this
section. We also point out the Index to Symbols on page viii which gives the page where

any symbol was first introduced.

The null or empty set is denoted by §. We use the symbols C,C,€,lJ, and [ to
denote the set operations containment, proper containment, membership, union, and
intersection, respecti\;ely. The symbol | is the set operation union, together with the
assertion that the operands of the union are mutually disjoint; thus § = l;cn S; states
that not only is S the union of the sets {S;}, but also that for all i # j, S;S; = 0.

R denotes the set of real numbers, and N = {0,1,2,3,...} is the set of natural
numbers. Ny = {0,1,...,¢ — 1} = the first ¢ elements of N. If I C N is finite, then mﬁz
I is the largest element of I, and min I is the least element. If {z;}ren is a sequence
of nonnegative real numbers, then lim infyo z; is defined as limg.o inf{z;js > k}. If
z € R, then |[z] denotes the floor of z, or the greatest integer less than or equal to z,
and [z] is the ceiling of z, or the least integer greater than or equal to z. Intervals of
real numbers are represented in the usual way, with round or square brackets to indicate

exclusion or inclusion of the endpoint. For example, (a,b] = {p€R | a < p < b}.

If $ and T are sets, and I is a multiset, then S — T is the set containing all elements
of § which are not in T, and T® = N — T = the complement of T. |S| denotes the
cardinality of S; |I| is the number of (not necessarily distinct) elements of the multiset

I, and |IN S| is the number of (not necessarily distinct) elements of the multiset I which
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are also elements of S. S* (respectively S ®) denotes the cartesian product of S with
itself k (respectively an infinite number of) times, or equivalently, all sequences of k
(respectively infinitely many) elements drawn from S. S* denotes U en S™. (The set
of all finite sequences of elements of S). If s is a finite or infinite sequence of elements of
S (i.e. s € S*|JS™) then s denotes the k*® element of s (if it exists), |s| denotes the
length of s, and we say s converges to z (and write s |=z) iff [s|=k <occand sp =«
or |s| = oo and s; = z for all but finitely many values of k. The symbol s|; denotes the
finite sequence s1, 82, ..., sk if |s| 2 k, otherwise s|; = s.

i E(k) is an equation containing the variable k, with k ranging over N, then we write
“(Vg?) E(k)” to indicate that the equation E(k) is true almost everywhere, or for all but
finitely many values of k. We write “(35°) E(k)” to indicate that E(k) is true infinitely
often, or for infinitely many values of k.

Lower case letters (¢,7,k,l,m,n,...) will generally represent natural numbers. Upper
case letters and names will denote sets. The letter p will usually represent real numbers

in the closed interval [0, 1], and occasionally will denote a path of a tree.

The function f will range over all total recursive functions, and the function ¢ over
all partial recursive functions. The graph of a function ¢ is the set of all pairs {z, o(z))
for all z in the domain of . f|; is the finite initial segment of the graph of f consisting of
(0, £(0)), (1, f(1)),...(k, f(k)). T denotes the set of all total recursive functions. The set
U will range over all subsets of T . The set of all (not necessarily recursive) total functions
from N into N is denoted by ¥. We write o ==* f to indicate that |{z : p(z) # f(z)}] < k.
Similarly, ¢ =* f indicates that {z : p(z) # f(z)} is finite.

A Turing machine transducer is a machine which computes functions of one variable.
We assume that a particular encoding of TM transducers as nonnegative integers has
been chosen [24]. Hence the numbers 0,1,2,..., are TM transducers, or programs. (A
number which is not the legitimate encoding of any program is viewed as a program
computing the everywhere undefined function.) We denote the function computed by
program : by ;. Thus {p;)ieN is an acceptable numbering of all and only the partial
recursive functions [26]. If ¢; = f, then we say that ¢ is a program indez, or simply an
indez of the function f.

If z is not in the domain of ¢, then we say that ¢, or any machine computing ¢,
diverges on input z and we write p(z) f, otherwise p(z) is defined and we say o(z)
converges and write p(z) | . If p(z) is defined, and equals y we write p(z) |= y. If p(z)
is defined and not equal to y then we write p(z) |# y.

8



If f is a total recursive function, then we define two sets, GOODy and BAD; which

partition N as follows:
GOODy={i|pi=f}.
BADf={i“0,'-3£f}.

We further partition BAD; into two sets WRONG; and SLOW,.
SLOW; = {i| p; # [, and (Vz) p;(z) # f(z) = wi(z) 1}

WRONG; = {i | ¢i # f,(32) pi(z) |3 f(z)}.

GOODy is the set of “good” programs for f, BAD; the set of “bad” programs, consisting
of SLOW, the set of programs which are restrictions of f to some domain properly
contained in N (thus wherever they differ from f they diverge, i.e. are slow), and
WRONGY, the set of programs which converge to a value “wrong” for f on at least
one argument. Clearly GOOD;lY SLOW sl WRONG; = N. Note that WRONG; is

recursively enumerable.

2.2 Amalgamating Programs

Given a collection of programs, some of which compute a function f, it is sometimes
useful to construct a new program from the given programs such that the constructed
program computes the function f. We will use the following two program amalgamations

in many of our constructions in later sections.

Definition 2.1 Let I be a finite or recursively enumerable collection of program indices.
Then define the program RACE; by: '

RACE;

On input z, dovetail the computations {p;(z) | 1+ € I} until for some j,

the computation of p;(z) halts with p;(z) = y. Output y.
Lemma 2.2 If IYGOODs # § = I\ WRONG/ then RACE| computes f.

Proof: Since I} WRONG, = 0 there does not exist an ¢ € I such that p;(z) |# f(z)
for any z. Since I{}GOOD; # § there does not exist an x such that (Vi € I) p;(z) 1.
Therefore, (Vz)(3i € I) pi(z) |= f(z) and there is no ¢ € I such that p;(z) |# f(z). So
(Vz) RACE((z) = f(x). g



Definition 2.3 Let I be any finite ordered multiset of (not necessarily distinct) program
tndices I = {i1,12,...,1x}. Let P = p1,p2,...,Pk be any finite sequence of probabilities
(i € R, 1 p € 1), and let t be any positive rational number. Then the program
THRESHOLD, | 5 is the program defined by:

THRESHOLD, ;5

On input z, dovetail the computations {pi(z) | i € I} until a number y
and a multiset S C I have been found such that (Vi € S) pi(z) = y and

Yi;es pj > 1. Output y.

Lemma 2.4 If

E pj<t< E Pj

i;el [\ WRONG ¢ i;€I{}GOODg
then THRESHOLD, 1 5 computes f.

Proof: If THRESHOLD, 1 5(z) = y then (35)(Vi € S) pi(z) = y and }_; esp; > ¢. If
y # f(x) then § € WRONG; and

o gz pi>t,

i;€I{ WRONG i;ES
a contradiction. Hence if THRESHOLD,  5(x) is defined, then it is correct. To see that.
THRESHOLD, 1 5(x) is in fact total, observe that (Vz) the set § = I} GOOD; satisfies
the dovetail halting condition of THRESHOLD, ; 5(x). Since S is finite, after some finite
amount of computation THRESHOLD, ; 5 will witness this and halt with a value. O

2.3 Inductive Inference Machines

An inductive inference machine (IIM) is a machine which attempts to synthesize pro-
grams computing a function ¢, when presented only with the graph of ¢ [23]. We adopt
the definition of L. Blum and M. Blum [7]:

An inductive inference machine is an algorithmic device, or Turing ma-
chine that works as follows. First the machine is put in some initial state with
its tape memory completely blank. From there it proceeds algorithmically
except that, from time to time, the device requests an input or produces an
output. Each time it requests an input, an external agency feeds the ma-

chine a pair of natural numbers (z,y), or a %, and then returns control to the

10



machine. ...The outputs produced by the machine are all natural numbers
[and represent M’s guess for a program index of the function whose values it

receives].

The *’s in the input to the IIM are to model “gaps” in the domain of the function to be
inferred, and allow the external agency to feed partial functions to the IIM. Throughout
this work we deal only with the inference of total recursive functions (with the exception
of Section 4.6). We claim without guarantee that most of our arguments need only minor
modification to cover the case of inference of partial recursive functions. Note that the
assumption that the functions being inferred are total does not require that an IIM may
hypothesize only programs computing total functions. (We discuss just such a restriction
in Section 4.5.) Indeed, it is the possibility that the IIM outputs incomplete hypotheses
which make many of our arguments difficult. (We should note that we drop the “total
hypotheses only” restriction not because it increases the compiexity of our proofs, but
because the restriction significantly limits the power of the inference machine[9,10].)

For any (not necessarily recursive) total function h € ¥, let G(h) be the set of all
infinite sequences s containing all and only the elements of the graph of h (each element
of the graph of h may appear in s even infinitely many times), and let §(X) = U,ey G(h).
Then for any recursive function f € T, G(f ) consists of all admissible presentations of f
to some IIM [1]. Note that the sequences s of G(f) are not allowed to contain any *’s,
since the functions to be inferred are all total functions.

If s € G(¥) then we write M(s) to denote the (possibly infinite) sequence of outputs
of M when fed s. Then (as defined in Section 2.1 for arbitrary sequences) M(s)|i is the
first k elements of M(s) if |M(s)| > k, and M (s) otherwise.

2.4 Identification Criteria and Computational Models

Given a function f € T and a presentation s € G(f) of the function as input to an IIM
M, there are a number of definitions for what constitutes a correct inference of f by M on
s. Typically, most definitions, or “identification criteria” are predicates describing which
output sequences M(s) correspond to a correct inference of f. For example, a natural
definition of successful inference might be that “M correctly infers f iff for any s € G(f),
|M(s)] = 1 (i.e. M on seeing the graph of f in any order outputs exactly one guess),
and the single element of M(s) is a program index for f. (This definition is considered

in Section 4.3.2.) Alternatively, we might allow M on input s € §(f) to output several
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hypotheses, changing its mind at most a finite number of times as it sees new values of f,
as long as “eventually” it outputs a final correct hypothesis. (Thus M(s) is finite, with
last element a program index for f.) This is essentially the EX identification criterion
which we will define later in this section. In attempting to define a probabilistic model of
computation for inductive inference, we found that for some identification criteria it was
not at all clear what the appropriate definition ought to be. Part of the confusion was
due to the fact that “identification criterion” is not a well defined term in the literature.

Consider the following example.

C. Smith [35] defines the class of sets of functions inferable by teams of machines for
any identification criterion I by: Liggm(n) = {U | (3M1, Ma,..., M) (Vf € U)(3) M;
identifies f according to criterion I'}. This natural definition causes no problems for those
criteria I that were investigated, but consider the general structure of the definition of

the criterion PEX which we examine in Section 4.5:

An IIM is Popperian iff for any s € §(¥), the sequence of guesses M(s) consists only
of indices of total functions. Then M identifies f according to the PEX criterion iff M
is Popperian, and for every s € §(f), the sequence M(s) satisfies property EX.

Now naively applying the definition of team inference above, we obtain PEX yeem(n) =
{U | (3My, M,,...,M,)(Vf € U)(3) M; is Popperian and for every s € §(f), M;(s)
satisfies property EX.}

Although this class might be of interest, we doubt that it is what the average inductive
inference researcher would come up with were he placed in a room together with the
definition of PEX and the notion of a team of IIMs. We believe the natural (and
intended) definition to be the same as above, except that every machine M; of the team
must be Popperian. (One motivation for studying teams is to examine finite unions ~

modeled by our definition, and not the one above.)

Part of the confusion seems to be that the notion of identification criterion was mixed
together with that of restricting the class of machines under consideration. In the ex-
ample above, the identification criterion PEX is essentially a restriction of the class of
IIMs under consideration (i.e. those which output only indices of total programs), to-
gether with a definition for correct identification (namely that the output sequence M(s)
satisfy property EX.) Since we are interested in examining many different identification
criteria, and several different models of computation (deterministic, probabilistic, non-
deterministic, teams) we find it useful to define abstractly the notion of an identification

criterion and the effect the use of different computational models has when applied to
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the criterion.

Our general definition for an identification criterion will separate the two concepts of
restricting the class of machines under consideration, and demanding some relationship
~ between M(s) (s € §(f)) and the input function f.

To allow an identification criterion to restrict the class of machines which can correctly
infer a function f, we need to define the input-output sequence of a machine M on any

given sequence of inputs.

Definition 2.5 Let M be an IIM (possibly with access to an arbsirary set as oracle), and
let s € G(}). Then the sequence IOn, consists of elements of N X {input, output} and
1s @ record of the snput-output behavior of M when fed the sequence s as input. IO,
ts defined by running M forever with tnput s, and if whenever M queries for the next
value (say it’s s ) from the sequence s, then the next element of IOn, is (sg,input); if

tnstead, M nezt outputs a guess g, then the next element of IO, is (g, output).

Thus the sequence IOy, consists of the (possibly infinite) sequence M(s), and (possibly
only a finite initial segment of) the sequence s, interleaved in the exact order determined

by M’s sequence of queries and guesses.

Definition 2.6 IO = {JIOp, where the union is taken over all sequences s € G(¥X)

and all IIMs (even those with an arbitrary set as oracle).

Then a “behavioral restriction” on the class of IIMs is a (not necessarily recursive)
predicate B : IO — {0,1}. For example, a behavioral restriction which captures the
definition of a Popperian IIM is (Vs € §(¥)) B(IOum,) = 1 iff all “output” elements of
the input—output sequence are indices of total programs. Note that Popperian IIMs must
output total programs even when given as input the values of nonrecursive functions.
There are other criteria (for example NV described in Section 4.5) where the behavior
of the IIM on nonrecursive inputs is relevant.

Alongside the behavioral restriction, the other component of an identification cri-
terion is the description of successful inference. For s € §(f) input to M, since the
sequence of outputs M(s) may be infinite, typically the definition of successful inference
is a limiting one — that is, “in the limit” the sequence M(s) satisfies some predicate
relative to f. Thus in the definition below, successful inference is defined partly by the
limit of a predicate Q which depends on initial segments of M(s), and the function f.

For example, in Definition 2.12 the criterion EX specifies that a correct inference of
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M on s € G(f) occurs whenever the infinite sequence M(s) consists of a single correct
index for f, except for perhaps at a finite number of places. This is expressed as the
limit (as k — oo) of a predicate Qgx which equals 1 whenever the last two elements of
M (s)|k are both equal to some single program index for f. Thus identification occurs
iff limg—oo QEx (M (s)]) exists and = 1, i.e. the sequence converges to a single correct
program index.

We are now ready to give a general description of an arbitrary identification criterion.
Definition 2.7

e An identification criterion ID is a pair (Bjp,Qp) where Bjp : IO — {0,1} is a
“behavioral restriction- a (not necessarily recursive) predicate characterizing the
types of IIMs (by behavior) under consideration. (Usually Bip is identically equal
to 1 — i.e. there is no restriction on the behavior of the machine.) Qp is a (not

necessarily recursive) predicate Qp : N* x T — {0,1}.
e M ID-identifies f iff (Vs € (X)) Bip(IOnr,.) =1 and
(Vs € G(f)) limg—eo Qip(M(8) |k, f) ezists and = 1.
e ID(M) = {f | M ID-identifies f}.
e M ID-identifies U iff U C ID(M).
e ID = {U | (3M) M ID-identifies U}.

From here on, we write Byp(M) = 1 to indicate that (Vs € G(¥)) Bip(IOnm,.) = 1.
This notation is adopted to indicate that Bjp is essentially a predicate on IIMs (its
definition depends only on M). This will not cause any problems as long as we avoid
predicates which depend on more than simply the input/output behavior of machines.

Recent work of Daley and Smith [15], and Freivald [18], has concerned the definition
of the complexity of an inference. One such complexity measure is the number of mind
changes made by an IIM en route to outputting a final hypothesis. There is no difficulty
in capturing this definition with our general definition of an identification criterion. (We
do so in Section 4.3.1.) We note however that there does not seem to be a straightforward
way to incorporate the more general definition of the complexity of an inference given
in [15]. This of course simply means that neither of the two definitions subsume the
other, not that adopting one precludes the use of the other.

We now show that for many identification criteria, we may assume without loss of
generality that all IIMs output infinitely many guesses, and that the sequence of outputs

is independent of the particular order of the inputs.
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Definition 2.8 ([10]) An IIM M is order independent! iff (Vh € ¥X)

81,82 € §(h) = M(s1) = M(s3).
Definition 2.9 Let g be any finite or infinite sequence. Then the sequence g' is a repe-

tition variant of g iff either

o |g| =k < oo and there is a sequence r of length k — 1 of positive integers such that
the sequence g' is the sequence obtained by repeating, in place, every element g; of
g ezactly r; times, (1 < 1 < k — 1) and repeating the element g; infinitely many
times, OR

e g 13 infinite and there i3 an infinite sequence r of positive integers such that g’ 1is

the sequence obtained by repeating, in place, every element gx of g ezactly ri times.

Definition 2.10 A predicate Qpp : N* x T — {0,1} s limiting~invariant under repeti-
tion tff the limit of Qp bn initial segments of sequences 1s invariant to repetitions within
the sequence. That 13, if g is any sequence, and g' is a repetition variant of g, then the
limits limg—.oo Qp(9]k, ) and limg—oc Qip(9'|k, f) either both ezist, or both do not exist,
and if they exist, they are equal.

Theorem 2.11 Let ID be any identification criterion such that Qp is limiting—invariant
under repetition. Then for all IIMs M there 1s an IIM M', uniform in M such that M' is
order independent, and, regardless of the input, outputs infinitely many values (or none
at all} and ID(M) C ID(M').

Proof: M’ requests inputs, saves them, and simulates M on the inputs presented
in the canonical order (0, f(0)), (1, f(1)), (2, f(2)),.... After each step of simulation; if
M does not output a new guess, then M’ outputs the last guess that M has output.
Clearly M’ on any input outputs infinitely many values (or none if M never outputs a
value), and M’ is order independent since its behavior does not depend on the order
of input. To see that ID(M) C ID(M'), observe that if ID(M) is nonempty then for
every s, Bjp(IOp,,) = 1 and since IOpgr 5 = IOps 4 for some s’ (which is s in canonical
order and without repeats), for every s, Bip(IOp,) = 1. Further, if f € ID(M), then
(Vs € G(f)) limgnco Qip(M(s)|k, f) exists and = 1, and since for any s € §(f), M'(s)
feeds the reordered sequence s’ € §(f) to M, M'(s) is a repetition variant of M(s'),

i, Qo (M (k. /) = i Quo(M()le. /) = 1.

!This is different than a type of order independence of 7] which covers behavior on partial functions.
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Thus we assume (without loss of generality when Q;p is limiting—invariant under
repetition) that any IIM outputs the same infinite sequence of guesses when given any
presentation s € G(h) for any h € X¥. We denote this unique sequence of outputs by
M(h). Usually, we will be dealing with recursive functions f, so we will write M(f).
Then (as defined in Section 2.1 for arbitrary sequences) M(f)|s is the first k elements
of M(f) if [M(f)| 2 k, and M(f) otherwise. Furthermore, we shall assume for many
of our arguments that any function given as input is presented in the canonical order
(0, £(0)), (1, f(1)),(2, f(2)),.... We write “M(f|i),” or “M on f|x” to denote the (pos-
sibly infinite) sequence of outputs obtained by running M with input f until (if ever) M
asks for the k + 1% pair (k + 1, f(k + 1)).

Two common and natural identification criteria are EX and BC.

Definition 2.12 EX is the identification criterion defined by the pair (Bgx,Qgx) where
BEgx 1is always 1, and if g is a sequence with |g] =k > 1 then Qex (9, f) = 1 & gk = gr—1
and g € GOODy; if |g] = 1 then Qex(g, f) =1 & g1 € GOODy.

Definition 2.13 BC 1s the identification criterion defined by the pair (Bpc,Qpc) where
Bpc is always 1, and if g s a sequence with [g| = k then Qpc(9,f) =1 & g € GOODy.

Thus the BC criterion requires that all guesses of M be correct past some finite
initial number of incorrect guesses, whereas the EX criterion requires in addition that
eventually these correct guesses be identical. Clearly EX C BC, and the containment
is proper [3,10]. Our definition of EX and BC above are not the standard definitions
([7,10]), but are equivalent. Clearly both Qgx and Qpc are limiting-invariant under
repetition. The identification criteria with which we will mostly be concerned throughout
this work are EX, BC, and their variants.

Now we carefully define Smith’s notion of team inference with respect to our definition
of an identification criterion. In this model, a team of IIM’s M;, Ms,..., M, identifies
the function f iff there is at least one i such that M; identifies f. Each member of the
team carries out a separate computation, and there need not be communication between
team members. Identification by a team of n machines may be viewed as a kind of finite
nondeterminism; after an initial n~way nondeterministic choice among the machines,
the computation is deterministic. In chapter 3 we relate the (yet undefined) notion of
probabilistic inference to team inference. We will argue in Section 4.2 that team inference

seems to be the only natural definition of nondeterminism for inductive inference.
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Definition 2.14 Let ID = (Bip,Qp) be any identification criterion, and let the team
{M,M,,...,M,} be a collection of IIMs. Then

e The team {My,M,,...,M,} ID~identifies f iff
(Vi) Bip(M;) =1 and (Bi) limg—qe Q]D(M(f)lk,f) exists and = 1.

o ID(My,My,...,.My) = {f | (My, Ms,...,M,) ID-identifies f}.
o The team {My, My,...,M,} ID-identifies U iff U C ID(My, Mz, ..., M,).

® IDium(n) = {U | @BM,Mz,...,M,) U C ID(M;,M,,...,M,)}.

Note that in the definition above, we might have replaced (Vi) Bip(M;) = 1 by (3¢)
Bip(M;) = 1, and for PEX briefly mentioned above, we would have the “unnatural”
definition. Since most of the identification criteria we examine will have Bjp identically
= 1, this alternate definition of team inference is of no consequence. An interesting
question which we do not explore is what is the structure of team inference with respect
to the alternate definition.

Smith shows for both EX and BC that for all n, there are classes of functions iden-
tifiable by a team of n+ 1 machines, but not by any collection of n machines. This gives

an infinite hierarchy of “inferability”(35]:
Theorem 2.15 (Vr)EX(eam(n) € EXeam(n + 1) and BCiqm(n) € BCiogm(n + 1).

In the following two sections we define probabilistic and nondeterministic models of

computation for arbitrary identification criteria.

2.5 Probabilistic Inductive Inference Machines

We now define probabilistic IIMs and for all identification criteria ID, we define the
probability that a given probabilistic IIM ID-identifies a given function.

A probabilistic IIM P is simply a deterministic IIM which is equipped with a special
“t—sided coin oracle”. The oracle O is an infinite sequence of integers 21,%2,... such that
(v4) ¢; € {0,1,...,t — 1} = N;. We denote the set of these infinite {-ary sequences by
N¢°. (N§° is simply the infinite cartesian product of Ny with itself). The oracle sequence,
or “coin flips” are printed on a semi-infinite read-only one way tape. When P is fed f,
it may from time to time advance the read head on the coin tape to the next square and

read the value of the next coin flip.

17



If we run P with oracle O on input f, then P behaves like a deterministic IIM, which
we denote by PP. If regardless of the oracle O, PP satisfies the behavioral restriction
(i.e. (VO) Bpp (PO) = 1), then we say that P satisfies Bjp. If P satisfies Bjp, and in
addition, for some particular oracle 0 the sequence of guesses output corresponds to a
deterministic ID-identification of f, we write P° ID-identifies f. We denote the sequence
of guesses output by P with oracle O by PO( f). We would like to define the probability
that P ID-identifies f as the probability (taken over all oracles 0) that P° ID-identifies
f. We first review the necessary probability theory.

2.5.1 Some Probability Theory

Much of the material in this section may be found in [29]. Intuitively, a probability
measure is a function Pr which assigns “probabilities” (real numbers between 0 and 1)
to outcomes of some experiment which is to be performed. The outcomes are elements
of some universal set ). In practice, it is useful to have the probability defined not only
on elements of 2, but on subsets of {2 as well. A probability measure should satisfy
axioms which we believe intuitive, for example, Pr[Q2] should equal 1; For all A C Q,
Pr[A] should be between 0 and 1, and Pr should be additive in the following sense: If A
is the disjoint union of the finite or countable collection {A;}, then Pr[A] should equal
> PrlAj].

As it turns out, it may not always be possible, given a set {2, to define a probability
function on all subsets of €1, in a way which is consistent with the situation we want to
model. For example, it can be shown that there is no function defined on all subsets
of the interval [0,1], which satisfies the above three properties, and is such that for any
interval (a,b) C [0,1], Pr{(a,b)]-= b~ a (length is the natural definition of probability
for an interval in [0,1]). The reason for this is that there are many different, and often
bizarre ways to express sets as partitions of other sets, and then deduce by the properties
of a probability measure above, that Pr must be defined to be two different values for a
set so constructed.

The approach generally taken then, is to carefully delineate the class of subsets for
which the function Pr is to be defined, and then show that Pr is in fact well-defined on
this family of sets. We need the notion of a Borel field.

Definition 2.16 A family of subsets B of a given set Q) is a Borel field iff the following

three conditions hold:

1. Q€8
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2. AcB=> Q- A€B.

8. If {Ai}ier is a finite or countable collection of elements of B, then J;e; A; € B and
Nier Ai € B.

It follows that any Borel field is closed under complementation, and countable unions
and intersections.

Now if C is a collection of subsets of (1, then there is a unique “smallest” Borel field,
denoted B(C), which contains every element of C, and is closed under finite and countable
unions and intersections of elements of C and their complements. (“Smallest” is with
respect to containment.)

For example, consider the real line R, and let I be the family of all of the open
intervals of the form (—oo,w), for w € R. Then B(I) contains just about any set of real
numbers imaginable; in fact, one has to be somewhat clever to come up with a subset of
R which isn’t in B(T).

Now given 2 and B, we can define a probability measure on elements of B, rather

than on all subsets of 1.

Definition 2.17 A probability measure Pr on a Borel field B of subsets of (1 1s @ function
Pr:8 — R such that

1. Pr[Ql} =1
2. (VA) A€ B = Pr[A] >0

8. If {A;} is a finite or countable collection of mutually disjoint elements of B, then
Prly; Ai] = ¥, Pr[Aj].

This last property is called counteble additivity, and we will use it liberally. Many
other properties of probability measures follow from the definition above. For example,
monotonicity: If A C B and both are in 8, then Pr{A] < Pr[B]. We call the elements of
B the measurable sets.

If {A;} is a countable collection of sets, then

[+ oI o]
limsup 4; = n U A
k—co k=0 i=k

[o <N o]
lim inf 4; = ;
k=00 k U n A
k=0i=k
The two sets are, respectively, the limit supremum, and limit infimum of the sequence

{A;}, and correspond to, respectively, the set of elements which are in infinitely many of
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the sets {A;}, and the set of elements which are in all but finitely many of the sets {4;}.
If for the sequence of sets {A;} we have that the limit supremum and limit infimum are
equal, then this is the limit of the sequence, i.e.
lggo A = th-n-» il;f A= uﬁ. s:;p A
A sequence of sets is monotone iff either (Vk) Ax C Ag4, or (V) Agyy C Ag. Every
monotone sequence of sets has a limit, and every Borel field is closed under lim inf and

limsup. If {A4;} is a sequence of measurable sets for which the limit is defined, then
Pr[kl_l_'x{.l‘> Al = kl_l_'rgo Pr[Ag].
Finally, we define

Definition 2.18 A probability space is a triple (2, B,Pr) of a sample space of events (1,
a Borel field B of subsets of 1, and a probability measure Pr on B.

Now given a probability space (£2,B,Pr) and a set A C Q, to find Pr[A4] we need
only show that A is measurable by showing that it may be expressed by countable
intersections, unions, and complements of some known measurable sets {4;} (for which
the values Pr[A4;] are known), and then applying the properties (some shown above) of

probability measures to compute Pr[A] from the values Pr[4;].

2.5.2 Probability of Identification

We now define a probability measure on our coin-flip oracles. For any natural number ¢,
define the probability space (Ng,B;,Pl‘g) where B; = {S' | S C N;}, and Pr,[S] = Lf-l
Now let Nf be the cartesian product of N; with itself k¥ times (which is simply the
set of all {—ary sequences of length k), and recall that N§° is the set of all infinite f~ary
sequences, or infinite cartesian product of N; with itself. Let B be the smallest Borel

field of subsets of N§° containing all of the sets
Ni™1x Aj x N®

where (Vj) A; € B;.
Then (N§°,B°,Pr{®) is a probability space [29], with Pr{® the unique measure on

B which (Vn > 0), and for all choices of n integers 0 < ¢; < 3 --- < i, satisfies

n
Pr?o [Ail,fz,...i,,] = H Pr, [A;J.]

J=1
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for all sets A;, ;.. .i., where A;, ;. ;. denotes the set
N:l—l X A, X N:2_i1-1 X A, X N:’—iz_l X Ajy X -+ X Ai, X Nf°

with A4; € B;.

If the value of ¢ is fixed and is clear from context, we will write Pr instead of Pr{®.
The measurable sets A;, ;,, i, are called rectangles, corresponding to the intuitive view
of the product space as an infinite dimensional cube, and the sets A; constraining a side
of the cube to have measure less than 1. Note in particular that the sets A; generating
B® are rectangles.

We note a few facts about our probability space. Let O be a sequence of t-ary flips
(i.e. O € N§®), let O; denote the ;' element in the sequence, and let O|; denote the
finite sequence 0;1,03,...,0;. Then for all j,0 £ 7 < t — 1, and for all n > 1, the set
{0 | Op = j} is a rectangle (and therefore measurable), and Pr{{0 | On = j}] = 1. If
§ = s1, 52, 83,...,5 is a finite t-ary sequence of length k, then we say that O eztends s
iff 0| = s. Then for any sequence s of length k, {O | O extends s} is a rectangle, and
Pr{{0 | O extends s}} = .

Given a probabilistic IIM P, we would like to define Pr[P ID-identifies f] as Pr[{0 |
PO ID-identifies f}]. The problem is that the set may not be measurable. We show that

it always is.

Lemma 2.19 If ID = (Bjp,Qp) is any identification criterion, P a probabilistic IIM
which satisfies Bip, and f a total recursive function, then {O | PO ID~identifies f} is a

measurable set.

Proof: Let PO(f)|; be defined as in Section 2.3. Then
{0 | P®ID-identifies f} = {0 lim Qu(P%(f)l;,/f) =1}

= {0]|(@k)(¥s = k) Qu(P°(f)lj, f) =1}
= U0V 2 k) Qu(P°(f)l;,f) =1}

k=1
- UR© @00 =1)
k=1 j=k
= G ﬁ U {0 | O extends s}

]

k=1 j=k j
J SEN]

Qip(PS(N).0)=1
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Since the sets {0 | O extends s} are rectangles, they are measurable, and we have thus
shown that {0 | P° ID-identifies f} is expressible as countable unions and intersections

of measurable sets, and is therefore measurable. O

Definition 2.20 Let ID be an identification criterion, and let P be a probabilistic IIM

with a t-sided coin (t > 2) which satisfies Byp. Then for any total recursive function f,
Pr[P ID—identifies f] = Pr®[{0 | P® ID—identifies f}]

We now show that without loss of generality, we may assume that all probabilistic

IIMs have a two-sided coin.

Lemma 2.21 Let P be a probabilistic IIM with at t-sided coin. Then there exists a
probabilistic IIM P, with a 2-sided coin such that (Vf) Pr3°[P, ID-identifies f] = Pr{°[P
ID-identifies f].

Proof: P, on input f simulates P. P, obtains the next value of f whenever P was
about to, and P; outputs any guess whenever P does. The only problem occurs each
time P wishes to flip its t-sided coin. P; simulates the t-sided coin flip by flipping the
2-sided coin ¢ times, and if the coin comes up “heads” for exactly one of the flips, then
P; feeds the appropriate value to P. If this doesn’t occur, then P; continues flipping
“blocks” of ¢ flips until the first block is encountered such that there is exactly one head
in the block. P; iterates this procedure whenever P attempts to flip its coin (read the
next value on its oracle tape).

We make t'his.procedure more precise. Let O be an infinite binary sequence b =
bo, by, .. .. Define the k*® black of b to be the subsequence b(k—1)ts D(k—~1)t415 -« - » O(k=1)4t~1-
The k*® block is good iff there is exactly one i € {0,1,...,t - 1} such that bk—1)t4+i = 1
(heads). Then PP constructs the (possibly finite) t-ary sequence ¢ = cp,¢y,. .. such that
en = 7 (0 € 7 < t— 1) iff there are at least n good blocks, and if the n'® good block is
block k, then b(x_1yts- s b(k=1)t4j5- - s D(k=1)4t~1 = 05.. ., 1,...,0.

Now Pr3°[{O | the sequence constructed by P; (in the limit) is finite}] = 0, since it is
the infinite product of rectangles with probability < 1, and by symmetry, the probability
that cx = j is } for each 7,0 < j < t— 1. Thus P is able to construct (albeit slowly) an
oracle for P, and successfully simulate P, O

Since the “number of sides” of the coin is irrelevant, we will use whatever value of ¢ is
most convenient for the argument which we are presenting. We let ¢ = 2 unless otherwise

specified.
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Definition 2.22 Let ID be an identtfication criterton, P a probabilistic IIM which sat-

isfies Bp, and f a total recursive function. Then
e P ID-identifies f with probability p iff Pr[P ID~identifies f] 2 p.
e ID,(P) = {f | P ID—dentifies f with probability p}.
e P ID-identifies U with probability p iff U C ID,(P).
® IDpms(p) = {U | (3P) U S ID,(P)}.

Note that our definition requires that given any oracle 0, P° satisfies the behavioral
restriction. As with team identification, interesting questions arise when this requirement
is weakened to allow P to violate Bjp whenever the sequence of outputs PO(f) didn’t
satisfy the predicate Qp. As mentioned when discussing the definition of team inference,
for most of our work this difference is of no consequence since in most cases we will have

that Bjp is identically 1.
Theorem 2.23 If ID is any tdentification criterion then (Vn 2 1) IDygm(n) C ID,,,,,,(-,I;).

Proof: IfU € IDyygm(n) then (3M;, Ma, ..., My,) such that (Vi) Bijp(M;) = 1and (Vf €
U)(3¢) M; ID-identifies f. Let P be the probabilistic IIM which has an n-sided coin,
which it flips once and obtains with probability % a particular value ¢ € {0,1,...,n—1}.
P then simulates machine ¢ + 1. Clearly P satisfies Bjp and (Vf € U) Pr|P ID-identifies
1z 5 0

Theorem 2.23 shows that for any identification criterion, a probabilistic IIM can
simulate (with success -'1;) a team of n IIMs. Much of Chapter 3 involves showing that

teams of IIMs can simulate probabilistic IIMs.

Corollary 2.24 (Vn > 1) EXieam(n) C EX prot () and BCioam(n) C BCpms(2).

Vggcsgy that a probabilistic IIM P behaves nicely iff P obeys the following computation
sequence:

1. Receive a value of f

Guess a program index

Flip a 2-sided coin

Execute a finite number of deterministic steps

Go to Step 1.

A A

It will be convenient for many of our arguments to assume that all probabilistic IIMs
behave nicely. We now show that we may do this without any loss of generality for many

types of identification criteria.
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Lemma 2.25 Let P be a probabilistic IIM and ID an identification criterion such that
Qp is imiting—tnvariant under repetition. Then there is a probabilistic IIM Py which
behaves nicely and such that (Vf) Pr[P ID—identifies f] = Pr[P; ID—identifies f].

Proof: By Lemma 2.21 we may assume that P flips a two—sided coin. Thus We only
need to construct a machine P; which behaves nicely and for all f is correct with the same
probability as P. P, simulates P, and P, must be sure to obey the required computation
sequence (receive value — guess program - flip coin ~ compute — repeat). This is easily
accomplished. P; uses three tapes as buffers to store inputs to and outputs from its
simulated computation of P. The three buffers are: a coin buffer to which P; writes and
from which P reads coin flips; a value buffer, on which P; writes the sequence of values of
f which it receives during its computation, and from which P reads, and a guess buffer
on which P writes its guesses which P; saves and uses from time to time. Now P, begins
to execute the above computation sequence. Whenever it receives a value for f, it writes
it on the value buffer. Whenever it is time (according to the above sequence) to make a
new guess, P; outputs the last value written to the guess buffer by P, Whenever it is time
to flip the coin, P; writes the result of the coin flip to the coin buffer, and whenever it
is time to compute deterministically, P; simulates P until either P outputs a new guess,
or is awaiting the next (not yet written) value from either the coin or value buffer. P;
then returns to step 1. of the computation sequence.

Clearly the sequence of outputs of P, with oracle 0 and input f is a repetition variant
of the sequence which P outputs with oracle O and input f. Now since Qp is limiting—
invariant under repetition, we conclude that Pr[PP ID-identifies f] = Pr[P? ID-identifies
f], completing the proof of Lemma 2.25. 0

Since Qgx and Qpc¢ are limiting-invariant under repetition, we assume without loss
of generality that all [IMs EX- and BC-identifying sets of functions behave nicely.
Whenever we introdnce a new identification criterion ID, we immediately have that
Theorem 2.23 applies. Furthermore, if Qyp is limiting—invariant under repetition we will

assume with impunity that all IIMs under consideration behave nicely.

2.5.3 Infinite Computation Trees

For the sake of intuition, as well as cleaner arguments, for any probabilistic [IM P and
any function f, we define an infinite complete binary “computation tree” T'py which
represents all of the possible computations of P with input f. (Each determined by the

particular sequence of coin flips defining the coin oracle).
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The nodes of Tp ; will correspond to configurations of P and the edges will correspond
to the results of coin flips. (A configuration is a structure which specifies the state of P,

the contents of all of its tapes, and the positions of all of its read and write heads [24].)

In particular, the root node will correspond to the configuration of P immediately
after P makes its first guess. Since P behaves nicely, P’s next step after this guess
will be to flip the coin. The left edge leaving the root node will correspond to a coin
flip which comes up “heads”, the right edge “tails”. After an initial guess and a coin
flip, P, (according to the niceness conventions) executes a finite number of transitions,
receives the next value of f and then guesses again. The left child of the root node will
correspond to the configuration that P reaches just after it makes its second guess, given
that the first flip was heads. In general, a node of depth d in Tp s will correspond to the
configuration of P reached if P were to run through d iterations of the read-guess-flip~
compute loop and the sequence of d coin flips that P received was exactly the sequence

of heads and tails which lead to node n in the tree.

The nodes of Tpy are numbered in breadth first search order (across levels left to
right, starting with the root node, which is numbered ‘1°). The depth of a node n in
Tp,s is denoted d(n), where d(n) = |logy n|. (Hence node 1 has depth 0, nodes 2 and 3
have depth 1, etc). Parent(n) denotes the immediate ancestor of node n in Tpy. When
we write “n”, we sometimes are referring to the node numbered n, or to the value n
itself, the meaning will be clear from context. Finally, we define the labeling function
ind:N — N on the nodes of Tp s by: ind(n) = the guess that P has just output ‘when it
is in the configuration corresponding to node n. If ind(n) = 7, then we say that 7 is the
indez of node n, to indicate that 7 is P’s guess for a program index for f. Note that for
any probabilistic IIM P, any function f, and any number %, there is a Turing machine
which when fed the first k values of f, and the description of P, constructs Tp s through
the kth level.

A path p of Tpy is an infinite sequence of adjacent nodes (to,?,...,), starting at the
root node (fp = 1), and going “down the tree, never changing directions”, so that for all
¢, the ¢*8 node t; on p is a node occurring at depth ¢ of pr' 7- We observe that there is an
isomorphism between the set of coin oracles and the set of paths in Tps, (namely each
path corresponds to a particular coin oracle), and the sequence of guesses along path p

is exactly the sequence P9(f) where O corresponds to the coin flips along p.
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2.5.4 Probability on Infinite Computation Trees

As we have observed, the tree T'py is a structure which nicely represents all of P’s
possible computations, and a particular path p in Tp s corresponds exactly to an oracle
sequence, together with the corresponding infinite sequence of outputs P°(f). Thus the
function Pr defined above can be extended to sets of paths S in Tp; by Pr[S] = Pr[{0
| O corresponds to a path p € S§}]. We pay particular attention to some measurable sets

of paths which we will find useful.
Definition 2.26 For each node n € Tps, P, = {paths p € Tp; | p contains node n}.

Clearly Pr[F,] = F;GJ since P, corresponds to the set of oracles {O | O extends s}
where s is the finite path segment of length d(n) which leads to node n. This makes sense,
since if we think of P as flipping coins and following down some path in Tp ¢, P must pass
through exactly one node at depth (or level) d(n), and these should be equiprobable. The
sets {P,} are (correspond to) rectangles, and we use them to construct other measurable

sets of paths in Sections 3.1.1 and 3.2.1.

2.6 Nondeterministic Inductive Inference Machines

We briefly define a nondeterministic model of computation for any identification criterion
ID.

A nondeterministic IIM is exactly a probabilistic IIM; 7.e. it is a deterministic IIM
which has access to an oracle O. The only difference is the definition of successful non-

deterministic identification:

Definition 2.27 Let N be a nondeterministic IIM, ID be any identification criterion,

and f any total recursive function. Then

o N nondeterministically ID-identifies f iff N satisfies Bip (i.e. for every oracle O
Bip(N°) = 1) and (30) N© ID-identifies f (i.e. limt—oo Qrp(NO(f)k, f) = 1).

e N nondeterministically ID-identifies U off (Vf € U) N nondeterministically ID-
identifies f.

® IDponger = {U | (3N) N nondeterministically identifies U}.

For example, the class EX, n4a consists of those sets of functions for which there is a

single nondeterministic IIM identifying every function in the set. It is easy to show that
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the class of all partial recursive functions is contained in EX popder. We will discuss this

in greater detail in Section 4.2.

27



28



Chapter 3

Probability, Teams, EX, and BC

In this chapter we examine the relationship between team and probabilistic inference
strategies for the most natural definitions of successful inference. We will demonstrate
for EX and BC that there is an infinite hierarchy of probabilistic inference classes, and
that this hierarchy is identical to the hierarchy of team inference shown in {35}, and
given by Theorem 2.15. This is achieved by showing that teams of IIMs can “simulate”
probabilistic IIMs, and combining these results with Corollary 2.24. Section 3.1 proves
the main results for the BC identification criterion, and Section 3.2 for EX. We put
all of these results together in Section 3.3 and examine the probabilistic identification
hierarchies in light of the relationship between teams and probability. In Section 3.4 we
introduce Podnieks’ “frequency” identification for EX and BC and relate frequency to
probability and teams. In Section 3.5 we consider different definitions of probabilistic EX
and BC identification and show that they define the same classes. Finally we consider

other aspects of probabilistic inference for EX and BC in Section 3.6.

3.1 BC Probability and Teams

3.1.1 BC Convergence in Tpy

We will carry out our arguments using the computation trees Tp ;. We define some useful

sets of paths in these trees, along with some helpful lemmas.

Definition 8.1 Let p = (to,t1,...,), be a path in Tpy, and A C N. The path p BC-
converges to A iff (VY°) ind(tx) € A.

If path p BC-converges to A, then p corresponds to a possible computation of P with

input f, for which P, after some initial sequence of guesses, outputs only indices from
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the set A.
Path p = (to,t1,...,) BC-converges to A at node n iff

p passes through node n. (tyn) = n)

p BC~converges to A.

(Vk = d(n)) ind(t;) € A.

there does not exist k < d(n) such that (Vm > k) ind(t,,) € A.

This simply requires that on path p, all nodes from n and beyond have index in the
set A, and node n is the least depth at which this convergence occurs.

i a path p BC-converges to the set GOODy, then p contains a sequence of coin flips
which causes P to output a sequence of guesses corresponding to a single deterministic
BC-identification of f.

Definition 3.2

e B(A)={p| p s a path in Tpy, and p BC~converges to A}.

e B;j(A) = {p | p is a path in Tps, and p BC-converges to A at node j}.

Note that for all j # m, and A, B;j(A) N Bm(A) = 0. If neither 7 nor m is an ancestor
of the other, then no paths pass through both. If one is the ancestor of the other, then
any path which BC-~converges to A must, by definition, converge at ezactly one node.

We say that a path p = (to,11,...,) is k-consistent with B;(A) iff the following three

conditions hold:
1. t4) = J (the path passes through node j).
2. (Vi) d(j) < i < k = ind(t;) € A.
3. j is the root OR ind(t;-,) & A.

Definition 3.3 B;i(A) = {p | p is k—consistent with B;(A)}.

Intuitively, B;i(A) is the set of paths p such that if we examine the nodes on p only
through depth k, p seems to be a path in Bj(A). Another way of stating this is that it
is not possible to deduce that p is not in B;(A) from looking only at the first k levels of
the tree.
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Clearly, B(A) = W;en Bj(A). It is also true that B;(A4) = MNgZ4(;) Bjk(4). Thus to
show B(A) measurable for all A, we need only show that Bj;(A) is measurable for all
J,k = d(j), and A. We will express Bji(A) using the rectangles {P,} (Definition 2.26)

but we will first need the following definition.

Definition 3.4 N;;(A) = {n | d(n) = k, and 3 path p € B;(A) passing through node

n}.

This set of nodes is intuitively, the set of nodes which terminate partial paths which
converge at node 7, “through level k”. In other words, if ind(j) € A, and ind(parent(s)) ¢
A (or j is the root), and ind(z) € A for each node ¢ on the path from j through level k,
then the node at level k is in N;g(A).

Lemma 3.5 (V5)(Vk > d(j))(VA € N) B «(A) is measurable and Pr[B; 4 (A)] = Lis(A)l,

Proof: We claim that

Bji(A) = tlj P;.
zENj,k(A)

To see that the sets in the union are disjoint, note that if z # y and both are in Nj;(A),
then d(z) = d(y) = k, and every path must pass through ezactly one node at each level;
thus P, P, = 0.

(€) If p € Bj(A), then p passes through some node y at level k, and y € Nji(A).
Therefore p€ Py C b),¢ N;x(A) P;.

(2) ¥ p € W.en, ,(a) P, and y is the node at depth k on p, then since the definition
of N;i(A) doesn’t depend on nodes deeper than depth k, all paths passing through y
must be in B;i(A).

We now have

PrBji(4)] = Pil W P
zEN,-,;,(A)
= Y  Pr[P]
£EN; £(A)
— Z 9—d(z)
zENj_k(A)
= Z Z_k
zEN; 1 (A)
1¥;6(4)]
21:
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Thus for all A, Bjt(A), B;j(A), and B(A) are measurable. Note now that B(GOODy)
are exactly those paths such that the sequence of outputs along the nodes of the path
corresponds to a correct BC-identification. Therefore we have Pr[P BC-identifies f] =
Pr[B(GOODy)].

We end this section by proving several lemmas which will be useful in subsequent
sections.

The following lemma asserts that the sets {B; x(A)} are increasingly better estimates
of the set Bj(A) as k gets larger.

Lemma 3.6 For all nodes j, for all AC N, and for all Tpy,

1. (Vk 2 d(5)) Bjx(4) 2 Bje+1(4).
2. (Vk 2 d(5)) Pr[B;(A)] 2 Pr[B;(4)].

3. Pr[B;(A)] = limg_.oo Pr[Bj(A)].

Proof: Property 1 is immediate from the definition of Bj(A). Property 2 and property
3 follow from property 1, the monotonicity property of probability measures, and the
fact that B;(A) = Miza(j) Bjk(4)- O

The following lemma gives us insight into how and when paths BC-converge in any
tree Tp s. In particular, suppose that the probability of paths converging to a set A is
greater than p. (i.e. Pr[B(A4)] > p). The convergence of different paths to 4 may occur at
many different nodes. We show however that there are nodes where “significant chunks”
of paths converge to A. This must occur because there are an uncountable number of

paths, but only countably many nodes.

Lemma 3.7 For all A C N, for all p € R such that 0 < p < 1, if Pr[B(A)] > p, then

there is a least numbered node v such that

Pr{l) B;(4)] = 3 Pr[B;(4)] > p.

j=1 y=1
Proof:
o0
i B;(4) = B(4),
Jj=1
S0

S PrlB;(4)] = Po{{Y B;(4)] = Pe{B(4)] > p
J=1 J=1
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and by the definition of an infinite sum there is a least v such that

XU: Pr[B;(A)] > p.
J=1

3.1.2 Team Simulation of Probabilistic IIMs

We saw that by Corollary 2.24 a probabilistic IIM can simulate a team of IIMs. In this
section we show under what circumstances a team of IIMs may be used to simulate a

probabilistic IIM for BC-identification.
Theorem 3.8 (Yn > 1)(Vp) 737 < p £ 1= BCpi(p) € BCaam(n).
Corollary 3.9 (Vn > 1) BCps(L) = BCieam(n).

The corollary follows from Theorem 3.8 and Corollary 2.24. Thus the probabilistic
BC-identification hierarchy contains the team BC-identification hierarchy. Theorem 3.8
also implies that the probabilistic hierarchy is “no finer” than the team hierarchy. We
shall discuss this more in Section 3.3.

We first note that a special case of Theorem 3.8 has a very simple proof. If n = 1,
then the theorem asserts that if there is a probabilistic IIM P which BC-identifies a
set of functions U with probability p > %, then there is a deterministic IIM M; which
BC-identifies U. To prove this, we merely need to argue that since Pr[B(GOODy)] > %,
the k*® level of Tp s consists of > % correct programs for all but finitely many levels %.
The machine M; which will identify U deterministically will, given f € U, construct Tpy,
and for its k*® guess output the index of a THRESHOLD program (Section 2.2) which
essentially does a majority vote of the computations of the programs whose indices occur
at the k*® level of Tp ;. A simple argument shows that M; BC-identifies U.

In order to prove Theorem 3.8 in general, we need only show that if U C BC,(P)
with p > ;‘—_%_T then there is a team {Mj, Ma,..., M,} such that for every f € U, there is
an ¢ such that M; BC-identifies f.

For a particular f € U, we’ll informally use the term “weight” of a set of paths P
in Tps to mean Pr[P], as this term more accurately suggests the appropriate intuition.
(The entire tree Tps has weight 1.) The intuition behind the proof of Theorem 3.8
is as follows. Since the weight of paths which BC—converge to correct programs for

fis > ;;_—%_—1-, we can show that the fraction of correct programs at each level of the
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computation tree Tp s is greater than — for all but finitely many levels of the tree. (In

n+l
the case that n = 1, we have the argument described earlier.) A deterministic strategy
to BC—identify f might simply output a THRESHOLD program with threshold > ;_—lq
constructed from the program indices found at each level, since as we will show below,

this group of indices will contain greater than the fraction 17 of GOODy indices. The

.
n+1

of WRONGY indices, thus not satisfy the threshold condition. Elements of WRONGY/
have the pleasing property that they can be identified (in the limit, given values of f),

problem with this strategy is that each level might contain grea.ter than the fraction

by simulation and comparison with f. If the deterministic strategy knew roughly how
many WRONG/ programs there were at a given level of the free, then it could eliminate
most of them, and output the remaining programs at that level. If enough WRONG/
programs were eliminated at each level, then the deterministic strategy could output a
correct threshold program, and thus BC~identify f. The team of n IIMs is used to guess
roughly what the fraction of WRONG/ indices is (in the limit) at each level of the tree.

Definition 3.10 Let Tp s be a computation tree, and A C N be a set of program indices.
Then

e Ly={n| n is a node at level k of Tp}.
e Li(A) = {n € Ly | ind(n) € A}.

Note that |Lg| = 2. The sets which will most concern us are the sets Ly(GOOD/)
and Li( WRONGY), the sets of nodes at level k which have GOOD and WRONG indices
of f respectively.

Lemma 3.11 (VA € N) (Vf) (V IIMs P) Pr[B(A)] > p = (V) |Lk(4)] > p2*.

That is, the fraction of nodes at level k with indices in A is greater than p for all but

finitely many levels.
Proof:

If Pr[B(A)] > p, then by Lemma 3.7 there exists a least numbered node v such that

Pr[Hﬂ Bj(A)} = ZPI[BJ(A)] >

J=1 J=1
By Lemma 3.6, for all k£ > max{d(i) | 1 < i £ v}, we have that

EUI Pr[B;:(4)] 2 Z Pr{B;(A)] >

J=1 j=1

34



Then by Lemma 3.5,
v v
|, (4)]
> 5 = 2 _Pr(Bjx(4)] > p
j=1 Jj=1
or
v
Y INjk(A)] > p2F.
j=1
Now by definition, every element N;i(A) is at depth k, and has index in A. Also
note that N x(A) N Nmi(A) = 0 if j # m. (Since if 5 and m are on the same path, then
one of the sets is empty, for convergence can happen at exactly one node on any path;

otherwise, their descendants at level k are disjoint.) Therefore

v
| Nje(4)] > p2*
J=l

and there are > p2* nodes at level k with index in the set A, t.e.
(VE) 1Lk (A)] > p2*,

proving the lemma. |

We are now ready to prove Theorem 3.8. Let U € BCpms(p), with p > F-!FT Then

there is a probabilistic IIM P which BC-identifies every f € U with probability >
P> ;_%—1- We construct a team of n deterministic IIMs such that for all f € U, there is a
team member which BC-identifies f.

Consider any f € U, and the tree Tps. Then by the definition of probabilistic BC-

identification,

1
2 —_—
Pr{B(GOODy)] 2 p> o

Lemma 3.11 asserts that
k

2

m Ov———————
(V%) 1£4(GO0Dy)| > 2.

Now since

(Vk) |Le(GOODy)| + | Ly (SLOW f)| + | Le(WRONGYy)| = ok
we have
(V) |Le(WRONGY)| < n2t
k k 4 n+1
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There are then n distinct and mutually exclusive possibilities about how | Ly ( WRONGY)|

behaves “in the limit.”

Possibility n: (V)| Le(WRONGy)] < 221 and

(3P)|Le(WRONGy)| > (e=hZ

Possibility i : (V)| Le(WRONGy)| < 32 and

. k
(3P)|Le(WRONGy)| > 12

Possibility 1: (V)| Li( WRONGy)| < 2% and

2° n+1
(32)|Le(WRONGY)| 0

v

We use the team of n deterministic IIM’s to guess which case will hold for a partic-
ular f. The machine whose guess is correct will BC-identify f.

The idea behind the construction is fairly simple. If a machine M; knows roughly
what the fraction of WRONG/ guesses there are at each level of the tree, it can cancel
most of them by witnessing that they differ from f. Machine M; will search for deeper
and deeper levels of the tree Tp s such that the fraction of WRONG; guesses among
those output is at least ;'-:—'_e’f, and then cancel these wrong guesses.

If it is also true that past some point, the fraction of WRONG; guesses is bounded
above by -n%, then M; will be able to form (in the limit) sets of indices for which at least
the fraction ;-_1,-_-1- are correct, and strictly less than this are WRONG/; indices. Thus M;

will be able to output a threshold program.

Machine M;

kug < 0
LOOP:
Simulate M on input values received from f, and build Tp ;.

L

DOVETAIL the computations of p;nq(,)(s) for all nodes s and numbers j,
comparing the outputs of completed computations with actual values of f,

UNTIL for some level £ > ky4, there are > 2—*;%—1-1 nodes in the set

CANCEL,, the set of nodes at level k whose indices have been observed to
be in WRONG;.

5. Iy + The ordered multiset of indices of nodes in Ly — CANCEL,

6. p= P1:P25- - <> PiIL)> with (Vt) b= '2'17:'-
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7. OUTPUT the index of the program THRESHOLD S ip

8. kas+—k
9. GO TO LOOP

Consider the instructions for machine M; above. We clarify the dovetail of line 4:
CANCEL; starts out empty. A node n at level k is placed in CANCEL; when for some
T, Pind(n)(z) 1# f(2). Thus CANCEL; contains only elements of Ly( WRONGy).

Now let U C BCp(P), with p > ;%—1-, and let My, M,,...,M, be defined as above.
Then to prove Theorem 3.8 we only need to prove the following

Claim 3.12 Let f € U, and let M; be the machine defined above which “guesses cor-
rectly”, i.e. |Ly(WRONGY)| satisfies the i*" possibility stated previously. Then

1. M; outputs tnfinitely many indices of programs THRESHOLD 1L d

2. (V) |I: N WRONGy| < .

8. (V) [N GOODy| > 2.

Theorem 3.8 follows from Claim 3.12 because if M; satisfies the three conditions,
then (V§°) the program THRESHOLD

s (whose index M; outputs) satisfies the

hypothesis of Lemma 2.4, and thus (V§°) M; outputs the index of a program which
computes f, which is exactly the definition of BC-identification.

Proof of Claim 3.12

To show 1. we note that the only possible way for M; to output the indices of only finitely
many programs THRESHOLD 0B is that for some value kqq4, the dovetail of step 4
of M; fails to satisfy its halting condition. By assumption on ¢, (3) |Ly( WRONGYy)| 2
n—a_%, therefore there is some k > kyg with |Ly( WRONGY/)| > ;'%_'-‘-1- Now |Ly( WRONGY)|
is at most 2, hence finite, and after some finite number of steps of simulation, M; would
be able to witness that all of these nodes have indices in WRONG/, hence they would be
placed into CANCEL;. Thus CANCEL; at some point must contain > n—a_% nodes and
therefore the halting condition is satisfied.

We prove 2. The number of elements of WRONG/ which are in I; can be at most the
total number of nodes at level k with indices in the set WRONG/ (= |L¢( WRONGY/)|,)

minus the number of nodes which have been cancelled. Thus
I [ WRONG/| = |Li(WRONG )| — | CANCEL|.
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By assumption on ¢,

12k
n+1
and by the dovetail halting condition, for all k found by M; ,

. ok
|CANCEL| > =12
n+1

(V&) |ILe(WRONGy)| <

Thus )
28 (i-1)2F 2k
n+1 n+l n+1

Finally (part 3.), to see that (V) | GOODy| > ;2_*—1_‘—1-, note that no node in

(V®) I [ WRONGy| <

|Lx(GOODy)| is ever cancelled, so the multiset I; contains the index of every node
in |Ly(GOODy)|. Thus

[T} GOODy| = | L (GOODy)|.

That is, the number of GOOD indices in I; equals the number of nodes with GOOD
indices at level k. Now since Pr[B(GOODy)] 2 p > 73, as noted earlier, Lemma 3.11

implies )
2
(V%) | I [ GOODy| = |Li(GOODy)| > ot
This completes the proof of Claim 3.12 and Theorem 3.8. O

3.2 EX Probability and Teams

In this section we prove theorems analogous to those relating probabilistic BC-identification
and team BC-identification. As we shall see, the restrictions of EX-identification disallow
some of the proof techniques of the previous sections, so we will need more complicated

machinery.

3.2.1 EX Convergence in Tp;

We begin by defining a more natural notion of convergence of a path in a tree Tp s than

that of BC-convergence.

Definition 3.13 Let p = (lo,t1,...) be a path in Tpy , and j be a program index. The
path p converges to § iff (V%) ind(tx) = J.

If path p converges to j then p corresponds to a possible computation of P with input
f for which P (in the limit) converges to outputting “;” as its guess for a program index
for f.
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Definition 3.14 Path p = (lo,t1,...) converges at node n iff

o p passes through node n. (t4(n) = n).
o (Vk > d(n)) ind(t;) = ind(n) (hence p converges to ind(n)).

e there does not ezxist k < d(n) such that (Vm > k) tnd(tm) = ind(n).

This definition simply requires that all nodes past n on path p have the same index
as node n, and node n is the least depth at which this convergence occurs.

It is important to note that a path which converges at a node n, converges to ind(n).
Thus if we know where a path converges, we know what index it converges to. Note
that if p converges to j, then p € B({j}). We develop a new notation to represent paths

which converge, rather than abuse the old notation for paths which BC-converge.
Definition 3.15 C(A) = {paths p € Tps | (3a € A) p converges to a}.

Let P be a probabilistic IIM. Then C(GOODy) contains exactly those paths such that
the sequence of outputs along the nodes of the path corresponds to a correct EX-
identification. Therefore we have Pr[P EX-identifies f] = Pr[C(GOODy)].

Thus the probability that P EX-identifies f is the fraction of paths of Tp; which
converge to a correct program index for f; or the fraction of P’s possible computations

which correspond to a single deterministic EX-identification of the function f.
Definition 3.16 C; = {p | p is a path in Tpy and p converges at node j}.
A path p = (to,t1,...) is k—consistent with C; iff the following three conditions hold:
1. t4(j) = j (the path passes through node ).
2. (Vi) d(j) < i < k = ind(t;) = ind(4).
3. j is the root OR ind(t4(;-1)) # ind(y).
Definition 3.17 Cji: = {p | p ts k-consistent with C;}.
Thus Cj consists of paths p satisfying:
e p passes through node j.
e P outputs a different index at parent(;) than at 5 (or j is the root).

o All nodes after j on p down to depth k have the same index as j.
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Intuitively, C;i is the set of paths which appear to be converging to ind(j) and
appear to converge at j when we examine Tp s for k levels only.

Clearly C(A) = Wing(j)ea Cj» and Cj = Nq4(5) Ciik-

Note that Cj; is the set of paths which converge at node j (to ind(y)) “through
level k”; thus Cj; = Bj({ind(5)}). We have already shown that for all A, Bj;(A) is
measurable, therefore, Cj i, Cj, and C(A) are all measurable.

We end this section with some important lemmas. The following two lemmas are

analogues of Lemmas 3.6 and 3.7.

Lemma 3.18 For all nodes j, and for all Tp s

1. (Vk 2 d(5)) Cjk 2 Cjsr-
2. (Vk 2 d(j)) Pr[Cju] 2 Pr[Cj).

8. Pr[C’_,-] = limk...oo PI[C‘,k].

Proof: C’j,k = B;j({ind(7)}) and then the lemma follows immediately from Lemma 3.6.

Thus the sets {Cj i} are increasingly better estimates of the set C; as k increases. [

Lemma 3.19 For all A C N and for all p € [0,1], if Pr[C(A)] > p, then there ezists
nodes {ny,ns,...,n} such that (Vi) ind(n;) € A, and Pr[Wfi_; Cn,] > p.

Proof:

W Ci=c(4)
ind()EA

SO

Y. Px[Cjl=Pi[ | Cjl=PiC(4)]>p
ind(j)€A ind(j)€A

so (by a simple limit property) there must be a finite set of nodes {ny,na,...,n;} such

that

k k
Pr{ly Cn,] = Y Pr[Cy)] > p.
J=1 Jj=1

0O

So most of the paths which converge to any index in the set A converge at one of a

finite collection of nodes. The justification for the partition in the expression above is
that a path can converge at at most one node.

We introduce one more lemma for which there is no analogue in the BC case.

Lemma 3.20 Pr[C;;] is computable from the first k levels of Tpy .
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Proof: Pr[Cjx] = Pr[B;({ind(5)})] = ML{;?MD], by Lemma 3.5. Thus we need
only show that for all k, Nji({¢nd(s)}) is computable from the first k levels of Tp s . But
N; i ({ind(5)}) is simply the set of nodes at level k through which a path in B;({ind(7)})
passes. These are nodes m at level k such that m is a descendant of 7, and all nodes z
on the path between j and m (inclusive), have ind(z) = ind(s), and either j is the root
node, or ind(parent(s)) # ind(s). Thus membership in Njx({ind(5)}) depends only on
the indices of nodes of Tpy in the first k levels. O

Note that in general, Pr[B; (A)] is not necessarily computable, since membership in

A might not be decidable.

3.2.2 Team Simulation of Probabilistic IIMs

We are surprised to find that analogues of Theorem 3.8 and Corollary 3.9 exist for EX~

identification, since the majority voting techniques do not seem to work in this case.
Theorem 3.21 (Vn 2> 1)(Vp) 737 <2 < 1= EXpob(p) € EXieam (n).
Corollary 8.22 (Vn 2> 1) EX pop(2) = EXogm(n).

The corollary follows from Theorem 3.21 and Corollary 2.24. To prove Theorem 3.21,

we will need the following definitions and lemma.
Definition 3.23 A set I of program indices is a correct list for f ¢ff I\ GOODy # 9.

The class OEX was introduced in [10]*
Definition 3.24

o M OEX-identifies f (written f € OEX(M)), iff M, when fed the graph of f in any
order, outputs an infinite sequence {I;} of finite lists, and there is a correct list I
such that (V) I = I.

e OEX={U | (3M) U C OEX(M)}.

Case and Smith [10] prove a generalization of the following lemma.

Lemma 3.25 ? OEX= EX.

1Qur definition is somewhat different, but it is easy to show that the two definitions are equivalent.

2Note that the lemma does not contradict the team hierarchy theorem by the following fallacious

reasoning. A single IIM can simulate each member of a team of n IIMs and output a list containing
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Proof: Clearly EX C OEX. We show that OEX C EX. Let U € OEX (M). We
construct an IIM M’ which EX-identifies U. The idea behind the proof is that M’ can
simulate M, and once M converges to outputting a correct list I, M’ can cancel (in the
limit) every element of Iy WRONG;. Then M’ can output the program RACE; which
will satisfy the hypothesis of Lemma 2.2 and therefore will be a correct program for f.

M’ on input f|; simulates M on input f|; and obtains the list J;. M’ tries to compute,
allowing k steps for each computation, the values {p;(5) | i € I, 1 < j < k}. M’ sets Ly
toIr —{t € I | (37 < k) and in < k steps, vi(7) |# f(5)}. M’ then outputs the index
of the program RACEy,.

To see that M’ EX~identifies U, let f € U C OEX(M). Then let kg be large enough so
that for all k > ko, It = I, with I GOODs # @, and (Vi € I} WRONG/), M" cancels
¢ within k steps. No further cancellations occur once k > ko, and the sequence of lists
{L} converges to the list L. Then M’ converges to outputting the index of RACEL. Now
since I is a correct list for f, I GOOD; # @, furthermore, no element in [} GOOD 1 is
ever cancelled, so the set L satisfies the hypothesis of Lemma 2.2. Hence M’ converges
to outputting the program RACE| which computes f. ]

It is now clear that Theorem 3.21 follows from:

Lemma 3.26 LetU € EX 5 (p), withp > 7.'341'3 Then (3My, M,,. .., M,) (deterministic
IIMs) such that (Vf € U)(3) M; OEX-identifies f.

At first glance, it would appear that a technique similar to that used in the BC pfoof
could be employed here. But even in the more obvious case where n = 1 this approach
doesn’t seem to work. For example, if P is a probabilistic IIM which EX-identifies U with
probability p > %, then certainly a program which did a “majority vote” of the programs
at each level of Tp; would (in the limit) be correct. However, in order to EX-identify
a function, the program output must be the same in the limit, and the majority vote
program would change from level to level. We might think that since P EX~identifies
f with probability > % that there is some correct index of f, say ¢, such that in the
limit > 1 of the nodes at each level of Tp s had index 4. This is unfortunately not true,
since probabilistic EX-identification was defined to capture the intuitive notion that

“when you run P with input f, the probability that you get a correct EX-identification

the last element output by each IIM of the team. If the outputs of each team member converged, then
indeed the lists output by the single IIM would converge to a correct list, and the IIM would OEX and
hence EX~identify the function. Unfortunately, this need not happen, as any team members incorrect

on a given function may be incorrect by not converging to a single hypothesis.
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is at least p.” This doesn’t imply that there is some single index for f which P will
converge to with probability p. We note that this less natural definition would allow a
more straightforward proof, similar to the proof in the BC case. We investigate this
apparently different notion of probabilistic EX~identification in Section 3.5.

The idea behind the proof of Lemma 3.26 is that rather than look only at levels of the
tree, each deterministic IIM of the team will have to scan the tree to identify converging

paths and nodes at which this convergence occurs.
Proof of Lemma 3.26:

Let P be the probabilistic machine which identifies U with probability p > ;_}_—1 We will
show that if a deterministic machine has a reasonable estimate of the “weight” of the
set of all converging paths (paths which converge to any index), then it can converge to
a correct list for f, hence OEX-identify f.

The finite nondeterminism of the team of n machines is used in the following way:
each team member guesses a different range which the weight of the converging paths
may fall into. In particular, for 1 < ¢ £ n, M; assumes that the total weight of all

converging paths is in the half-open interval (=i, &l]. Depending on the function f

n+1? n+1
chosen from U, the weight of converging paths will fall into one of these intervals, and
the associated machine will converge to a correct list for f.

Let P be a probabilistic IIM with U C EX,(P) and p > 7i7. Then let the team

+
{M,M,,...,M,} be those defined below.

Machine M;

1. Oninput f|, simulate P with input f|, and construct T = the finite tree
consisting of the first k levels of Tp ;.

2. FOR each node j in Ty compute Pr[Cjx]

3. Let ¢ be the least numbered node in T} such that Y%
no such ¢ exists, then output 0.

Pr[C ,k] > — (If

=1 n+1

4. Output {ind(s) | 1 < i < cr}.

Note that each step of M; is a simple, computable operation: Step 2 can be done by
Lemma 3.20. We comment that c; exists for all k, but this is not necessary for the proof.
We show that for every f € U, there is an 7 such that M; converges to outputting a

correct list for f.
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As mentioned above, the team member which is correct will be the one with the best
estimate for the weight of the converging paths.

More precisely: Pr[C(GOODy)] > p > by the definition of “P EX-identifies f
with probability p.” C(N) is the set of paths which converge to any index (good or bad),

n+1

so clearly

C(GOOD;) € C(N)

and therefore

Pr[C(N)] 2 Pr[C(GOOD/)] > #

Let m = max{i | 55 < Pr[C(N)]}. The value m is well defined, since ;7
Pr[C(N)] < 241. In particular, 1 £ m < n. We will show that My, converges to a correct

list for f.

<

M,, “knows” that the weight of the paths which converge to any index is greater
than 7. By Lemma 3.19 there exists a finite set of nodes V' with the weight of the
paths converging at a node in V' greater than 5. M, will look for these nodes, find
them (in the limit), and output their indices. (Actually, M,, will output the indices of
nodes 1,2,..., Nynaz, Where nyues, is the greatest numbered node in the set V.)

M,, attempts to compute for every node j the weight of paths which converge at
node j (Pr[C;]). It cannot do this, since it is not a finite computation. M,, can, however,
compute Pr[Cj], which we know is an upper bound for Pr[C;] (see Lemma 3.18), and
will converge to Pr[Cj] from above as k increases (Step 2).

M,, outputs the indices of the first ¢; nodes, where ¢; is the smallest numbered node
such that the (estimated) weight of paths converging to any of the nodes {1,2,...,cx}
is greater than ;. (Steps 3, 4)

M,, will eventually converge to outputting some fixed list, because there is some
smallest numbered node s such that the weight of the paths converging to a node in
{1,2,3,...,s} is > ;%y, and the estimate of these weights are becoming better in the
limit. More formally:

By the definition of m,

m-+1
PriC(N)} < .
a1 SPHeMls T
Since
Pr[C(N)] > — +1
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Lemma 3.19 gives nodes {n, n1,...,n,} with

ind(n;) € N and ZPr[C,, ]> —
§=1 ' n+ 1
Since all nodes 7 have ind(j) € N, this implies that there exists a smallest numbered

node s, such that

ZPr[C 1> —

J=1
(Choosing s > max{n;} will certainly satisfy the inequality). Now for all & > d(s), nodes
1,2,...s will be in T}, and furthermore, by Lemma 3.18

Z Pr(C;i] > Z Pr(C;] 2 2 —=

=1 J=1

hence (V§°) cx < s in Step 3 of My,. Now Lemma 3.26 follows from:
Claim 3.27

1. My, converges to the list I = {ind(1),ind(2),...,ind(s)}.

2. I contains a correct program indez for f.

Proof:

(Part 1): We have already shown that (V{°) ¢x < s. Now, by Lemma 3.18, for all 7, and
for all k > d(j), Pr[Cj ] 2 Pr[Cj r+1]. It follows that the sequence {c;} is nondecreasing
(for all sufficiently large k) since cx was chosen as the smallest value satisfying the

inequality 3°%%, Pr[Cjx] > 7%, and since the summands are non-increasing, {cx} must

j=1
be non-decreasing. Since {cx} is a nondecreasing sequence of integers bounded above by
s, it converges. Suppose that {ci} converged to a number t < s. Then for all sufficiently
large k, Y-4—) Pr[Cjx] > 2. This implies that T4, Pr[C;] > 4, since the latter is
the limit of the former. This is a contradiction, since s is the least integer satisfying that
inequality. Therefore,{cx} converges to s, and the list of program indices output by M
converges to I = {ind(1),ind(2),...,ind(s)}.

(Part 2): 'We now argue that the list of indices which M,, outputs contains a correct
index for f. This is straightforward: The weight of paths converging to correct indices
for f is greater than ;_—lq, and the weight of paths converging to any index is less than

or equal to BEl. It follows that the weight of paths converging to an index which is not

n+1

an index for f is strictly less than ;Z. But M has found a list of indices with weight

greater than or equal to hence not all of the indices on the list can be incorrect.

m
n+1?
More formally,
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Since
N = GOODs|4{/ BAD;

we have

C(N) = C(GOOD;) ) C(BADy)

so that
Pr[C(N)] = Pr[C(GOODy)] + Pr[C(BADy)].

We also know that

m+1
<
Pro(v) < =]
and '
1
We conclude that
m

Now observe that the set of indices I = {ind(1),ind(2),...,ind(s)} has the property
that 377, Pr[C;] 2 B, that is, Pr{C(I)] 2 ;Zy, therefore at least one element of
I must be a correct program index for f, otherwise I C BADy, C(I) € C(BADy),
and Pr[C(BADy)] > ;B — a contradiction. This completes the proof of Claim 3.27,
Lemma 3.26, and Theorem 3.21. O

3.3 Team and Probabilistic Inference Hierarchies

We now examine the consequences of the theorems in the preceding sections of this chap-
ter. For this section only, let ID denote either of EX or BC (as opposed to an arbitrary
identification criterion). Corollary 2.24, Theorems 3.8, 3.21 and Corollaries 3.9 and 3.22

can then be generalized as

Theorem 3.28
1. (Va2 1) IDieam(n) € IDpros(2).
2. (Vn 2 1)(Vp) ;—l_q < p < 1= IDps(p) € IDioam(n).
Part 3., together with the team hierarchy theorem (Theorem 2.15), implies that

Theorem 3.29 (Vn > 1) IDpms(%) € IDprop(52)-
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Thus the team hierarchy is contained in the probabilistic hierarchy. We now note

that this probabilistic hierarchy is no finer, and that it is identical to the team hierarchy:

Suppose that —~ ”H < p < L. Clearly IDpws(2) C IDpos(p). Parts 2 and 1 of Theo-

rem 3.28 give the two containments

IDprot (p) € IDteam(n) C Imeb(%)

and therefore

IDproy () = IDpros(2).

Thus for all of the “intermediate” probabilities p € ( 1 s3], IDpros (p) “collapses” to

ID ot (). The following corollary contains restatements of the same result.

Corollary 3.30 (Vn > 1)(Vp)

' '173}-1' <p< % = Imeb(p) = Imeb(;l;).

e (Vp1 < p2) If both py and py are in the same interval ( ”H, n] then IDpo(p1) =
ID ot (p2). If p1 and py are in different intervals, then IDppy(p1) D ID gy (p2)-

We conclude that the probabilistic hierarchy is ezactly the team hierarchy. Of par-

ticular interest is the following special case (n = 1) of our results:

1

P>2

That is, if we have a probabilistic IIM which EX- (BC-) identifies the set of functions U
with probability p > %, then there is a deterministic HM which EX- (BC-) identifies U.
This result is shown independently by Wiehagen, Freivald, and Kinber [41] for the EX

case.

The picture on the following page illustrates the relationship between the probabilistic

and team hierarchies.
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o T
- , .

<p < 1= IDpo(p) = IDicam(3)

L]

<p < 3 = IDpu(p) = IDteam(2)

1 <p= IDpos(p) = IDiom(1) = ID

. _ oy,

We give an example which demonstrates possible “practical” applications of our re-
sults. The following is a modification of a scenario suggested by J. Case, which appeared
in [35)].

We wish to send a collection of robots to investigate some alien planet. Since there
may be possibly unforeseen natural disasters on this planet, we equip each robot with
an inference algorithm, which it uses to predict possible occurrences such as floods, etc.
based on the soil samples or other data that it collects. We would like to send the fewest
pumber of robots possible, but would like to ensure that at least 3 will Jearn enough
about the planet to survive, and thus carry out some particular distributed experiments

and trausmit the results back to Earth.

Suppose now that we are able to construct a team of 11 such robots (with possibly
different inference algorithms) with the property that at least 3 of the 11 will survive.
Clearly then there exists a single probabilistic IIM robot which survives with probability

2 %. Since -% > -} we know that there exists a team of 3 IIM robots with at Jeast 1

member having survival ability. By simply replicating this trio, we end up with a set of
9 robots containing at least 3 with survival ability. Thus we have a savings of 2 robots.
Furthermore, since the proofs of our theorems are constructive, we can actually build

the robots.
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3.4 Frequency Identification

3.4.1 BC Frequency Identification

Suppose M is a deterministic IIM, and on input f, M keeps changing its guess, but “in
the limit”, the fraction p of M’s guesses are correct. The following definitions are due
to Podnieks [33], and capture this intuitive notion.

Let M be a deterministic IIM, and for each i € N let g; be the #*P guess of M with
input f. For each k, define

po=liten=f1gizhl

That is, Fj is the fraction of correct guesses of M among the first k guesses (on

input f|;). We say that M is correct with “frequency” p if Fy > p “in the limit”. More

formally,
Definition 3.31
e M BC-identifies f with frequency p iff when fed the graph of f in any order®
lim inf F; > p.
k~—o0
e M BC-identifies U with frequency p iff (Vf € U) M BC-identifies f with fre-

quency p.
® BCyre(p) = {U | (3M) M BC-identifies U with frequency p}.

We comment that it is not possible to capture “lim inf Fi > p” as an identification
criterion; any predicate Qy,., would need to have access to the entire output sequence
M(s) to verify that the lim inf was > p. On the other hand, it is not difficult to express
“lim inf F} > p” formally as an identification criterion.

In [33], Podnieks shows that (Vn > 1) BCj(%) C BCjrg(547)- (Actually, his results
include the stronger statement that (Ve > 0) BCjug( + €) C BCpug(2).)

He conjectures that for all p;, ps such that 0 < p; < p2 < 1, BCjg(p1) D BCrgg(p2)-
We show that this conjecture is false, and that the “breakpoints” for this hierarchy are
at exactly the numbers of the form ;1'- More specifically, we show that this “frequency”

hierarchy is identical to the BC team hierarchy.

8Podnieks’ definition was that M heed only have correct frequency behavior when fed the graph of f in
the canonical order {f(0), f(1),...). It seems desirable to have this aspect of our definitions uniform
across all inference types, thus we adopt the definition here. Researchers partial to the less restrictive
definition of “identify when input in canonical order only” will realize that if the definitions of all other

classes in this paper were modified similarly, then all of the theorems would still hold.
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Theorem 3.32 (Vn > 1) BCiam(n) S BCjm(L).

Proof: Let U € BCwm(n). Then there is a team {Mj, Ma,..., M,} of deterministic
IIMs which identify U. Let M be a deterministic IIM which on input f, does the following:
M simulates M;, M, ..., M, on input f, and outputs as its guesses the guesses output
by M, Ms,...,My, in a rotating order. M’s first n guesses will be the first guesses of
M, M;,...,M,. M’s next n guesses will be the second guesses of My, Ma, ..., My, etc.
We must show that M BC-identifies U with frequency ;1.- To do this, it is sufficient to
show that for every f € U, and for all € > 0, (V®) Fi > 1 — .

Now if f € U, then there is some j such that M; identifies f. Therefore there is some
c such that M; outputs only correct guesses for f after c initial guesses. Hence after the
first cn guesses of M, there is at least one correct guess in each subsequent group of n
guesses of M. Let ROUND; denote the guesses of M numbered (k — 1)n+ 1 through kn,
t.e. ROUND; contains the k*! guesses of each of My, M;,..., M,. Then for all i > ¢,
ROUND; contains at least one correct guess.

Let € > 0. Let zg be large enough so that for all z > zo,
e z>c.

1
®* ezn¥aEn <

o
3= A

z
® en¥zn ~

_€
2’-

o

Now consider any guess g which falls in ROUND 4. with z > zg. Then

__ # correct guesses among the first k

F A

The numerator is at least z — 1, since there is at least one correct guess in each of the
rounds numbered ¢+ 1,¢+ 2,...,c+ z — 1. The denominator is at most n(z + ¢) since

guess k falls in the (z + ¢)™® round. Hence:

rz—1 T 1 1 ¢ € 1

= - > - =—=—c¢

F=%(z+c) cntazm cn+zn n 2 2 n

We’ve shown that (Ve > 0)(Vf € U) M outputs a sequence such that (V) Fp >
% ~ €. It follows that M BC-identifies U with frequency -'1-.-, which completes the proof of
Theorem 3.32. O

Now we show that
Theorem 3.33 (Vn > 1)(¥p) 747 < p < 1= BCpy(p) € BCam(n).
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Theorem 3.33 states that the relationship between frequency BC-identification and
team BC-identification is the same as that between probabilistic BC~identification and

team BC-identification. The proof is very similar to that of Theorem 3.8.
Proof:

Let U € BCju(p), with p > 1= 47, and let M BC-identify U with frequency p. To prove
Theorem 3.33, we construct a team {Mi, Ms,..., My} such that (Vf € U) (3) M;
BC-identifies f.

If A is a set of program indices, let I;(A) denote the multiset of guesses of M on
input f, among the first k, which are in the set A. In particular, we are interested in the
sets It(GOODy), It(SLOW ), and I;( WRONGY;).

Clearly |I;(GOOD,)| + II,,(SLOW!)[ + |It(WRONGY/)| = k. Note also that since M
BC-identifies U w1th frequency p > 7y, (V) |I(GOOD;)| > 35 +57, and therefore (V{)
|I(WRONG,)| < 35 n+1

As in the proof of Theorem 3.8, there are n distinct and mutually exclusive possibil-
ities for how the sequence Iz( WRONG;) behaves in the limit - let 1 < ¢ < n. Then the

th possibility is:

Possibility i : (V®)|Ie( WRONGy)| < - and

(3®)|L:(WRONGy)| > ‘——;i'f

The construction and proof now follow that on page 37. The instructions for machine
M; are:

Machine M;

1. kold ~—0
LOOP:

Simulate M on input values received from f, and let g1,g2,... be the se-
quence of guesses output by M.

4. DOVETAIL the computations {¢,(7)} for all pairs of numbers ¢ and j,
comparing the outputs of completed computatlons w1th actual values of f,

UNTIL for some number k > kgqq, there are > ~ + k elements in the or-

dered multiset CANCEL,, the multiset of guesses among the first k guesses
of M which have been observed to be in WRONG;.

5. Sp + the ordered multiset. {9i|1<i< k} - CANCEL

6. ﬁ= P1,D25+ -5 DSk with (Vt) b= %
7. OUTPUT the index of the program THRESHOLD 1,508
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8. kag+—k
9. GO TO LOOP

Let M; satisfy the ¢*® possibility. We’ve already observed that (V§°) |Iz(GOODy;)| >
;,—"_;T. Now since no GOOD; program is ever placed into CANCEL; for any k, then
I,(GOODy) € Si, and therefore (V) |Sx\ GOOD;| > -E=. Also, by assumption on

n+l
t, (3P) Ix(WRONG,)| 2 L%F’ hence M; can find successively larger values of k for

which it outputs the index of THRESHOLD e Sud such that by assumption on ¢,

|Se[\ WRONGy| = |I,(WRONGy)|~ |CANCEL|
ik (i-1k
n+l n+l
ok
T on+1

Thus (V§°) the programs THRESHOLD 5 5p satisfy the hypothesis of Lemma 2.4,
therefore compute f, and M; BC-identifies f, completing the proof of Theorem 3.33. O

3.4.2 EX Frequency ldentification

We now introduce what is essentially the EX version of Podnieks’ BC-frequency identi-
fication, and prove that the analogous theorems are true.
Let M be a deterministic IIM, which on input f, outputs the sequence of guesses

gi,92..... Let ] ,
:1<j < kandg =g;}|

Definition 3.34

e M EX-identifies f unth frequency p iff there ezists a guess g; such that
liminfi.o Fr(gi) = p, and g4, = f.

e M EX-identifies U with frequency p iff (Vf € U) M EX-identifies f with
frequency p.

¢ EXpy(p) = {U | (3M) M EX-identifies U with frequency p}.

If M EX-identifies f with frequency p, there is some particular correct guess of f,
that occurs in M’s output sequence with frequency p.

It is clear that if p; < ps then EXjpy(p1) 2 EXfreg(p2). We show that
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Theorem 3.35

1. (Vn > 1) EXeam(n) C EX prg(2).

2. (Vo 2 1)(Vp) 737 <P < 1= EXfug(p) © EXteam(n).

Theorem 3.35 asserts that the relationship between frequency EX-identification and
team EX-identification is the same as that between probabilistic EX-identification and

team EX-identification.
Proof:

The proof of the first part of the theorem is nearly identical to the proof of Theorem 3.32.
IfU € EXam(n), and is EX-identified by the team {M;, M2, ..., M,}, then we construct
M which EX ;,,q( L)-identifies U. On input f € U, M simulates each M;, and outputs
their guesses in a round-robin fashion; its first n guesses being the first guesses of each
team member, its second n guesses being the second guesses of each team member, etc.
Since some M; EX-identifies f, it follows by an argument nearly identical to that proving
Theorem 3.32, that M EX-identifies f with frequency .

We prove the second part of the theorem. Let U € EX frq(p), with p > FT Let M be
an IIM which EX-identifies U with frequency p. To show U € EXe4m(n), we construct a
team My, Ma,..., M, of IIMs which EX~identify U. The idea behind the construction is
the following: If f € U, then we know that there is some correct guess g of M and (in the
limit) the fraction of guesses of M which are “g” is greater than -2=. How many other
distinct guesses of M can have this property? At most n — 1, since the total number of
distinct guesses of M which occur with limit frequency greater than ’_+T can be at most
n. Each member in the team of n IIMs will choose one of these, and output it. We must
show that there is a single team member which “settles” on guessing the correct index,
instead of having team members alternate guessing the correct index.

Let FREQ, = {g; | Fi(g:) > 737} FREQy is the set of guesses of M, which, if
we look at the sequence of guesses through the k*® guess, occur frequently (i.e. > - +1
times). Clearly |[FREQ.| < n, and we note that since f is EX-identified by M with
frequency p > ﬁf, there must exist a guess g € GOODy such that (V§°) g € FREQ),.

For each k, we define the function W; which tells us for each 1 € FREQ; at what

point z in the sequence ¢ first occurred as a guess with Fy(z) > ;,ql_—l-, and for each y such

that < y < k, Fy(¢) > ,—,—lﬁ
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More precisely,
k+1 if i € FREQ,.
We() = { k if i € FREQ, — FREQ,_,.
Wi_1(f) otherwise.
Clearly, for each 7, {Wg(¢) }x—oo is monotone nondecreasing. We now give the de-
scription of the machines M;.
Machine M;

On input f|x, simulate M on input f|i, and obtain the guesses g1, g2,...,gx.
Compute FREQ, and Wi(s) for each s € FREQ,.
If |FREQ,| < i then output “0”.

ol A e

Otherwise, sort? the elements of FREQ, in order of increasing values of
Wi (s), and output the :*! element of the sorted set FREQ,.

We must show that (Vf € U)(3t) M; EX-identifies f. If f € U, then (39 € GOODy)
(V%) 9 € FREQ,. We argue that g eventually occupies the same position in the ordered
sets FREQ,.

Since (V§°) g € FREQ),, there must be a number ko such that (Vk > ko) Wi(g) < ko,
by the definition of Wg. Let the function pos(k) denote the position that g occupies in
the ordering of elements in FREQy. So (Vk > ko) 1 < pos(k) < n. We claim that as
k increases, pos(k) is monotone nonincreasing. To see this, let us suppose that pos(k)
increases somewhere. This means that for some k > ko, pos(k) = j, and pes(k+1) = j+z.
The only way that this can happen is that there is some guess h € FREQ,,, with
Wi+1(h) < Wit1(g), and one of the following true:

1. h &€ FREQ,.
2. h € FREQy, and Wi(h) > Wi(g).

If the first case holds, then by the definition of Wi4;, we must have that Wiy, (h) =
k+1> ko > Wi(g) = Wit1(g), which contradicts the fact that Wiy1(h) < Wit1(g).
The second case cannot hold either, since by the definition of W, Wit (k) = Wi (h) and
Wis1(g) = Wi ().

Hence pos is a monotone nonincreasing function of integers, bounded below by 1. It

therefore has a limit §,1 < j < n, and for all sufficiently large k,g will occupy the jth

1]t is easily seen that there can be no ties in this ordering, but this is unnecessary for the proof to

follow, since ties could be broken by ordering on the actual value of the guess.
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position in the ordered set FREQ,. It follows that M; will converge to outputting “g”
as a guess. Hence M; EX-identifies f, which completes the proof of Theorem 3.35. O

3.4.3 Frequency, Probability, and Team Hierarchies

Theorems 3.32, 3.33, and 3.35 relating frequency identification to team identification for
both the EX and BC criteria are easily assembled to show that the frequency hierarchies
are identical to the team hierarchies (which are identical to the probabilistic hierarchies).
In particular, Theorems 3.28, 3.29, and Corollary 3.30 are all true if “frequency” is
substituted for “probability”.

We conclude that if ID is either of the criteria EX and BC, then

Theorem 3.36 (Vn > 1)(Vp) ;i1 < P < & = IDpey(p) = IDprob(p) = IDteam (n).

3.5 Invariance under Change of Definitions

In this section we consider a reasonable variation of the definition of probabilistic in--
ference and show that the classes EX prop(p) and BCpms(p) remain unchanged. We also
briefly consider a change of definition of team inference and show that EX m(n) and
BCeam(n) remain the same. This supports the position that the probabilistic and team

inference classes defined are not arbitrary, but natural.

3.5.1 Probabilistic Inference Redefined

The definition of “Pr[P BC-identifies f] > p” was motivated by the notion that if you
were to run P with input f many times (each run is infinite), the percentage of runs
which resulted in correct BC-identifications would be at least p. In other words, the
probability of obtaining a sequence of outputs which were all correct past some point
would be at least p. A reasonable weakening of this definition would be to require only
that past some point in the output sequence the probability of the next guess being
correct is at least p. In other words, there is a value kp such that were you to run P on
input f many times, then (Vk > ko) the probability that P’s k*h guess computes f is at
least p. The corresponding notion for EX would be that there is some particular guess g
such that the probability that the k" guess of P on f = g is at least p. We define this
more precisely in terms of the computation tree Tps. Recall that for any set A, Li(A)
is the set of nodes n at level k of Tp s such that ind(n) € A.
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Definition 8.37 The probability measure Pr' is defined by

|Le(GOODy )|

[ 3 . = Lim
Pr'[P BC —identifies f] hkr?‘ 1°ng o

Pr'[P EX —identifies f]= sup {lim inf Ei{,c!]——}ﬂ}
9€GO0OD; \ k—oo 2
where sup denotes the supremum, or least upper bound.

Lemma 3.11 gives that
Pr[P BC—identifies f] > p = (V{°)|Lx(GOOD;)| > p2t,

SO

Pr[P BC—identifies f] < Pr'[P BC—identifies f].

The same could be shown for EX with a trivial modification of Lemma 3.11. Thus Pr'
is a “weaker” definition of probability.

Since the definition of Pr requires a relationship between the locations of correct
programs at different levels of Tp ; (namely that they lie beneath one another and form

converging paths), it is not necessarily the case that
Pr'[P ID-identifies f] < Pr[P ID—identifies f]

for ID € {EX,BC}.
We show that there are indeed computation trees for which the different definitions

of probability separate.
Theorem 8.38 There is a probabilistic IIM P and a function f such that
Pr'[P EX —identifies f] = Pr'[P BC—identifies f] =1

but
Pr[P EX —identifies f] = Pr[P BC—identifies f] = 0.

Proof: Clearly
Pr[P BC—identifies f] > Pr[P EX—identifies f]

and
Pr'[P BC-identifies f] > Pr'[P EX—identifies f]

so we only need show that P EX-identifies every f with probability 1 (in the new sense
of Pr') and BC-identifies f with probability O (in the old sense).
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Let f be any total recursive function, and let P have “hardcoded” into its program
an index ¢ € GOODy and b € BADy. We describe the behavior of P on input f by
giving an effective assignment of ind(n) to every node n of the computation tree Tpy.
The value ind(n) will either be g or b for every node n in the tree. The construction
guarantees that the limit infimum of the fraction of guesses which are g at each level is
1, but at the same time every path in Tpy will contain an infinite number of b’s — thus
there will not be a ;ingle B(C-identifying path. -

We describe the values {ind(n)} level by level. When we write “level k = g, v,d,...
we mean that the first ¢ nodes across level k (going left to right) have ¢nd(n) = g, the
next j nodes have ind(n) = b, the next ! nodes have ind(n) = g, etc. Level 0 = b. The
next two levels will have % of the nodes labeled b, and % of the nodes labeled g, but the
halves will be staggered so that level 1 is labeled b,g and level 2 is labeled g2,b%. The
next four levels will have i- of the nodes labeled b and % labeled g, again staggering the

h’s so that they “march across the tree.”
e Level 3 = b%,4%,492,4?
e Level 4 = g%, b4, g%, ¢*
e Level 5 = ¢%,¢%,b8,4®
e Level 6 = g16 16 g16 p16

The next eight levels have % of the nodes labeled b, again staggered across the tree. The
construction continues in this manner. The following picture shows the first several levels

of the tree, with the b’s written in, and the g’s left out for clarity.
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Clearly by construction every path in the tree has infinitely many nodes with index

b. Furthermore, by construction,

LA

hm 1n

since (Ve > 0)(V§) jﬂ"ziﬂn > 1 — ¢. Thus there is no BC-identifying path, and we have
Pr'[P EX-identifies f] = 1. O

The above result can be extended to show that if U € EX then there is a P which
EX-identifies every f € U with probability (in the new sense) = 1, and BC-identifies f
with probability (in the old sense) = 0. The machine P on input f € U would first pick
any b € WRONG/ (the null program will do), then simulate the machine M such that
U C EX(M). The levels of Tpy would be as above, except at level k the value g would
be replaced by the last value of the sequence M(f) which P was able to compute within
k steps.

Thus the two probability measures are indeed different. We now consider the “new”
classes BC oy (p) and EX pppt(p) defined exactly as are BCprb(p) and EX pps(p) except

with the measure Pr’ instead of Pr. In light of Theorem 3.38 we are surprised to find
Theorem 3.39 (Vp) BC,,/(p) = BCpob(p) and EX poy (p) = EX pros (p)-

Proof: Clearly BCps(p) & BC gyt (p) since (VP)(Vf) Pr[P BC-identifies f] < Pr'[P
BC-identifies f]. We show BCpm(p) 2 BC,mbr(p) Let U € BC,py(p). Consider the

least n such that p € (731, L]. Since p > 25

im |Lk(GOODf)| S 1
k—»oo 2k n41

and
k

nt1
The proof of Theorem 3.8 needs only this last inequality to prove that U € BC'egm (n).
Thus

(V&) 1Zx(GOODy)| >

1
BCpmb'(p) € BCium(n) C BCpmb(;) C BCprb(p),

the last two containments due to Corollary 2.24 and the fact that p < %

That EXpmb(p) € EXpey(p) is not as straightforward, since there can be many
hypotheses which make up the fraction p of converging paths. In fact “many” is at most
nifp> =y +1

Let p € (347, ). Then since EX p3 (p) € EX team(n) (Theorem 3.21), if U € EX pros (p)
then there is a team {Mj, M,,...,M,} such that (Vf € U)(3i) M; EX-identifies f. Now
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consider the probabilistic IIM P which chooses with probability % to simulate M; for each
i. Then (Vf € U)(3g € GOODy) Pr[P(f) |= g] > L. It follows from Lemma 3.11(with
the set “4” = {g}) that (Vg < 1)(V{) the fraction of nodes at level k which have
index = g is > ¢. Thus the limit infimum of that fraction is L, and U € EX y(%). So
EX prob(P) © EX prop (L) and EX (L) € EX proyr(p) (since p < Ly,

To see that EX prs(p) 2 EX pt(p) consider the least n such that p € (;:1,_-1-, 1], We
show :
EX () 2 EXprs () 2 EXicam(n) 2 EX g (p)-

The first two containments follow from the fact that p < -},— and Theorem 3.21 respec-
tively. We show EXyum(n) 2 EX o (p). The proof is nearly identical to the proof of
Theorem 3.35, so we give only a sketch. .

Let U € EX ppr(p) with p > ;,-i—l We construct {M;, Ma,...,Mn}. Let f € U. From

the definition of EX ,(p) there must be a ¢ € GOODy such that

el 1
i
This gives that
|Le(fo)] 1

(&) 2k > n+1
Now each M; simulates P while receiving values of f and builds Tp; level by level. M;
keeps a queue @ of the at most n guesses which satisfy |Lx({g})| > ;}_—,’_‘—l- Then Q is
ordered by how many previous levels the guess satisfied the inequality. M; outputs the
1P element (if it exists) of Q. Since eventually some guess g enters @ and never leaves, it
eventually moves up in Q to some position pos(g) and never moves again. Then M,

EX-identifies f. 0

3.5.2 Team Inference Redefined

The apparent modification in the definition of probabilistic identification motivates a
similar change of definition for team inference which has yet to be considered. As one
motivation of his definition of team inference (the one we have been using) Smith [35]

writes

... in their study of the scientific method the philosophers seem to re-
gard a scientific community as a whole. Indeed, when several researchers are
investigating the same phenomenon, the results of every experiment are even-

tually known to all the researchers. Often there is no consensus on the proper
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explanation of the phenomenon under investigation. The theory preéented
below provides a model of the scientific method admitting several, possibly

contradictory, opinions as to an explanation of some phenomenon.

Thus, the bold assertion “science is correct” might be interpreted as “for every phe-
nomenon there is at least one scientist who ultimately believes a particular (correct)
theory.” However, as we well know, scientists are a fickle lot, and many are not faithful
to old or current theories as they receive new information, discuss research with their
colleagues, and in general move on to sexier and trendier hypotheses.

Despite the possible infidelity of scientists, a particular theory might be so appealing
that there always seems to be at least one scientist lobbying its cause, but not so appealing
thﬁt there is a single crusader who refuses to move on to other theories. With this
motivation, we relax our interpretation and say that “science is correct” for a particular
phenomenon if past some point in time, there is some particular correct theory which is

always in the current literature.
Definition 3.40 {M;j,M;,..., M }EX 1y —identify U iff
(Vf € U)(3g € GOOD;) (VL) (3i) M;’s k™™ guess is g.

Thus the team members can switch among them which is guessing g as long as past
some point in their output sequences, as least one team member outputs g. We have a

corresponding definition for BC.

Definition 3.41 {M;j, My, ..., My} BC rumi~identify U iff
(Vf € U)(VP) (3£) M;’s k*™® guess is an element of GOODy.

We now show
Theorem 3.42 (Vn) EX(gm'(n) = EXieam(n) and BCioam!(n) = BCegm(n).

Proof: (EX) Clearly EXpn'(n) 2 EXiwm(n). We show EXygm!(n) © EXieam(n).
Consider M which outputs the guesses of M;, M,,..., M, in a round-robin order, as in
the proof of Theorem 3.35. We immediately have EXypqm' (1) € EXjrg(1) C EX toam(n).

(BC) Clearly BCgm!(n) 2 BCoam(n). To see that BCiam!(n) © BCleam(n), use the
same construction as above to get BCgm!(n) C BC,,W(;I;) C BCeam(n). 0O

3.6 Other Properties of Probabilistic IIMs.

Throughout this section, “identify” refers to both EX and BC identification, and ID
denotes both EX and BC.
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3.6.1 Identifying Functions Drawn from a Hat

In the models of identification presented so far, we have assumed that functions were
taken from some set U, and we have been interested in when there are IIMs (determin-
istic, probabilistic, nondeterministic,...) which can identify the function. Suppose that
we know a prior: that the function being presented to M is chosen randomly from T
according to some known probability distribution. This might be the case for scientists
having certain empirical evidence suggesting that the rules governing observed behavior
occur randomly with certain probabilities.

We now ask the following question: Are probabilistic IIMs better on the average than
deterministic IIMs at identifying functions?

Let D : T — [0, 1] be a probability distribution which assigns to every total recursive
function f, a real number in [0,1] such that 3_;er D(f) = 1. Note that since T is a
countable set, the distribution D is discrete. Let P be a probabilistic IIM, and M a
deterministic IIM. Define M(f) to be 1 if M identifies f, O otherwise, and P(f) to be
the probability that P identifies f.

Then the average performance, A(M, D) of M with respect to D is defined by

A(M,D) = }_ D(f)-M(f)

et

and the average performance of P is

A(P,D)=Y_ D(f)- P(f).

feT
Theorem 3.43 For all distributions D on T, and for all probabilistic IIMs P, there
exists a deterministic IIM M such that A(M,D) > A(P, D).

Proof: There are two cases:
o (Casel) (Vf) D(f)>0= P(f)=1.
o (Case 2) (3f) D(f) >0 and P(f) < 1.

If Case 1 holds, then let U = {f | P(f) = 1} 2 {f | D(f) > 0}. Then since P identifies U
with probability 1 > 1, by Theorem 3.28 there is a deterministic IIM M which identifies
U, and thus

AM,D)=>_ D(f)=1

fev
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If Case 2 holds, then A(P, D) = 1 — ¢ for some ¢ > 0. Now since 3_ser D(f) = 1, there
exists a finite number of distinct functions {f1, f2,..., f} such that %, D(f;) > 1— £.
Then there is a deterministic IIM M, which has “built in” a list of the indices of these
functions. When given examples of a function f to be identified, M asks for enough
values until it witnesses that all but one of the functions {f1, fa,..., fe} differ from
f, and then M outputs the index of the remaining function. (M outputs the index
“0” while it eliminates the above functions.) Clearly M identifies each of the functions

{f1,f2,-.-, f&} and it follows that
A(M,D)>1- é > 1-¢= A(P,D)

and the theorem follows. O

We leave as an interesting question whether or not M can effectively be constructed
from P. (In the event that P uses its coin only to make an initial choice between simulating
one of a finite number of deterministic strategies {M), Ma,...,M,}, then there is some
i such that A(M;, D) > A(P,D)) [32]).

3.6.2 Restricted Choice Probabilistic IIMs

Consider probabilistic IIMs which use their coin only to initially choose to simulate
one of a finite number of deterministic alternatives. Is there a difference between these
probabilistic IIMs and probabilistic IIMs which are not of this special form? We call the
former type of IIM restricted choice probabilistic IIMs, and the latter unrestricted choice
probabilistic IIMs.

The criterion for successful probabilistic identification which we have used thus far
has only been concerned with whether the probability of identification is above some
threshold (p.) Within this framework, our results imply that restricted choice proba-
bilistic IIMs are as powerful as unrestricted choice probabilistic IIMs; for if P is any
probabilistic IIM which identifies the set U of functions with probability p, then consider
the least positive integer n such that # <p< ;1; Then by part 2 of Theorem 3.28 there
is a team of n deterministic IIMs identifying U, and by part 1 of Theorem 3.28 there is
a restricted choice probabilistic IIM which identifies the set U with probability % 2 p.

Suppose now that we are concerned with how well a probabilistic IIM identifies every
function. For every unrestricted choice probabilistic IIM P, does there exist a restricted
choice probabilistic IIM which identifies every total recursive function with probability

at least as great as P,7 The answer is “no”.
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Theorem 8.44 There exists an unrestricted choice probabilistic IIM P, such that for
any restricted choice probabilistic IIM P,, there exists a total recursive function f such
that Pr[P, identifies f] < Pr[P, identifies f].

Proof: P, uses coin flips in such a way that P, guesses the index “0” with prob-
ability %, “1” with probability %, ..., “n” with probability -2714:;- Thus the probability
that P, identifies any given total recursive function is greater than 0. Suppose there
was a restricted choice probabilistic IIM P, which chooses from deterministic strate-
gies {My,M,,...,M;} with probabilities {py,p2,...,pr}, respectively. Then if for all
f, Pr[P, identifies f] > Pr[P, identifies f], it must be the case that (for all f) Pr[P;
identifies f] > 0. It follows that T C UL, ID(M;) violating the team hierarchy theorem
(Theorem 2.15). O
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Chapter 4

Other Identification Criteria

4.1 Identification with Anomalous Hypotheses

Allowing randomization and some probability of error for identification is only one pos-
sible way to expand the classes of functions which are identifiable. Another manner
in which the definition for correct identification may be relaxed is that of allowing the
hypothesized programs to disagree with the function being identified on some number of

arguments.

4.1.1 Anomalous EX Identification

For each a € N{J{*} the identification criterion EX® has been introduced [10].

Definition 4.1 Let M be a deterministic IIM, and a € N{ }{*}. Then
M EX°-identifies f iff when fed the graph of f in any order, M(f) |=1i and p; =° f.

Our definition for the EX® criterion is the pair (Bgya,@gxa) where Bpya is always
satisfied, and Qgya(glk,f) = 1 & gi—1 = gr and p,, =° f. Clearly Qgxa(gls,f) is
limiting-invariant under repetitions in the sequence g. Thus all of the definitions of
Section 2.5.2 apply for probabilistic EX®-identification, as well as the definitions of the
trees Tp s in Section 2.5.3.

Note that if M EX*-identifies f, the program y to which M converges need not be
total, i.e. @ could differ from f because p(z) is undefined, whereas f (z) is defined.

The criterion EX* (i.e. a = *) is the same as that of a.e. identification introduced
in 7], and sub-identification in {28].

The following theorem is proved in [10].
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Theorem 4.2 (Vk € N) EX*! — EX* # 0 and EX* — Upex EX* # 0.

Smith [35] considers team inference for EX® and shows that
(Va € N{{*})(Vr > 1) EX%,,.(n) C EXgpm(n + 1).

Interesting tradeoffs are also given between the number of team members, the number
of anomalies, and a complexity measure — the number of “mind changes” made by an
IIM before converging to a correct program. Discussion of these tradeoffs are beyond the
scope of this dissertation; the reader is encouraged to consult [35] for further details.

We define frequency EX°®-identification in the natural way.

Definition 4.3 If M is a deterministic IIM, and on input f, M outputs the sequence of
guesses §1,92,..., and a € NU{*} then
o M EX®-identifies f with frequency p +ff (3g;) liminfy .o Fi(g;) > p and g, =* f.
e EX}, (p) ={U | BM)(Vf € U) M EX°-identifies U with frequency p}.
We now state

Theorem 4.4 (Va € NU{*})(Vn > 1)(¥p)
25 <p< L= EXG u(p) = EXfy(p) = EXGum(n).

Before we prove Theorem 4.4, we give the generalizations of the definition of the class
OEX, and Lemma 3.25 which appear in [10].

Definition 4.5 (Va € NU{*})

e M OEX°®-identifies [ (written f € OEX®(M)) iff M, when fed the graph of f in
any order, outputs an infinite sequence {I;} of finite lists, and there is a list I such
that (V@) It =1, and (Fi €I) p; =°* f.

s OEX® = {U | (3M) U C OEX*(M)}.
Lemma 4.6 [10]
1. (Vk € N) OEX* = EX*.

2. OEX* - EX* # 0.

The proof of part 1 of Lemma 4.6 is similar in spirit to the proof of Lemma 3.25.
To prove Theorem 4.4, we first note that the proof of Theorem 3.35 does not involve

any simulation of the hypothesized programs, hence by simply substituting EX?® for
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EX, EXj for EX freg, and EXjpy,, for EXpeam, we have proved that if the hypothesis of
Theorem 4.4 holds, then EX}  (p) = EX{ym(n)-

Now we show that EXj, 4 (p) = EX{um(n) for =37 < p < 1 and for a € NU{+}. We
have that EX§,,.(n) C EX;,,,,,(;I;) by Theorem 2.23. We now only need show that for
p> 1, Xty (p) € EXg ().

Consider the case that @ € N. Then by part 1 of Lemma 4.6, the analogues of
Theorem 3.21 and Lemma 3.26 with a anomalies all hold, and we have that EX7,,(p) €
EX{m(n) when p> ;5.

These proofs do not work however, to show the corresponding result for any finite
number of anomalies, since by part 2 of Lemma 4.6, simply converging to a list of
programs containing at least one finite variant of f is not sufficient. We must employ

other techniques.

We show that
Lemma 4.7 (Vn > 1)(Vp) 37 < p= EX;05(p) € EXjpp(n).

Let U € EX,,(p), and let P EX*~identify U with probability p > -,,—l—l— We construct
a team M, M,,..., M, which EX*~identifies U.

Each member M; of the team will proceed in phases. On input f|z, M; simulates
P and constructs T}, the finite subtree of Tp s through level k. M; will keep a priority
queue Q from phase to phase. At phase k Q will contain the nodes of T} in some order.
M; will simulate the guesses made by P and order Q@ roughly by how many anomalies
each has been observed to have. Since every program which converges # f for infinitely
many arguments will be pushed to the end of the queue infinitely often, M; will be able
to eliminate these guesses.

‘We denote the 7*8 element of the queue by Q(5). Q(1) is the beginning, or top of the
queune. @ starts out empty.

Phase k of M;

1. Receive the k'® input value f(k), and build the k*! level of Tp s by simu-
lating P.

2. Add j to the end of Q for each node 5 in the k*! level of Tp ;.

3. Allowing k steps for each computation, try to compute each of {©in4(j)(z)
| 7€ Q, and < k}.
For each j such that a value z < k is found (within k steps of simulation)
such that ping(j)(z) # f(z), and this inequality was not witnessed in any
previous phase, move j to the end of Q.
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4. Compute Pr[C;;] for each j € Q, and let It = {ind(Q(j)) | 1 < 7 < e},
where ¢; is the smallest number such that '

2 Pl‘[CQ ) k]
= G n 4+ 1

I is simply the indices of the smallest 1n1t1al set of nodes, ordered by @,

which have total estimated probability > 7.

5. Output the index of the program RACEj,.

We must show that (Vf € U)(3¢) M; EX*-identifies f. We define
e GOOD} = {i | p; =* f}.

e WRONG; = {i | {z: pi(z) |# f(2)} is infinite}.

o SLOWY} = N — (GOOD}|J WRONG).

Clearly GOOD}, WRONGY, and SLOW? partition N. Note that SLOWY consists of
those indices such that the corresponding program is not a finite variant of f, but there
are at most finitely many arguments for which it converges # f.

Let GS = GOOD} | SLOW}. Then Pr[C(GS)| is in some half open interval (55 &%
for some j, 1 < 5 < n. Suppose that it falls in the interval (=~ 1] then we show that
M; EX*-identifies f, proving Lemma 4.7.

We will show that the sequence of lists {I;} in program M; converges to a list I, such
that I C G'S, and I\ GOOD} # 0. If this is the case, then M; converges to outputting
the index of a fixed program RACE]. Then observe that RACE; =* f since I contains

at least one element of GOODY, a finite number of programs in SLO W4, each of which

n¥le n+

converges # f in only finitely many places, and no programs which converge # f for
infinitely many inputs.
Now, since Pr[C(GS)] > 5

finite collection of nodes V' such that

by assumption on i, by Lemma 3.19 there must be a

>~ Pricj] > —, and (Vj € V) ind(j) € GS.

JEV

Note that if 7 € GS, then there are only finitely many arguments for which ¢; |# f.
Thus M; will move each node in V to the end of Q at most finitely many times. Also,
if m € Q, and ind(m) € WRONGY, then m will be moved to the end of @ infinitely
many times. It follows that (for all sufficiently large k) the order of elements from the
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beginning of @ to the highest numbered position v of @ which contains an element of V
will remain constant.
Further, for all sufficiently large k, by Lemma 3.18,
3 PrlCidl 2 3_PrC)] > oy
JEV jev
and we have that (V) cx < v.
Finally, by an argument similar to that in the proof of Lemma 3.26, the sequence
{ck} converges to s, where s is the smallest value 1 < s < v such that

2 1
> PriCapl 2 i
=1 ’ n+1

Then the sequence of lists {I;} converges to I = {ind(Q(s)) | 1 £ j < s}. Clearly
I € GS. Now suppose that I} GOOD} = @. Then
t

n+1

< i Pr{Cq(y] < PrlC(I)] < Pr[C(SLOWY)].
J=1 .

n+1?
dicts our assumption on ¢. Thus M; converges to outputting the index of RACE| which

Also, since Pr{C(GOODY)] > 315, it follows that Pr[C(GS)] > £k, which contra-

computes a finite variant of f, and Lemma 4.7 and Theorem 4.4 follow. il

4.1.2 Anomalous BC Identification

Identification with anomalous hypotheses has been studied for BC-identification as well.

Definition 4.8 Let M be a deterministic IIM, a € N{U{*}. Then M BC*®-identifies f
iff when fed the graph of f in any order, M outputs the infinite sequence 91,92,... and
(V) 9x =* f.

Analogous with our definition of EX® as an identification criterion, our definition for the
BC* criterion is the pair (Bgga, @ gga) where Bpea is always satisfied, and @ goa(glk, f) =
1 & ¢, = f. Clearly Qpgca(gls,f) is limiting-invariant under repetitions in the se-
quence g. Thus all of the definitions of Section 2.5.2 apply for probabilistic BC®-identi-
fication, as well as the definitions of the trees Tp s in Section 2.5.3.

Case and Smith [10] show that BC*+! — BC* # @ and BC* — ey BCE # 0.

L. Harrington has shown that BC* contains the class of partial recursive functions
(this result appears in [10]), so there is no reason to consider more general (probabilistic,

team, frequency) criteria for BC*. In [35], Smith gives definitions for BC—-identification
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with a finite number of anomalies by teams. It is shown that there is a proper hierarchy
(Vk)(VYn > 1) BCE,.(n) € BCE,.(n +1).

Daley [13] proves interesting tradeoffs, analogous to those shown for EX in [35],
relating number of team members, number of anomalies, and number of mind changes
required for BC—identification.

BC* (k € N) is a limiting repetition-invariant identification criterion, so all of our
definitions of probabilistic identification apply.

We define BC—frequency identification with anomalies. We say M BC*-identifies f
with frequency p iff the limit infimum of the fraction of guesses output by M which =* f

is at least p.
Definition 4.9 Bwa(p) = {U| (BM)(Vf € U) M BC*-identifies U with frequency p}.

It seems appropriate to form the following
Conjecture 4.10 (Vk)(Vn > 1)(Vp)

74T < P < & = BCL,(p) = BClym(n) = BCE(p).
4.1.3 An Anomalous Corollary

The following corollary was pointed out to us by C. Smith [36].
Corollary 4.11 (Vk € N) EX* C EX pyos (g5)-

Proof: From [35] we have EX* C EXoum(k + 1). By Corollary 2.24, EX tegm(k + 1) C
EX pros (g1)- O

Alternate Proof:

Let

EX=F = {U| @M)(Vf €U) M(f) |=g and |{z : py(2) # f(2)}| = k}.
It has been shown [10] that (Vk) EX™* = EX. (The idea behind the proof is that an IIM
M’ which EX-identifies can be constructed from an IIM M which EX=*-identifies by
simulating M, obtaining its most recent guess, and altering it by correcting (if a wrong

value has been witnessed) and/or “patching” the correct value in (if the guess has failed

to converge) for the k spots where the current hypothesis of M appears to be incorrect.)

Lemma 4.12 (VU € EX*)(3Up,Uy,...,Us) with (Vi)(U; € EX™) and U = W-_, U;.
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Proof: If M EX*-identifies U then (Vf € U) M(f) |= g and 0 < |{z : () #
@} Sk Let Ui = {f : [{z : py(2) # f(2)}| = k}. a
To see that EX* C EX,,,,;,(;;}_—I-), let U € EX®. Then by Lemma 4.12 U = W5, U;
with U; € EX=*. Then let P be a probabilistic IIM which on input f flips a k + 1-sided
coin and guesses that f € U;. P then simulates the M which witnesses that U € EX™',
O

We also have
Corollary 4.13 (Vk € N) BC* C BCpros (g41)-

Proof: From [13] we have BC* C BCom(k +1). By Corollary 2.24, BCum(k+ 1) C
BCM(F}E)- O

4.2 Reliable Inference Strategies

We have mentioned that team inference may be viewed as nondeterminism restricted
to choosing from among a finite number of deterministic strategies. We now consider
unrestricted nondeterministic IIMs, and give a simple argument showing why this model
is too powerful to be interesting. We then consider a type of behavioral restriction, that
of “reliability” [7], and show that reliable nondeterministic IIMs are no more powerful
than deterministic IIMs.

Consider the classes EX ponger and BC ponder given by Definition 2.27. Since Qgx and
Qpc are limiting-invariant under repetition, we assume without loss of generality that all
nondeterministic IIMs behave nicely, that for any nondeterministic IIM N and functjon
f the computation tree Ty y is defined as for probabilistic IIMs, as are the definitions of
any set of paths in a tree Ty sy which may have been defined in the last chapter.

Thus a nondeterministic IIM N EX—(BC-)identifies the function f iff there exists at
least one path in T, s corresponding to a single deterministic EX—(BC-)identification
of f. It is immediately clear that there is a single nondeterministic IIM N which EX-
(and hence BC-)identifies T, the class of all total recursive functions (in fact N identifies
every partial recursive function): N nondeterministically receives a sequence of bits from
its oracle. N prints every odd numbered bit it receives on a work tape, until an even
numbered bit is received which is a “1”. The binary number written on the work tape is
used as the guess for an index of f, and N simply guesses that index at every step from
then on. Clearly every possible number can be generated by N nondeterministically

in this manner, so there is a computation of N which EX-(BC-)identifies any f € T
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(without even seeing a value)! Thus unrestricted nondeterminism is too powerful a model
to be of interest. |

For EX-identification, a natural restriction for IIMs is that of reliability.! An IIM
M is reliable (on T) iff (Vf € T) M(f) |=g = 4 = f. Reliable IIMs are simply IIMs
which cannot mislead us by converging to a wrong value. Reliable inference strategies
have been studied in [7,10,28].

The identification criterion REX is defined by the pair (Brex, @Ex), where Brex (M) =
1 iff M is reliable.?

Minicozzi [28] showed that the class REX is closed under finite and recursively enu-
merable union. What we show below is that REX is closed under a certain type of
uncountable union.

We consider the following question about reliable nondeterministic IIMs: Are they
too powerful, as are nondeterministic IIMs, or does the reliability restriction prohibit
the type of unlimited guessing that allowed a single nondeterministic IIM to identify all
f € T? We are surprised to find that

Theorem 4.14 REX ppn4e = REX C EX.

Hence the class of reliably-nondeterministic-identifiable subsets of T is properly
contained in EX, showing that reliability is too strong a restriction for nondeterministic

IIMs to yield interesting identifiability classes.
Proof:

The proper containment follows from results in {10]. Clearly REX C REX pondet- We
show REX ,,ude © REX.

Let N be a reliable nondeterministic IIM which REX—-identifies the set U of functions.
We construct a deterministic IIM M which REX-identifies U. M, given values from the
graph of f, constructs T s level by level and makes a list of nodes. On input f|z M
constructs T}, the finite tree consisting of the first k levels of Tiv ¢, and then determines
for each node n of Ty whether C), ; is empty. (Note that this computation depends only
on the nodes through level k in Ty s ~ see Lemma 3.20). M then outputs the index of
the least numbered node n such that Cp, i # 0.

1 Also called sfrong in [28]. Reliability is not a meaningful notion for BC-identification.
2We define Brpx more precisely, as in Section 2.4. Bpgx(IOm,.) = 1 iff either 8 € G(f) for some
f € T and the “output” elements of s converge to an element of GOODy, or else 8 is not in G(f) for

any total recursive function.
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M attempts to find the first converging path. We argue that since Ty y must contain
at least one converging path, and no converging path can converge to a wrong index (N
is reliable), M must be correct:

Since N nondeterministically REX-identifies U, for every function f € U there is at
least one path (oracle) in T,y which converges to a correct index for f. Let s be the
least numbered node such that there exists a path converging at s. Then (Vk > d(s)) s
will be in Tk, and C, & # 0, hence M on input f|x outputs either ind(s), or the index of
some node t with ¢ < s.

If for every node n < s there was some level k, such that Cpx, = 0 then M will
eventually witness this, and M will then converge to ind(s), hence identify f.

Alternatively, suppose there was a node n < s, such that (Vk > d(n)) Cnx # 0. We
must show this is not possible. Since s is the least node at which convergence occurs, we
know that every path passing through n cannot converge at n. In other words, Cy, = 0.

We have that (Vk > d(n)) Cnx # . Consider all nodes at depth > d(n). We will
color some of these nodes red. In particular, color node m red if and only if d(m) > d(n)
and Cy, g(m) ) Pm ;é @. Thus node m is colored red iff there is a path going through n,
and then m, and the nodes on the partial path from n through m all have the same index
as n.

We note two facts about our coloring:

1. There are infinitely many red nodes. This is the case because (Yk > d(n)) Cpx # 0.
So there is some path in Cp, . In other words there is a path passing through n
which “converges through level k™. Then the node on that path at level k is red.
Thus for each level, there is at least one red node, so there are infinitely many red

nodes.

2. The subgraph of T s induced by the red nodes is a tree. Since Tv y is a tree, clearly
the subgraph induced by the red nodes is a forest. To see that it is connected,

observe that if m is red, then parent(m) is red also.

We now have a rooted red tree (the root is n) with infinitely many nodes, and finite
branching at each node. Konig’s Infinity Lemma ([16]) asserts that there must be an
infinite path in this red tree. But an infinite red path in Ty s corresponds to a path
which is in Cj,, hence Cy, is not empty. Therefore, it cannot be the case that (Vk > d(n))
Cp i # 9. This completes the proof of Theorem 4.14. 0

Thus “unrestricted” nondeterministic IIMs are too powerful, and reliable nondeter-
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ministic IIMs are no more powerful than deterministic ones. This supports our view that

team inference is the most natural notion of nondeterminism for inductive inference.

4.3 Probabilistic Finite Identification

In this section we extend the work of Freivald [21] for probabilistic finite inference, and
give partial results concerning the relationships between team and probabilistic finite

inference.

4.3.1 Bounded Mind Changes

Modifications of EX-identification have been investigated [5,10] which stipulate that the
number of times the IIM changes its hypothesis en route to an EX~identification should

be at most n for some number n.

Definition 4.15 (Vn) the identification criterion EX, is the péir (BExXp>QEX,) where
BEXn 1s always satisfied, and an((QO,gla""gk)’f) =1 gk = grk-1,9% € GOODf7
and {1 : gi # gi-1}{ < n.

The probabilistic and team identification classes are given by Definitions 2.22 and 2.14.
Our only difficulty with these definitions however, is that we have too many subscripts..
We hope the reader will forgive our inconsistency by letting the team and probabilistic
classes be denoted by EX,team(n) and EX, prob(p) respectively.

Freivald [21] considered probabilistic identification for the EX¢ case, which he called
finite identification. We will discuss his results shortly.

Wiehagen, Freivald, and Kinber [41] consider probabilistic EX,, identification (their
model is equivalent to ours). They are mostly concerned with probabilities p > -;— They

pose the following two questions:

1. Do there exist classes of recursive functions such that, with ‘high’ prob-
ability, these classes are limit identifiable with n changes of hypotheses
by probabilistic strategies, but they cannot be limit identified with n
changes of hypotheses by any deterministic strategy?

2. Does there exist a k € N ‘considerably’ greater than n such that there are
classes limit identifiable with n changes of hypotheses by probabilistic
strategies, but even with k changes of hypotheses they are not limit

identifiable by any deterministic strategy?
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Their results include:
e (Vp> &) EX,prob(p) = EX1, and EXyprob(§) > EX;.
e (Vn > 2)(3U)(Ve> 0) U € EXpprob(l — ¢) — EX,.
o (Vn)(Vp > 1) EX9n C EXnprob(p) C EXgny2.

Thus the answer to their first question is “yes” (when n > 2), and the answer to
their second question is that probabilistic strategies (with p > %) can give at most a
linear “speedup” in the number of mind changes. They also independently show that

EX prot(p) = EX when p > , a special case of our Theorem 3.21.

4.3.2 TFreivald’s Results

Freivald [21] introduced what are essentially the classes EXoprob(p), which he called
finite identification by probabilistic machines. His model is equivalent to ours above,
_and it will be easier to discuss since it is free from the excess baggage of generality.

Simply put, every probabilistic IIM P has a 2-sided coin, and

Definition 4.16 3 P EXo~identifies f with probability p iff Pr[P, when fed f, halts and
outputs an element of GOOD; after some finite amount of time] > p.

We let P(f) denote the output of P when fed f (which depends on the coins flipped).

Freivald was mostly interested in values p > % He shows

Theorem 4.17 [21] (Vp; < p2) p1, P2 € the same interval (F25, 22L] = EXoprob(p)) =
EXoprob(ps). Otherwise, EXoprob(p1) O EXoprob(ps)-

In other words, there is a discrete hierarchy with breakpoints %, %, 47, %, ..., and in par-

ticular, if p > % then EXoprob(p) = EXp.

4.3.3 Teams for Probability Exceeding One Half

Theorem 4.18 (Vp)(Va > 1) p> 5L = EXoprob(p) C EXoteam(n).

Proof: Note that for n = 1 this is Freivald’s result that if p > % then EXoprob(p) =

EXy. Let P (finitely) identify every f € U with probability p > 5";;-% We construct

My, Ma,..., M, which EXoteam(n)- identify every f € U. (Vi) M; on input f simulates

3Freivald defines this with “> p” rather that “> p.” We maintain consistency with the rest of this work

and use “> p,” and modify the statements of his theorems accordingly.
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P with all finite sequences of coin flips, and builds a list I = {4y,42,...,4} of possi-
ble outputs of P. M; also keeps track, for each possible output 7z, of the associated
probability pr that P outputs ¢x. M; continues to search until (if ever) it finds a set
I= {i),13,...,7¢} with associated list of probabilities = (p;,...,pi) such that

k n+1t
Pr[P(f) =] = pj and ,Z:lpj rent
M; then outputs the index of the program THRESH OLDznr:l_ e

Let M;(f) denote the single index output (if it exists) of M; when fed f. We argue that

(Vf € U)(3) M;(f) € GOOD;. By definition, Pr[P(f) € GOODy} > zﬁn_'rli-, therefore,

for some 7 with 1 < 7 < n we have
)
2n+1°

i1
<
27 S PrlP(f) € BAD,] <

Then we show that M; identifies f. By assumption on 1,

n+1+ i-1 _ n+4i
2n+1 2n+1 2n+1

Pr[P(f) I] >

so M; will find a set I of possible guesses and a vector § of associated probabilities, and

output the index of the program THRESHOLD 1B Now

. Y
2n4-
]

Pr{P(f) € WRONGy] < Px[P(f) € BAD/] < 57—

T T am+1 " 20+ 1

JjeI[) WRONG ¢
Further, since ] iy
? n+1
iezn%eozvcfpj ) 2n+1 e gp, g 2n+1
we have
Z pj > —-f—--,
jeI( GooDy 2n+1
and by Lemma 2.4 M;(f) € GOODjy. O

We’ve thus shown that probabilities p > zﬁn_',—_l-l- can be simulated by a team of n ma-
chines. We might conjecture that, for finite inference, teams of n = 1, 2,3,... correspond
to Freivald’s hierarchy for p > % This is not the case however, as all of the containments
of Theorem 4.18 are proper. We will show that no probabilistic machine has the power

of a team of 2 IIMs if the probability of success is p > %
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4.3.4 Probability Below One Half

We show that there is an infinite hierarchy of finite identification for p < % which is

1

proper at least at the values %, %, Toeee

Theorem 4.19 (Vn > 1) EXqprob(%) ¢ EXoprob(iy)-

Proof: The containment is immediate; that is proper follows from the second part of

Lemma 4.20 given below. O
Let the sets Fp+1 = {f | f =" 0}, i.e. every f € Fn41 is non-zero on at most n

arguments.

Lemma 4.20

1. (Vn 2 1) Fp41 € EXoteam(n + 1) — EXoteam(n).

2. (Vo 2 1)(Vp > 7i7) Fos1 € EXoprob(47) — EXoprob(p).

In other words, Fj,+1 can be identified by a team of n+ 1, and with probability -';-h-, but

not by any team of n or with any probability exceeding ;%—1— (in particular, 1).

Proof:

We need only show that F,,1 € EXgteam(n + 1) and (Vp > F—%-'T) Fn+1 € EXqprob(p),
since > ;;_-;—1- and EXoteam(n) C EXqprob(L). '

Fni1 € EXoteam(n+ 1) by My, My, My, ..., M, where M; assumes that |{z : f(z) #
0}] = 1, waits until it sees these values of f, and then outputs the index of a program
which does table look up for one of these values, or outputs O if the argument is not in
the table.

Let p > m We must show that F,+1 & EXoprob(p). Let P be any probabilistic ITM.
We construct a function f € Fpyq such that Pr[P EXg-identifies f] < -n—i—l- We denote
the function f by a list of its values on arguments 0,1,2,3,. ... For example, the sequence
of values 0°5010%° denotes the function f such that f(z) =jifz=¢, 1ifz=1t+2,and

0 elsewhere. We construct f in stages. We begin with s = the null sequence, and k = 1.
Stage k

Feed P the sequence sO® until a finite set Hy of indices, and values #; and z; are found

such that
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o (Vj<k) HNH; =0.

e Pr[P(s0®) € H] > 717 and P makes the guesses of Hj seeing at most the values

SOk,

e (Vh € H;) pp is witnessed (within z; steps of simulation) to agree on its first
|s| + t& + 1 values with the finite function s0**0.

Then set s «— s0'*1. If k < n then go to stage k + 1 else set f = s0® and halt.

If all n stages of the construction of f are completed, then f is a total recursive
function, which # 0 in at most n places, hence is in F,,4;. Further, by construction, P on
input f outputs n groups of distinct indices Hy, Ha,..., H, such that (Vi) H; C BAD;

and Pr[P(f) € H;] > ;17. Therefore

Pr[P(f) € BAD/] > —— + —

80

Pr[P(f) € GOOD/] < ;—11;-1-
and P doesn’t identify every f € F,4; with probability p > —== +1‘

If, on the other hand, not all stages of the construction of f were completed, then
let k be the last stage completed (k < n). Then s = 011021...0'*1. Now consider
the total recursive function f = s0% € F,4;. By construction, all of the elements of
Hy,Hj,..., Hi found do not compute f, since the elements of H; disagree where f’s ith

17 is defined. Furthermore, P(s0°) never outputs a set of hypotheses Hi,; with total
probability > = such that (Vh € H}) @4 agrees with the finite function s0%*10 for any
value of . But 1f P identifies F,,; with probability p > ;;;_—1- then P identifies sO® with
probability > —= 1 and P would have output, after seeing some finite segment of values,

a set of hypotheses Hj ., with the properties above. : O
Corollary 4.21 (Vp > 1) EXoteam(2) — EXoprob(p) # 0

We might conjecture that finite identification is similar to EX-identification, and that
probability -'1; is identical to a team of n, thus giving a discrete hierarchy for probability
below -;- We do not believe this is the case however. The reasons will become clear in

the next section.
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4.3.5 Many Team Members are Sufficient

We give an upper bound on the number of machines needed to EXg-identify a set of
functions identified by some probabilistic machine with probability p > ;i—l

For limiting inference (EX) we showed that n team members were sufficient. Recall
that this was achieved as follows. Each M; assumed a value for the “total amount of
convergence” of the probabilistic machine P on f, found a set of programs (in the limit)
containing a correct program for f, and (in the limit) eliminated the WRONG  programs
from the list, allowing the construction of a correct RACE program.

EXp identification is much more limiting (since it is not limiting). In particular,
obtaining a list of programs containing a correct program is not sufficient, since one
can’t eliminate the WRONG, programs from the list (unless you know exactly how
many there are). The strategy used here is similar to that used for BC identification —
the program ultimately output will be a THRESHOLD program. To do this correctly
however, the team members must have an estimate of both Pr[P(f) € GOODy] and
Pr[P(f) |]. Unfortunately, 2n2 + n different machines seem to be necessary to guarantee

that at least one has a close enough estimate to carry out the procedure properly.
Definition 4.22 'wt(X) = Zzex Pr[P(f) = x],

Note that wt(N) is simply the probability that P halts on input f.

Let P EXo-identify U with probability p > ;;lﬁ = 7';%_-5 Let the machines M; ; for

1<i<2nandi+4+1<j<2n+1 bedefined as follows. Machine M; ; assumes that

o 2L < wi(WRONGy) < g (“<” on the left if i = 1).

) i+1
bt 2n+2 < wt(N) S 2n4+2°

On input f, M; ; builds Tp s, and dovetails the computations of all of the programs found
until (if ever) the following two conditions are satisfied:
1. A set W is found such that wt(W) > =ty (> if i = 1) and (3z)(Yw € W)(Jy < 2)
pu(y) # f(y)-

2. A set H is found such that W N H = 0, and wt(HUW) > 3.

If M;; finds sets W and H then it outputs the index of program THRESHOLD i Hp
where P is the vector of probabilities associated with the elements of H.
First we observe that since (by definition of P) wt(GOOD;) > 5;2;5, there is some

i between 1 and 2n such that wt( WRONG/) satisfies the first assumption of M; ; for
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every j. Further, since then we have that wt(GOODy) + wt( WRONGy) > 525 + 2—';,’_,_—12,
wt(N) > -5',—',‘:—,}5 so for some j wit(N) will satisfy M; ;’s second assumption. It follows that
M; ; will find a set H and W as specified.

We now need only prove that the threshold program chosen by M; ; (the team member
which assumes correctly) satisfies wt(H.(} WRONGy) < zt5 < wi(H( GOODy) and
by Lemma 2.4 M;; will have E'Xo*identiﬁed f-

Since wt( WRONG;) < 55 and W is found such that wt(W) > 2';::2 with WNH =
@, we have that wt(H ﬂ WRONGy) < m. Now suppose by way of contradiction that
wt(H (N GOODy) < zt5. Then since wt(GOODy) > 725, wt(H* N GOODy) > 71z,
and wt((H{UW)° GOODy) > 5;;1-_;5 (since WN GOODy = @.) Thus

7 + 1 j+1
n+2 2n+2 2n+2

wt(N) > wt(H | W) + wt((H|{JW)° [ GOODy) >
a contradiction since by assumption on j, wt(N) < -21;."—'_;_17 We conclude that

wt(H()GOODy) >

1
2n+2
and the program THRESHOLD

Knowing the likelihood of P convergmg, together with the probability that it con-

S HF computes f.
verges correctly is sufficient to allow a threshold strategy. The number of machines M; ;
is

2n 2n+1 2n 2n

Z Z 1-—221~22n+1—1—21=2n2+n.

=] y=i+1 i=1 y=i §=1 =1
We’ve therefore shown

Theorem 4.23 (Vn 2 1) p> n+1 = EXoprob(p) C EXoteam(2n® + n).

We leave as open problems the exact correspondence between teams and probability
for finite identification. We do not see how to extend our techniques to improve the
2n? + n upper bound. (Of course EXoteam(n) C EXoprob(L).)

If the machine P is “Popperian” (see Sections 2.4 and 4.5) then wt(SLOW,;) = 0
and one degree of freedom is eliminated. It is not difficult to imagine that for Popperian
EXo-identification, the quadratic 2n2 4+ n drops down to linear (somewhere near 2n.)
The factor of 2 seems necessary because the OEX = EX tricks do not work here due
to lack of “in the limit” time. A threshold vote must be made, and if the threshold
were set at -n—:ff rather than half that value, then M; would have to guarantee that it
found nearly all of the GOOD; programs output. There seems to be no way of doing

this if we can only estimate to within ;—_ﬁ For these reasons we believe that probability
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and teams are very different for EXp, and would be surprised to find that (Vn > 1)
p> 77 = EXoprob(p) C EXgteam(n).

Finally, a problem still open and possibly independent of the relationship between
teams and probability is whether the hierarchy EXoprob(}) EXoprob(}) c --- is the

finest possible, has other discrete “breakpoints”, or separates between all values p; < ps.

4.4 Teams vs. Mind Changes for Finite Identification

Before beginning, we warn the reader that this is an orphan section which was mercifully
adopted by this chapter. It has nothing to do with probability, but rather relates (for a
special case) finite identification by teams with mind changes.

Bounding the number of mind changes en route to convergence can be seen as a
sort of resource bound or complexity measure for inference. (An axiomatic treatment of
complexity of inference can be found in [15] and [18].)

It has been shown [10] that the more mind changes available to an IIM, the more
power it has to identify functions, t.e. (Vn) EX, C EXpn4+1. We would like to compare
the power of a team of n EX¢ machines with a single EX,, machine. A team of n EXy
machines may be viewed as a parallel version of finite inference, whereas a single EX,,
machine might be viewed as a serial version of finite inference. For example, it can be
seen rather easily ([35]) that a team of n EXo machines are as powerful as a single EXp,—;
machine, because a single EX,,.; machine makes at most n diﬁ'ere_nt hypotheses, each

of which can be delegated to a different team member. Thus we have
Theorem 4.24 (Theorem 4.1 of [35]) (Vn) EXp-1 C EXoteam(n).

Many results have been given in {35} and recently [37] approaching a complete char-
acterization of the relationships between mind changes, anomalies, and the number of
team members for EX identification. However, the relationship between finite identifi-
cation and mind changes has not been completely characterized. Here we take a step

closer toward settling the remaining open problems.
Theorem 4.25 (from [37]) (Vn > 1) EXgteam(n) C EX2n-3.

Proof: Let U € EXo(My, Ms,...,M,), then let M EX3,o-identify U as follows. For
any f € U, on input f|; M simulates each of My, Ma,..., M, for k steps each on f|; and
obtains the collection of guesses I = {g | (31) M;(f) |= g within k steps}. M dovetails
for k steps each of the computations {p;(z) | i € Iz, z < k} and attempts to witness for
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each ¢ € I} that : € WRONGY. If Sg C I} is the set of indices for which M successfully
witnesses this, then M sets Iy — It — S. If I} is nonempty, then M outputs RACEy,.
We show that M identifies every f € U with at most 2n —2 mind changes. Since (3r)
M;(f) |=g and g € GOODy (by the definition of team identification), (¥§°) It contains
g. Since I can contain at most n elements (the values {M;(f)} if they exist), and at
most n — 1 elements of I} can be eliminated by M observing that they are in WRONGY/,
then in the worst case, each value M;(f) enters and leaves I; exactly once, except for
the value g which never gets eliminated. This is a total of 2n — 1 changes, but observe
that M doesn’t output anything until in fact I; is nonempty, so the number of mind
changes is at most 2n — 2. Also note that since the sequence of sets I3 have limit I, then
the programs RACE], have limit RACE;, I[1GOOD; # @ (since I contains g), and
IN WRONG; = @, otherwise I is not the limit of Iy. Now by Lemma 2.2, the program
RACE[ computes f. , [m]
Putting this together with the last theorem, we have

(Vn 2 1) EXpe1 € EXoteam(n) C EXgp_3.
What remains to be shown is the relationship between the each of the classes
{EXpn,EXpt15..., EXon-3}
and EXoteam(n). A dilution of Theorem 4.2 in [35] gives
EX, — EXgteam(n) # 0,

thus EXoteam(n) € EX3,-2. This leaves three possibilities for the relationship of EXgteam(n)

with mind changes:
1. EXpteam(n) = EXp;.
2. for some k with n < k < 2n — 2, EXoteam(n) C EX;.
3. (Vk) n < k £ 2n— 3 = EXoteam(n) and EX; are incomparable.

We show that the first case does not happen when n > 2 (Clearly if n = 1 then
EXoteam(n) = EX,.;.) We prove that

Theorem 4.26 (Vn > 2) EXpteam(n) D EXp_y.

The containment follows (as mentioned above) from Theorem 4.1 of [35]. To show

that it is proper, we show that (Vn > 2) 35, € EXpteam(n) — EX,,—;. We assume
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without loss of generality, that the the numbers O and 1 are indices of the everywhere
undefined function. Let S, = {f | there are at most n values of z such that f(z) > 1,
and (3z) f(z) > 1 and f(z) € GOOD;.}

To see that S, € EXgteam(n) let My, My,..., M, be defined by: M;, on input fl
waits until (if ever) it receives the :*P value f(z) > 1 which it then outputs.

To show that S,, & EX, 1 we use the following version of the recursion theorem, due

to Smullyan [38]:

Lemma 4.27 [38] Let k € N and f1, fo,..., fi be any recursive functions of k + 1 vars-

ables. Then there are numbers 1,12,...,i € N such that (Vz)

ei () = f(ini2,... 0k, T).
SO.'Q(I) = fg(il,iz,...,ik,z).
SD,',‘(-T) = 'fk(il,i2,-.-,ik,$).

As in Section 4.3.4 we let a sequence of values denote the function with those values.

We prove that S,, € EX,,—~; by induction on n.
Base Case (n = 2)

Let M be any IIM. We show there is at least one function f € S; which M doesn’t
identify within 1 change of mind. Define f;, f3, and fs, functions of four variables, as

follows.
N6, 5,k,z) = f2(i,5,k,z) = fa(i,5,k,z) = i0* ... fort =1,2,3...

such that the strategy M on input function {0° does not produce its first hypothesis
within ¢ steps of computation. Note that if M(:0°) never outputs any hypothesis, then
the function f; = f2 = f3 = 10, and by Lemma 4.27 there are values %, 7,k such that
ei(z) = fi(i,7,k,z). In particular, v;(0) = f1(i,7,k,0) = 7, thus the function :0% is not
identified by M but is in S;.

Then let ¢; be the least number such that M outputs its 1°* hypothesis hg within ¢y

steps of computation. Suspend defining f; and f2 and continue defining
fs=10"k0" ... fort=1,2,3...
until (if ever) a number ¢; is found such that one of the following occurs:
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1. ¥ho, when simulated (in order) on arguments 0, 1,2, ... outputs a sequence of values

t0'°k ... within ¢, steps of simulation.

2. M on input i0'°k0> changes its guess from hg to h; within ¢; steps of simulation.

”Note that either 1. or 2. must occur. If neither occur, then fz3 = i0'°k0% and by
Lemma 4.27 there are values 1, ,k such that pr(z) = f3(i, 5, k,7) = i0°°k0>® € S,. Now
since M outputs only hg and never changes its mind, and ho simulated on successive
inputs for longer amounts of time never is witnessed to output the initial sequence of
values #0'°k, M doesn’t identify f.

If 1. occurs, then resume defining f; and f2 by
fl = f2 = iotoot for t = 1, 2,3’._'

until (if ever) M on input ¢0°°0* changes its hypothesis from kg (which it guessed after
seeing at most ¢0'°) to h; within #; steps of simulation. This must occur, for otherwise,
f1 =10% and Lemma 4.27 gives a numbers ¢, 7,k such that f(i,7,k,z) = ¢i(z) = 0% €
Sz, but not identified by M because M output only the guess hy which agrees with
0%k ... # f1. So on input 100" M has output 2 hypotheses, hg and h;, and has run

out of its single allowed mind change. Now define

fi = d00fr10%.
fo = 10%01050%,
Again, by Lemma 4.27 there are values 7, 5, k such that p;(z) = fi(¢, 7, k, z) = 10f0f1 10
and p;(z) = fa(i,J,k,z) = 10001050 Clearly both f; and f; are in S,, are different,
and M has output the guess h; which must be incorrect for at least one of {f;, fo}. Thus
M doesn’t EX,-identify S» )
If, on the other hand, 2. occurs, then M on input #0'°k0** has output two hypotheses

hg and hy, and we then complete the definition of f; (which so far = 70?), and f3 (which
so far = 00k0"1), by

fi = i0°k0"0>,

fz3 = i0'k0"110%,
Then by Lemma 4.27 there are numbers ¢, 7, k, such that p;(z) = f1(z,7,k, z) = 10*0 k010
and pr(z) = f3(i,7,k,z) = $0'°k0210°%, both in Sy, and M outputs its last guess h,;

when either are presented as input. M cannot EX;-identify both. This completes the

base case n = 2 of the induction.
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Inductive Step

Now assume as our inductive hypothesis that S,, € EX,,_; and we show that S, € EX,,.
Now (VM)(3f € Sp) such that M doesn’t EX,_i—identify f, and we’ll construct f; and
f2 from f such that M doesn’t EX,-identify at least one of {f, fo} : Let M and f be
given such that M doesn’t identify f within n — 1 mind changes. (i.e. M needs at least
n mind changes to identify f.)

Define f; (4, ,z) and f2(¢,7,z) from f as follows:

N 7,2) = fo(i,5,2) = f(z)for 1<z < ¢

for all t such that M on input f(0), f(1),..., has not changed its mind > n times within
t steps of computation and output an n + 1** hypothesis A,,.

If M on input f(0), f(1),... changes its hypothesis < n times, then f; = fo = f and
by choice of f, M doesn’t identify the function(s), otherwise f € EX,,_; (M), a contra-
diction. Otherwise, let ¢t be the smallest value such that within ¢ steps of computation M
(which could have received at most the values f(0),..., f(t)) changes its mind n times,

and outputs (its last) hypothesis h,. Then define

N, 5,2) = f(0)f(1)... f()i0%.
f2(i,7,7) f(0)f(1)...f(t)j10%.

]

Since f1 # f2, hn is not a correct index for both f; and f2, so M doesn’t EX,~identify
at least one of {fi, fo}. Furthermore, by Lemma 4.27 there are numbers t, 5 such that
ei(z) = f1(i,7,x) # f2(i,7,z) = pj(z). Also, since f € S, there are at most n values z
such that f(x) > 1 for 0 < z < ¢, and thus there are at most n + 1 values of z such that
Ni(x) > 1, fo(z) > 1, with one of those values a correct index — thus fi, f2 € Spy;. O

We believe (but have not yet been able to show) that these proof techniques could be
used to conclude that (Vn > 2)(Vk) n+1 < k < 2n—3 = EXoteam(n) — EXy # 0. (i.e.
we believe that the third possibility describing the relationship between EXgteam(n) and

mind changes holds).

4.5 Probabilistic Prediction

All of the definitions and results of the previous sections have been concerned with

program synthesis from examples, as opposed to sequence extrapolation or prediction.
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In this section we briefly investigate the probabilistic and team models of identification
for the problem of sequence prediction.

A prediction method is simply an IIM M which (rather than attempting to output
a program index) attempts to predict the next value when given the first k values of a
total recursive function. [1,2,7]. M is given the values f|; and may either halt with a

prediction for f(k + 1), or diverge.

Definition 4.28 M NV-identifies (or predicts) f iff (Vzy,za,...,2,), the computation
M(z1,23,...,2,) 18 defined and (V) M(f(0), f(1),...f(k)) = f(k+1).

NV stands for Next Value. Although NV is not really an identification criterion,
(it is a prediction criterion — whatever that is), it is not too difficult to squeeze NV
into a formal definition of an identification criterion. We do this only so that we may
use all of the tools and definitions which we have developed, and note that there are
other “prediction criteria® which are not expressible as identification criteria as defined
in Section 2.4. First note that the definition of NV -prediction does not depend on the
sequential behavior of the machine on an infinite input (the graph of the function), but
by the behavior of the machine on every finite initial segment of the graph of the function.
Then it is easily seen that the definition above is equivalent to the following identification

criterion:

Definition 4.29 NV 1is the pair (Byv,QnNv), where

e Byy(M) =1 iff M is a total eztrapolating machine, i.e. for every s € G(X), the

sequence IOp, consists of alternating “output” elements and “input” elements.

L4 QNV((SO,sla--"s‘k),f): 1 s = f(k) and Sk—-1 = f(k - 1)'

We let £ denote the class of total extrapolating IIMs.

4.5.1 A Degenerate Hierarchy

In Section 2.4 we used the class PEX as an example to point out issues involved in
defining identification criteria. Recall that an IIM is Popperian iff (Vs € G(¥)), M(s)

consists only of indices of total programs. Then

Definition 4.30 PEX is the pair (Bppx,Qpx) where Bppx (M) = 1 iff M is Popperian.
(More formally, Bppx (IO ) = 1 off every “quess” element of IOp,, i3 the indez of a

total recursive function.)
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Thus PEX is simply EX-identification by machines restricted to outputting only

total programs.
Theorem 4.31 PEX = NV.

This result originates from J. van Leeuwen, and independently from J. M. Barzdin. The
proof appears in [10].

Recall the definition of reliable IIMs from Section 4.2, and let RPEX be the identifi-
cation criterion PEX with the additional behavioral restriction that the IIM be reliable.
(i.e. Brpex(M) = 1 iff M is Popperian and reliable). A trivial observation about the
proof of Lemma 4.5 in [9] gives that RPEX = PEX.

Lemma 4.32 For all total extrapolating machines M, there is a reliable Popperian IIM
M, (uniform in M, ) such that for any f, the partial sequence of outputs My(f|r) depends
only on the outputs M1(f(0)), M1 (f(0), f(1)),..., My (f(0), f(1),..., f(k)), and M; NV~
predicts f < My RPEX -identifies f.

Proof: This theorem is essentially a combination of theorems in [9] and [10], together
with the observation that the construction is effective and that the k*" program output
by M; can be generated by simulating M, only on f|i.

M, on input f|; computes M;(f(0),f(1),...,f(k)). Mz finds the set Dy = {z |
M (f(0), f(1),..., f(z—1)) # f(z) and z < k}. M; outputs the index of the program pi
which on input z, outputs f(z) if z € D, otherwise outputs My (pe(0), pe(1),..., pe(z —
1)).

Clearly the construction of M, from M, is effective. Now observe that

e Since M is defined for all input sequences, the programs p; are all total, so that

M, is Popperian.

o If the sequence of programs {p;} output by M, converge to a program p, then
the sequence of sets { Dx} must converge to a set D. Furthermore, p has found and

“patched” all of the anomalies in the set D, hence p computes f, and M is reliable.

e If M; NV -predicts f, then by definition, there is a set D such that for all sufficiently
large k, Dy = D. Now since p; depends solely on D, there is a program p such

that (V) pr = p, and p computes f since M is reliable. O

We now show that the classes NV,(p) degenerate to NV. Let U € NVyonge (Mi).
Then for every oracle O, M satisfies Byy, and there is some oracle O such that MP
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NV-predicts f. Now define the reliable, Popperian, nondeterministic IIM M,. M(f)
uses O, M, and the input f to simulate M and effectively construct a sequence of total
programs as in the proof of Lemma 4.32 such that M{ is Popperian, reliable, and MP
NV-predicts f = M RPEX-identifies f.

We’ve just shown that NV, uie © RPEX ponder- Finally, the proof of Theorem 4.14

-—

applies to give RPEX ponds = RPEX by observing that all of the programs in the non-
deterministic RPEX tree are total. Further, since RPEX = PEX = NV we have shown
that

Theorem 4.33 NV, 4 = NV.

Corollary 4.34 (Ve > 0) NVp(e) = NV.

4.5.2 Redefining Probabilistic and Team Prediction

Since the probabilistic classes NV,m(p) did not prove too interesting, we consider an
alternate definition of NV probabilistic prediction, similar to the alternate definition
of probability and teams in Section 3.5 for EX and BC. Contrary to the results in
Section 3.5 however, we find that the new definitions do alter the classes which are

predictable.
Deéfinition 4.35
® NVppt(p) = {U | (3P € £) such that
(Vf € U)(YP) Prl{0 : PO(£(0), f(1),..., f(k = 1)) = f(k)}] 2 p}.
® NVigm'(n) = {U | (3M1,M3,...,My € £) such that
(Vf € U)(VP)(3) Mi(£(0), £(1),...,f(k = 1)) = f(k)}.

We avoid using our probabilistic trees in the following arguments because the pred-
icate defining NV isn’t limiting-invariant under repetition. We first show that there s

a hierarchy of team’ prediction for NV,
Theorem 4.36 (Vn > 1) NVt (n) € NVigp(n+ 1).

Proof: The containment is obvious. We show it is proper by showing (Vn > 1)

Un+1 € NVigan(n + 1) = NViggnt(n). Let
Up+1 = {f € T | range(f) € {1,2,...,n+ 1}}.
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Clearly Unt1 € NVigm! (M1, M, ..., Mn, Mny41), where M;(z1,72,...,7¢) = ¢ regard-
less of the values {z;}. (In fact, the team M), Ma,..., My, My4 successfully predicts
even uncomputable functions with range contained in {1,2,...,n + 1}.) To see that
Up+1 & NVigme(n) let My, My, ..., My, be any collection of machines in £. We construct
MM, M € Unit — NVigmt(My, Mz, ..., M,).

My Ms,...M, is the total recursive function defined by:

0 tf z=0.

SMy .o () = { min{é : 1 << n+ 1and (V7)M;(f(0),...,f(z— 1)) #1i} f z#0.

Clearly fa, Ms,..M. is total recursive, € Upn41, and contradicts the next guess of each of
My, M,,..., M, for every value > 0. 0

Now we show that for this model of probability and teams, we have the same rela-
tionships as for EX and BC.

* Theorem 4.37 (Vn > 1)(Vp) ;37 <p < L = NV (p) = NViggme(n).

Proof: (2) A machine P flips an n-sided coin at each next guess and outputs the next
guess of M; where ¢ is the result of the coin flip.

(C) Let P NV-predict every f € U with probability (in the sense of prob’) p > ;}_—1-
Let ¢ > 0 be such that p > ;1;1_—1—+e. We construct My, My, ..., M, which NV,,,,—predict
U.

By the definition of NV (p), for every oracle O, PO satisfies Byy. This means that
for all k~tuples (z1,9,...,zz), PO (21,%2,-..,7k) is defined. It follows that (Vk)(3c)
Pr{{0 | P°(f(0), f(1),...,f(k — 1)) halts with a prediction for f(k) using at most ¢
flips}] > 1 -e.

Now (Vi) M; on input f(0), f(1),..., f(k — 1) must predict f(k). Each M; feeds the
values f(0), f(1),...,f(k — 1) to P along with every finite sequence of coin flips (in
order of increasing length), and observes for each finite sequence s of coin flips whether
P°(f(0),...,f(k — 1)) with sequence s predicts a value for f(k). M; does this for as
many finite sequences as necessary, until it finds a set of finite sequences S such that

Y Pr{P(f(0),...,f(k-1) ] >1-e
s€S

Let wt(z) = Pr[{0 | PO(£(0),...,f(k — 1)) = z}], and let wts(z) be an estimate
of wt(x) which each M; observes from P’s simulated behavior using the finite sequences
of S. Note that wts(r) < wt(z) < wtg(z) + €, since the probability that P outputs its

prediction for f(k) using only sequences in S is > 1 — .
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Then define the two sets X; and X7 as follows:

1 1
< wt <
n+1 wg(x)_n+1

+ e < wts(z)}.

Xy = {=z|

+ €}

1
X =
2 {z] n+1
Clearly |X)1| + | X2| < n since ¥, wts(2) < ¥, wt(x) = 1. Then (Vi) M; outputs the *
greatest value z € X; |J X2 (if it exists), and outputs O otherwise.

Now all M; are in £, since the above computation always halts. We show (V§°)(3¢)
M;(f(0),...,f(k - 1)) = f(k). By definition of P NV, op—predicting f,

(VE) wt(f(k)) =Pr[{O | PO(f(0),....f(k = 1)) = f(¥)}] > ni 1 te
And since
(Vz) wt(z) < wtg(z) + ¢
we have
(V) — +e < wi(f(K) < wts(7(k)) +e
and
(V%) wts(/(k)) > —.
Hence (V§°) f(k) will be in X, X2, and for some ¢, M; will predict f(k). O

This theorem 1is really about total probabilistic transducers rather than inductive

inference machines. In general, you can increase the computational certainty (from > ;%1-

to 1) with an exponential simulation. Freivald [19] obtains similar results for limiting

probabilistic computations, although his definitions require that a correct answer appears

(in the limit) with probability > -,;-_1,-_-1-, and all incorrect answers appear with probability
. .

< P

Definition 4.38 Let M be an IIM, f € T, and k € N. Then

po S 2R MU),. S - 1) = £(2)})
M, 1.k = 2 .

Definition 4.39 NV, (p) = {U | BM € £)(Vf € U) liminfi—o Faopne 2 P}

We’ve show for (EX and BC) that when the IIMs output programs as opposed to
predictions, the computational models of frequency, teams, and probability define the
same classes. This is basically because the behavior of the hypothesized programs can

be observed, and the incorrect programs identified to some extent. With prediction
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the situation is quite different. It is not surprising that there are sequences (functions)
which are easy to predict for most arguments (i.e. with high frequency), but not at all

predictable with any reasonable probability for some infrequent, “hard” values:
Theorem 4.40 (Ve > 0)(Vn > 1)

® NVjeg(1) = NVigme(n) # 0.

® NVig(1) = NV,pe(€) # 0.

Proof: For every € T, let the function #0; : N — R be defined by

o) = WSz <k S =0l

Then let
U={feT] likminf#Of(k) = 1}.
—00

Clearly U € NVjy,(1) by the machine which always predicts “0.” Let the collection of
machines My, Ma,...,M, € £ and let fa, M,,..., M, be defined by

1+ max{M;(f(0),...,f(z=1)) | 1L i< n} if z=2F for some k.

0 otherwise.

IMy My Mo (2) = {

Clearly fa;,M,,.. M, is total, is in U, and contradicts the predictions of each of the
machines My, Ms,..., M, infinitely often. Since n was arbitrary, we have part 1. of the
theorem. Part 2. follows since (Ve > 0)(3n) NV, (€) C NVigm!(n). O

4.6 Probabilistic Language Identification

In this section we apply the probabilistic model to the problem of grammar inference from
texts (arbitrary enumerations of formal languages.) We consider the situation where an
IIM is fed elements from some formal language L, and M attempts to output (in the
limit) a grammar which enumerates all and only the elements of L. The IIM receives
explicit information about L, and only implicit information about the complement of L
since no element of the complement of L ever appears in the presentation. This contrasts
with the situation where an IIM is fed the characteristic function of some language L.
We fix some finite alphabet ¥ and let £* be the set of all finite length strings over Z.
A language L is any subset of £*. The elements of L are called the words of L. A formal
grammar for L in the most general case (type O [24]) is equivalent to a program which,

when started with empty input, outputs all and only the elements of L (not necessarily
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in any order, and possibly with repeats). We let GOODy denote the set of indices of
programs which enumerate L, and BAD; denote N — GOOD_.

A texzt for a language L is a function ¢ : N — L{J{*} such that range(t) — {*} = L.
The “+” comes from (7] (see Section 2.3) and helps model gaps in texts, and allows us to

deal with finite languages.

Definition 4.41 [23]

e M TXTEX—identifies L iff for all texts t for L, M on input t(0),¢(1),... outputs

an infinite sequence g, ga,... which converges to some g € GOODy.

e TXTEX = {L | L 3 a class of recursively enumerable languages and (VL € L£)(3M)
M TXTEX-identifies L}.

BC inference of languages has been defined as well:
Definition 4.42 [8,30,31]

e M TXTBC-identifies L +ff for all texts t for L, M on input t(0),1(1),... outputs
an infinite sequence g1,92,... such that (V°) gr € GOOD}.

e TXTBC = {L | L is a class of recursively enumerable languages and (VL € £)(3M)
M TXTBC-identifies L}.

It has been shown [8,30,31] that TXTBC properly contains TXTEX.

Since the input to language-identifying machines are not total functions, (or recur-
sive languages) we do not assume that the elements of L are fed to an IIM in any
canonical order. If t is a text for L, we let M(t) denote the (possibly infinite) se-
quence of M’s outputs when fed t. We define TXTEX and TXTBC with respect to
our formalization of identification criterion so that we may benefit from the general
definition of the probabilistic model. TXTEX is the pair (BrxrTex,QrxrEX) Where
BrxTEx always = 1 (i.e. no restriction on the class of machines considered), and
Qrxrex({91,92,---,9k),L) = 1 & gr = gg-1 and gr € GOODy. Then M TXTEX-
identifies L iff for every text t of L, limg_.co Q@ rxTEX (M (t)|1, L) = 1. Our formal defini-
tion of TXTBC is identical, except that Q 7xTBc({91,92,---,9%),L) = 1 & g € GOODy .
Let the definitions of TXTEX 0 and TXTBCpmp be given by Definition 2.22. Clearly
Q rxTEX and Q rxTBC are limiting-invariant under repetition, so we freely use the proba-
bilistic computation tree model, and let Tp; denote the computation tree of P on input

text L.
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In his seminal paper {23], Gold showed that no class of languages in TXTEX contains
both an infinite language and all of its finite sublanguages, and the same result for
TXTBC appears in [8]. It is easy to see however [23], that the class of all finite languages
is contained in TXTEX.

Theorem 4.43 TXTEX C TXTEX pros(}) and TXTBC C TXTBC prs(}).

Proof: The containments are immediate; we only need to show that they are proper.
It is sufficient to show that there is a class of recursively enumerable languages £ such
that £ € TXTEXPM,(%) — TXTBC. Let

L ={L| Lisfiniteor L=1X"}

By our remarks above, since £ contains both an infinite language (X*) and all of its finite
sublanguages, £ ¢ TXTBC. To see that £ € TX TEXW(%) consider the probabilistic
IIM P which on input any text ¢t of L € £ flips a coin, and with probability % outputs
the index of a program which enumerates £*, and with probability % follows a strategy
which TXTEX-identifies all of the finite languages. |

For TXTBC we show that this separation is the best possible, but first we define
a program similar to the THRESHOLD program of Section 2.2, but for enumerating

languages rather than computing functions.

Definition 4.44 Let I be any finite ordered multiset of (not necessarily distinct) indices
of enumerating programs I = {i1,12,...,i¢}. Let P= p1,p2,...,pr be any finite sequence
of probabilities (p; € R, Zf._.l pi < 1), and let v be any positive rational number. Then
the program VOTE, 1 5 is the program defined by:

VOTE, 5

On null input, dovetail the enumerations {p; | i € I} (all on null input).
If at any point there is a word w € T* such that a subset (possibly a multiset)
S C I has been found such that (Vi € S) p; has enumerated w and Zi,-es p; >
v. Then output w. (Meanwhile, output * every 100 steps or so.)

Lemma 4.45 If Z‘JEInBADL pj <v < Zi,eInGOODL pj then t’le program
VOTE, 5 enumerates L.

Proof: Obvious by analogy with the proof of Lemma 2.4.
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Theorem 4.48 (Vp > 1) TXTBCpmu(p) = TXTBC.

Proof: Let P TXTBC-identify every L € £ with probability p > —;— Then for ev-
ery text ¢ for L, Pr[{paths corresponding to correct TXTBC-identifications}] > 1. By
Lemma 3.11 (V{°) the fraction of program indices at level k of Tp; which arein GOOD_ is
> % We construct a deterministic IIM M which TXTBC-identifies £. On input text ¢ of
L e £, Mfeedst to P, constructs Tp;, and outputs the index of program VOTE PR AROD
where I is the multiset of indices of nodes at level k of Tp; and the corresponding vector
p®) consists of the value 51; repeated 2F times.

Since (V§°) greater than half of the indices at level k of Tp; are in GOOD;, and
strictly less than half of the elements are in BADL, Lemma 4.45 gives that (V§°) the
program output by M enumerates L, which is the definition of TXTBC-identification.

O

For TXTEX we are not able to prove the corresponding theorem. We prove some-
thing weaker which is in the same spirit as Freivald’s proof that EXgprob(p) = EX,
when p > % Moreover, we believe that the similarities are more than coincidental. In
the finite inference case the IIM is limited to a single guess. There is not sufficient time
to witness that certain hypotheses produced in the probabilistic tree are bad (i.e. in
WRONG/). These WRONG; hypotheses cannot be eliminated, so the amalgamation
program RACE described in Section 2.2 cannot be employed. With text presentations
of languages, although the IIM is allowed “limiting time” to eliminate hypotheses which
enumerate incorrect words, the set of WRONG enumerators cannot be identified because
the presentation is only an enumeration, and the IIM can never prove wrong any hypoth-
esis which enumerates a suspicious word, since the text offers no information about the
complement of the language presented. In short, for finite identification the information
is there but there isn’t enough time to use it, and for TXTEX-identification there’s
plenty of time, but no information. For this reason, we believe that the structure of the

probabilistic TXTEX classes might be identical to those for finite identification.
Theorem 4.47 (Vp > 2) TXTEX ps(p) = TXTEX.

Proof: Clearly TXTEX p4(p) 2 TXTEX. Now let p > %+ ¢, and let P TXTEX-
identify every L € £ with probability > p. Consider the machine M which begins its

computation by setting Iy «— @, cop < +00, kyg < 0, and the vector plkotd) = (1).

94



Phase k

1. On input text ¢, build Tp; to the k*P level, and compute Pr[Cj ] for every
node j in the partial tree.

2. Let c¢; be the smallest number such that 2;-’;1 Pr[C;4] > % + €.
3. IF c¢i # cg-1 THEN
3.1. I < the ordered multiset of indices {ind(1),ind(2),...,ind(ck)}.

3.2. p® — the sequence of values (F) Pr[Cjy) for 1 < j <k.

J
3.3. kug— k.
3.4. GO TO STEP 5.

4. ELSE (ct = cx-1)
4.1, It — I,
42. I Yo, PriCjs] 2 Yok pl¥eid) — 5 then (V) p{) — piFod
otherwise (V) pg-k) — Pr[Cjg].
5. Output the index of the program VOTE 11,008

6. Go to phase k + 1.

M finds (in the limit) a set of nodes of “weight” > 2. Of these, there must be a group
of weight > % which are in GOODp, and weight < -é- can be in BADj. Thus the program
output will be correct. The only proBlem is that the estimated probabilities Pr[Cjx] can
change forever, so it is not clear what probability to associate with each hypothesis in
the voting set I. This problem is solved by ignoring the changes in probabilities once
these changes become small (< §).

By the construction on page 43 and the argument preceding the statement of Claim 3.27,
the sequence of values {c;} converges to some number ¢, and hence the multisets I; con-
verge to the multiset I = {ind(1),ind(2),...,ind(c)}. Now note that the sequence of
probability vectors p(W, p(®, ... must converge to some fixed vector of probabilities 7, for
if not, then 375, Pr[Cj i decreases by § infinitely often, a contradiction. Therefore, M

converges to the index of the program VOTE 115 We now show that

1
Y pm<z< X W
1<j<e 1<j<e
ind(j)€BADL ind(j)EGOOD

and by Lemma 4.45 M TXTEX-identifies L proving the theorem. Since the values

Pr[C, ] converge to Pr[C;] from above (Lemma 3.18) we have
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c c
> < D PHC+ 3,
=1

Jj=1
therefore
€
> p < > Prcil+ 3
1<j5<e 1<j<e
ind(jYEBAD, ind()€BAD
< ¥ P+
ind(§)€BAD
= Pi[C(BADL)]+ 5
1 € 1
< ——e+=-< =,
= 37¢t3<j3
Finally,
2 1 1 1
E pJ-—’EpJ—- E pj>§+€—§=§+€>§.
1<5<e 1<5%&¢c 1<5<e
ind(j)€EGOOD ind(jY€BAD

4.7 Probabilistically Finding Concise Explanations

Among competing hypotheses for explaining a rule, scientists often choose the simplest
hypothesis as the best explanation. This criterion for selection is called “Occam’s razor.”4
The concept of simplicity has been modeled within inductive inference. The inference of
“simple” programs from examples has been investigated, where “simple” is interpreted
as “concise”, or “small”. In this section we show that if there is a probabilistic IIM
which can infer small programs for a class of functions from examples with probability
exceeding —;—, then there is a deterministic IIM which can infer small programs for the
class of functions.

Let {M;} be a recursively enumerable sequence of all Turing machine transducers {or
any other general model of computation powerful enough to compute all of the partial
recursive functions), and let (p;);en be the corresponding acceptable numbering. Then

we have the following definition from [6].

Definition 4.48 The function sizeps : N — N i3 a program size measure iff the following

two conditions hold:

*] believe Occam originally said something like “... entities should not be multiplied unnecessarily.”
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1. (Vz) {¢ | sizeps(?) = z} is finite.
2. There is some transducer T such that for every z, T'(z) halts with the elements of

the set {i | sizeps(2) = z} on its output tape.

We then say stzeps is the size of machine M; or of program :.

Let minp(f) = min{sizeps(7) | i = f}; the size of the smallest program which
computes f. Freivald [20] considered EX-identification of minimal size programs from
values, and showed that this notion of identification was dependent on the particular
program system (and hence acceptable numbering) chosen (whereas the classes EX,
BC, and their variants are all well defined and independent of any particular acceptable
numbering.) |

For this reason, EX-identification of minimal size functions modulo a recursive “fudge”
factor was introduced. It was shown [20] that this notion and the associated class MEX
defined below are in fact independent of the acceptable numbering chosen. We assume
then that a class of TM transducers {M;} has been fixed and that the function sizey, for
these machines is the number of tuples defining them [24]. We now drop the subscript
M from sizeps(f) and minp(f).

The identification criterion MEX is not defined for identification of functions, but
rather for classes of functions. Rather than trying to force-fit it into our general defini-
tion, we treat it as an exception and define it as follows.

Let GOODY = {i € GOODy | size(ind(i)) < h(min(f))}. For any h € T let the
predicate Qu-gx : (N* x T) — {0,1} be defined by

Qu-x((91,92,-+-,08), f) = 1 & g = gp—1 and gz € GOOD).
Definition 4.49 ([11,20]) Let M be an IIM. Then

o M MEX-identifies U iff (3R)(Vf € U) limg—oo Qu-ex (M (N, f) = 1.

e MEX = {U | M MEX -identifies U}.

MEX is simply EX with the added condition that the hypothesis converged to is not
larger than h(min(f)). Chen [11] gives many results for MEX (mind changes, anomalies,
etc.) Note that the corresponding class for BC is not interesting, since there are at
most finitely many programs of size at most h(min(f)), and any M which (in the limit)
alternated choosing its outputs from among this finite set, could OEX (and hence EX
identify f.

Since MEX is defined for classes of functions rather than functions, we explicitly

define probabilistic MEX identification.
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Definition 4.50

e Pr[P MEX-identifies U] > p & Pr[{0 | P° MEX-identifies U}] > p.

e MEXpu(p) = {U | (3P) P MEX —identifies U with probability > p}.

Since for all A, Q4_gx is limiting-invariant under repetition, we assume that all
probabilistic IIMs P behave nicely and we make liberal use of the tree definitions for
probabilistic IIMs. In particular, recall that for any set of indices A, the set C(A) consists
of those paths in the tree Tpy which (EX-) converge to an element of the set A. Then
we have P MEX-identifies U with probability p iff (3k)(Vf € U) Pr[C(GOOD_(fh))] > p.

Chen gives the following nonunion theorem for MEX.
Theorem 4.51 (3U,,U; € MEX) U, UU, ¢ MEX.
This‘ gives rise to the following corollary.

Corollary 4.52 MEX C MEX p(3).

Proof: Containment is immediate. We show that it is proper. Let U; and U; be
defined as in the nonunion theorem above. Then U; JU; € MEX. We show U, |JU; €
MEX pmb(%). If Uy € MEX is witnessed by machine M; with recursive function h,,
and U; € MEX is witnessed by machine M, with recursive function hy, then let P
be a probabilisfic IIM which flips a coin and on input f, simulates either M; or M,
equiprobably. Let h be the recursive function defined by h(z) = max{h;(z),ha(z)}.
Then (Vf € U) Pr[P MEX-identifies f (within recursive function k)] > 1. 0

We now show that this separation is the best possible, 1.e.
Theorem 4.53 (Vp > 1) MEX ,(p) = MEX.

To prove the theorem, we essentially redo the proof of the special case n = 1 of
Theorem 3.21. (We explain later why the proof doesn’t easily extend to show p >
'rﬁl-T = MEX pwos(p) © MEX eam(n).) The idea is to show that a deterministic IIM can
find (in the limit, by simulating P) a finite collection I of small programs containing at

least one program which computes f.
Definition 4.54

e M MOEX-identifies U & (3h)(Vf € U) M(f) | I, a finite list of distinct indices
such that
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1. (Vi € I) size(i) < h(min(f)).
2. (3ieliegooDpP.

e MOEX = {U | (AM) M MOEX-identifies U}.
Lemma 4.55 MOEX = MEX.

Proof: In the proof of Lemma 3.25 a machine M’ was constructed from a machine M
such that if M | I, M' | RACE]. Since the construction of RACE| from I in Section 2.2

is effective, and I is finite, there is a recursive g such that
size(RACE]) < g((size())ier)-

For the definition of size as number of tuples, size(RACE]) is roughly ¢+ 3¢y stze(2)
for some constant c.

Now by the axioms of program size (Definition 4.48) there is a recursive function r
such that (Vz) the number of programs of size < z is at most r(z). Therefore, the number
of different programs of size at most h(min(f)) is at most r(h(min(f))).

Since all elements ¢ of I are distinct and have size(i) < h(min(f)) we have (3r)
|I| € r(h(min(f))). Finally, size(RACE;) < g(at most r(h(min(f))) indices all of size
< h(min(f))). Now M' | RACE and by the argument in the proof of Lemma 3.25,
RACE| computes f. O

Proof of Theorem 4.53

By Lemma 4.55, we need only show that (Vp > 1) MEX i (p) € MOEX and the theorem
follows. Let P MEX~-identify U with probability p > % and within recursive function h.
We assume without loss of generality that h is monotone nondecreasing. We construct
M which MOEX~identifies U (within recursive function hoh). M on input f{z simulates
- P, constructs the partial tree Ty = the first k levels of Tp s, computes Pr{Cj ], for every
node j € Ty, and finds the lexicographically least ordered list of nodes Ji such that

1. Zj-e.l Pr[C;k] > -é-
2. max{size(ind(5)) | 7 € J} < h(min{size(ind(5)) | 7 € J}).

Now M outputs I; = {ind(y) | j € J}.
We show that M MOEX-identifies U. First we show that the sequence {J;} converges
to some list J of nodes as k increases. By definition of P MEX-identifying U with
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probability p > 1, and by Lemma 3.11, there is a set of nodes V = {n, ng,...,n,} such
that 3~ ey Pr{Cj] > 1 and ind(j) € G’OOD‘(fh). Then the set V satisfies the conditions 1.
and 2. of M since for sufficiently large k, Pr[Cji] > Pr[C;] (Lemma 3.18), and therefore
for sufficiently large k¥ M will be able to find such a list Ji. Since there 1s a list of nodes
V satisfying the two conditions of M, there is a lexicographically least such list, and the
sequence {Ji} must converge to a list J since there are only a finite number of lists which
are lexicographically less than V. Thus the sequence of outputs {I;} of M converges to
the set I = {ind(7) | j € J}-

Now note that since Pr[C(I)] > £ and Pr[C(N - GOOD(fh))] < } we must have that
INGOODY # 6. Let g € IN GOODP), and thus condition 2. of MOEX-identification
is satisfied. We must show that all of the other elements of I are small.

By the choice of M,

max{size(ind(y)) | j € J} < h(min{size(ind(j)) | 7 € J}).
But g € IN GOODY so
h(min{size(ind(7)) | j € J}) < h(size(g)) < h(h(min(f)))

and (Vi € I) size(i) < h(h(min(f))). Thus I satisfies the first condition of the definition
of MOEX~identification (with recursive function hoh). Thus M MOEX~identifies U. O

We leave as an open question whether there is a nondegenerate team hierarchy (for
n > 2) for MEX (we conjecture there is), and whether ;,—_-i—l- <p< L= MEXpm(p) =
MEX tesm(n). The reason the proof here doesn’t seem to extend nicely to the general case
p> E'-IFT is that the i*" team member of the corresponding construction would assume

that Pr[C(N)] € (ziy, £%] and would attempt to find a set of nodes satisfying

1. EJ'EJ PI[C‘,k] > ;‘_'%._—1‘.
2. max{size(ind(j)) | 7 € J} < h(min{size(ind(5)) | j € J}).

Now condition 2 would not necessarily ever be satisfied, since we can only guarantee that
would be elements of G’OOD‘(fh). The problem is that there could be
(mzn(f))) hypotheses which were in WRONG.

the fraction 7:'-}71'
many large (> h
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Chapter 5
Conclusion

In this dissertation we have defined a general probabilistic model of computation for
inductive inference, and, with respect to the most basic identification criteria, have char-
acterized the power of the model by unification with two previously investigated models
of inference.

Furthermore, we have shown that more classes of functions can be inferred if we are
willing to allow the inference strategy to fail some of the time. It is surprising that
the concept of uncertainty of inference, whether applied to the team, probabilistic, or
frequency model, gives rise to a discrete hierarchy, and that the relationships between
models of computation are invariant across different types of identification criteria.

Many of the results in Chapter 4 give only partial relationships between team and
probabilistic computations; we have indicated many open problems in passing. There are
a number of identification criteria yet to be investigated, including consistent strategies,
complete strategies, prudent strategies, and NV’ and NV prediction.

In addition to extending the results given here, there are more general and pressing
concerns for inductive inference. Perhaps the most basic is to close the gap between
theoretical results and practical inference methods. We believe the general models for
inferring recursive functions are too broad, and must be constrained if they are to yield
more insight into how inference should be done. Incorporating a definition of complex-
ity of inference and limiting the inference task to particular domains is paramount to
obtaining a theory which can speak to practical concerns. The relationship between com-
putational models and complexity of inference will likely be a rich area of investigation.

We conclude with a brief summary of our results:
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5.1 Summary of Results

A general framework was developed for defining identification criteria and their

relationships with different models of computation for inductive inference.

o (VaeNU{s}) (vp) (\n21) Fx <p< 1=

3

EX?mm (n) = EX;mb(p) = EX?req(p)'
BClieam (n) = Bcpmb(p) = Bcﬁw(p)'

e The probabilistic and team classes for EX and BC are invariant under reasonable

change of definition.

e T € EXpondet O REX ponds = REX.
e For finite identification,
p> 722 = EXoprob(p) C EXoteam(n).
(¥n > 1) EXoprob(}) c EXoprob(;37)-
(Vp)(Vvn21)p> ;;:_—1— = EXoprob(p) C EXoteam(2n? + n).
(Vn 2 2) EX,,—1 € EXoteam(n).

e (Ve > 0) NVyondet = NV = NVp(e), and for alternate definitions of probability

and teams for NV,

1 1
(¥ 2 1)(¥p) =5 <7 S = = NVprost () = NViaam' (1) # NVjrey (p)-

e For identification of languages,

TXTBCprs(%) > TXTBC and (Vp > §) TXTBCprs(p) = TXTBC.
TXTEXpms(3) > TXTEX and (Vp > 2 TXTEXpmo(p) = TXTEX.

o (Vp> 1) MEX s (p) = MEX.
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