Yale University
Department of Computer Science

Spanning Balanced Trees in Boolean Cubes

Ching-Tien Ho and S. Lennart Johnsson

YALEU/DCS/TR-611
February 1988

This work has in part been supported by the Office of Naval Research under con-
tracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public release:
distribution is unlimited.

1 A revised edition of TR-508. To appear in STAM Journal on Algebraic and Discrete
Methods.

Spanning Balanced Trees in Boolean Cubes

Ching-Tien Ho and S. Lennart Johnsson?
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract. A Spanning Balanced n-tree (SBnT) in a Boolean n-cube is a spanning tree in
which the root has fanout n, and all the subtrees of the root have 0(27:1) nodes. The number
of tree edges in each dimension of the n-cube is of order 0(%) The spanning balanced n-tree
allows for scheduling disciplines that realize lower bound (within a factor of two) one-to-all
personalized communication, all-to-all broadcasting, and all-to-all personalized communication
on a Boolean n-cube [1,5]. The improvement in data transfer time over the familiar binomial tree
routing is a factor of 2 for concurrent communication on all ports and one-to-all personalized
communication and all-to-all broadcasting. For all-to-all personalized communication on all
ports concurrently the improvement is of order O(4/n). We give distributed routing algorithms
defining the spanning balanced n-tree. The balanced n-tree is not unique, and we provide a
few definitions of n-trees that are effectively edge-disjoint. Some implementation issues are also
discussed.

Binary numbers obtained from each other through rotation forms necklaces that are full if the
period is equal to the length of the number, otherwise they are degenerate. As an intermediary
result we show that the ratio between the number of degenerate necklaces and the total number

of necklaces with [bits equal to one is at most ﬁ;; for1<l<n.

Key words. Boolean cubes, balanced trees, spanning trees, personalized communication,
routing, shuffles, necklaces, periodicity

AMS(MOS) subject classification. 68P05, 68Q25

1 Introduction

High performance computer architectures require a high processing and communication band-
width, which can be achieved in standard technologies by using a large number of processing
elements, and interconnection networks that allow many independent communications concur-
rently. One such interconnection network is the Boolean cube. The number of dimensions for
currently available systems range from 5 to 12. For highly concurrent computations, also known
as data parallel computations in that the degree of parallelism is determined by the size of the

1 Also Department of Electrical Engineering, Yale University, and Thinking Machine Corp., 245 First Street,
Cambridge, MA 02142.

data set rather than control constructs, the number of arithmetic/logic operations per commu-
nication is often low, and the efficient use of the communication facilities is important for total
performance. Some frequently occurring operations are broadcasting of data from one node to
a subset of other nodes, or all other nodes, or the reverse operation: reduction. Common reduc-
tion operators are sum, min, max, and logical operators. Other global communications are the
sending of a unique piece of data from one node to all other nodes, or the reverse operation. We
refer to this type of communication as personalized communication [1,5]. Many linear algebra al-
gorithms require broadcasting [4]. Certain matrix transpose algorithms and other permutations
[2] effectively use one-to-all or all-to-all personalized communication [1].

For global communication a spanning tree, or a composition of many spanning trees, is
needed. In this paper we describe and analyze a particular spanning tree, a Spanning Balanced
n-tree (SBnT). It makes possible scheduling disciplines that realize lower bound communication
within a factor of two [1]. A balanced n-tree is a tree with fanout n at the root, and approximately
the same number of nodes in each subtree of the root. A commonly used spanning tree for global
communication in Boolean cubes is a binomial tree. Such a tree has half of the number of nodes
in one subtree, a quarter in another, etc. Another important property which makes lower bound
algorithms for all-to-all broadcasting and all-to-all personalized communication possible is that
for each level of the spanning balanced n-tree, the edges are evenly distributed among the n
dimensions of an n-cube, while for the binomial tree, half of the edges are in dimension -1, a
quarter in dimension n—2, etc. A binomial tree is easily constructed by complementing leading or
trailing zeroes. The construction algorithm is a distributed algorithm. Each node only needs to
know the address of the source node and its own address (and perform an exclusive-or operation
on the two before computing the address of children nodes through bit-complementation).

The construction of a balanced n-tree is somewhat more complex, but has a resemblance
with the construction of the binomial tree. One key observation is that if one subtree of the root
is known, then if all the addresses of the nodes in that subtree are rotated by the same amount,
another subtree is obtained. That subtree has the same topology as the original subtree. Since
n distinct rotations are possible on the node addresses in a Boolean n-cube, the balanced tree
can be generated by this strategy, provided that all addresses have a period of n. Nodes with
a period less than n will appear in several subtrees of the root. For the outlined construction
to work, approximately %:l node addresses must have a period of n. Address rotation defines a
shuffle operation, and the addresses so obtained form a necklace. A necklace with n nodes is
full. Other necklaces are degenerate. It follows from a result by Leighton [6] that there exist
O(%) node addresses that cannot be obtained from each other through rotation. We prove a
stronger result and show that the ratio between the number of degenerate necklaces and the total
number of necklaces for / bits equal to one is at most ﬁ; for 1 <1 < n. For the construction of
the balanced tree at most one node from every necklace is selected for the generating subtree,
and an interconnection scheme need to be found that makes use of the Boolean cube topology.
We describe one such construction that, viewed in the appropriate way, implies complementing
some of the leading zeroes (but not all) of the node address in order to obtain the address(es)
of the children node(s). The definition can be used as a distributed routing algorithm.

In this paper we define the balanced n-tree more precisely, analyze some of its topological
properties, and give distributed algorithms for constructing balanced n-trees. We also present a
spanning balanced graph, SBG, that minimizes the maximum edge load for one-to-all personal-

ized communication, all-to-all broadcasting and all-to-all personalized communication. The SBG
is derived from the balanced n-tree. In personalized communication the root sends a unique
piece of information to every node. We also present a few alternative definitions of the SBnT
to demonstrate that the SBnT is not unique, and that the technique used to define it can easily
be modified to generate other spanning balanced n-trees. These trees may have the same dis-
tribution of nodes among subtrees, but the subtrees have different topologies, and use different
sets of edges in the cube. Fault tolerance for SBnT communication is equivalent to finding an
SBnT that does not include the faulty edges. There exist different SBnT’s that only share the
edges emanating from the root, i.e., that are edge-disjoint below level 1 with the root at level
0. Similarly, the different definitions of the SBnT have different sets of leaf nodes, giving some
flexibility for reducing the consequences of node failures. Note that all the spanning balanced
n-trees defined here use all edges from the root. For personalized communication the commu-
nication complexity cannot be reduced by using several SBnT’s concurrently. The root is the
bottleneck, as shown later.

In section 2 the notations and definitions used throughout this paper are introduced. Section
3 contains a definition of the SBnT, and an analysis of its properties. Section 4 gives some
alternative definitions of the SBnT and compares the characteristics of these alternative SBnT’s
with those of the SBnT in section 3. In section 5 we prove and give some complexity estimates
for personalized communication based on the SBnT. Implementatmn issues are discussed in
section 6 followed by a summary in section 7.

2 Preliminaries

A Boolean n-cube, is an n-dimensional cube with two nodes in each dimension. The total number
of nodes is N = 2", and the total number of bidirectional links is n—- Nodes in the Boolean cube
can be given n bit addresses such that adJacent nodes differ in prec1sely one bit. The distance
between nodes ¢ = (in_19n—2...%0) and ¢’ = (i, _,4l,_,...3}) is defined as the Hamming distance
between the nodes, i.e., distance(i, ') = Hamming(i,i') = 3"} (i,, ®4’,). The number of 1-bits
in the binary representation of i is denoted ||i|| = "} i,, = Hamming(i,0). The number of
nodes at distance / from a node is (7).

For the definition of the spanning balanced n-tree we make use of rotations and translations.
The right-rotation of a node i is R(i) = (igin-1in-2...%1), and R™ = R™ 1o R is a right
rotation of m steps. The inverse operation R™! = L is a left rotation, i.e., R~1(i) = L(i) =
(tn—2%n-3...%180¢n—1). The right-rotation of a graph G = (V,€) is R(G) = (R(V), R(£)), where
R(V) = {R(?)|Vi € V} and R(E) = {(R(3),R(4))IV(:,j) € €}. The translation of a node
i by s is T(i,8) = i ® s = ¢, where c is the relative address of i with respect to s. The
translation of a graph G by s is T(G,s) = (T(V,s),T(€,s)) with T(V,s) = {T(s,s)|Vi € V}
and T(&,s) = {(T(¢,s),T(F,s))|V(i,5) € £}. The bit-reversal of a node i is B(z) = (igi1...in—-1)-
Adjacency is preserved under rotation, translation, and bit-reversal [5]. Translation preserves
the order of dimensions, rotation the relative order of dimensions, cyclically. The bit-reversal
operation is its own inverse, and the following relationship between bit-reversal and rotation
holds: RBR = B, LBL = B, R = BLB, and L = BRB.

A necklace [6] is a set of nodes with addresses that can be obtained from each other through

rotation (shuffle operation). For example, (001001), (010010) and (100100) are in the same
necklace. The numbers (110000), (011000), (001100), (000110), (000011) and (100001) are also
in the same necklace (but not the same as the preceding ones). The period of a binary number
i, P;, is the least v > 0 such that ¢ = R¥(:). For example, the period of (011011) is 3. A
binary number is cyclic, if its period is less than its length, and it is non-cyclic otherwise. Note
that complementation of a binary number preserves the period. A cyclic node ¢ is a node with
cyclic relative address ¢ = i @ s with respect to a given node s. We define cyclic nodes with
respect to a given node, since we are only interested in this property for trees with a defined
root, and not for the node address itself. We also refer to the root node as the source node.
Throughout the paper, we use c to represent the relative address of node i. Non-cyclic nodes
belong to full necklaces and cyclic nodes to degenerate necklaces [6]. The number of nodes in the
necklace to which ¢ belongs is P.. If there were no cyclic nodes then all necklaces are full, and a
balanced n-tree can be generated through rotation of a generating subtree of the root. We label
the subtrees of the root 0 - n — 1, with the generating subtree being subtree 0. The generating
subtree is assembled with one node from every necklace. These nodes are called distinguished
nodes. The spanning balanced n-trees we define differ in the selection of distinguished nodes.
The first SBnT we define use the node with minimum value of the nodes in a necklace as the
distinguished node. This definition of distinguished node is similar, but not identical, to the one
used by Leighton [6]. He defines the distinguished node as the node having the longest block of
leading zeroes, which is also minimum, if there is a unique longest block of zeroes. If n is a prime
number then there are only two degenerate necklaces, namely those formed by the nodes with
relative addresses (00...0) and (11...1). The construction and analysis of spanning balanced
trees for arbitrary n are complicated by the treatment of cyclic nodes.

The addresses of cyclic nodes are made up of repeating blocks. We use the notation a|b to
denote that a divides b. For cyclic nodes there exists at least one rotation of less than n steps of
the address that yields the original value. Let J. be the set of distinct rotations that minimize
the value of the rotated address, i.e., J. = {j1,72,.-.,Jm}, Where 0 < j; < j2 < +++ < jm < 1,
R*(¢) = R(¢), u,v € J, and R*(c) < R¥(¢), v € J., w € {0,1,...,n — 1} — J.. Clearly
|Je] = 7’5‘: Graphs constructed through rotation of a generating subtree, SBG, are balanced,
but are not trees, since there exist |J.| paths from the source node s to node i (¢ = i & s).
For a balanced n-tree we select a particular path of the J, paths from the source node to each
cyclic node. For the graph with J. paths from source to destination the load on the edges from
the source can be made even by dividing the data set for a node into |J;| pieces, one for each
path to node c¢. The indezx of a node ¢ defines the subtree(s) of the root to which it belongs;
indez(c) = j; for a single path to every node, and indez,,(c) = J. for multiple paths to cyclic
nodes. The distinguished nodes are defined by the set {c|index(c) =0, Vi € V — {s}}.

In a binomial tree defined by complementing leading zeroes all nodes in a given subtree of
the root has the same number of trailing zeroes. The lowest order bit that is one can be viewed
as the index of the subtree. For the first definition of a generating subtree we also consider the
block of leading zeroes for defining connections to children nodes. However, complementing bits
in this block may yield a node ¢’ with relative address ¢’ such that indez(c’) # indez(c) for the
SBnT, or indez(c’) € indexy(c) for the SBG graph. For instance, indez(00...01) = 0, but
indez(10...01) = n — 1. We define the SBnT and SBG graphs directly from the node addresses
without explicit rotation of the generating subtree. It is convenient to introduce the following
definitions. Let & be defined by ¢y = 1,¢; = 0,5 € {(k+1) mod =, (k+2) mod n,...,(index(c)—

1)mod n} = M(c), and k = —1 if ¢ = 0. The k** bit is the last 1-bit to the left of bit
indez(c), cyclically. The set M(c) is the maximum set of consecutive indices of 0-bit positions
immediately to the right of bit ¢indez(c), cyclically. For non-root nodes, bit indez(c) is always a
1-bit. |M(e)| = a. is the number of leading zeroes of Ri"#=(°)(¢). For example, for ¢ = (010110),
indez(c) =1, k = 4, M(c) = {5,0} and a, = 2.

3 A Spanning Balanced n-Tree

Our definition of the balanced n-tree can serve as a distributed routing algorithm. For the
complexity estimates of various communication operations, it is of interest to characterize the
distribution of nodes among the subtrees of the root as well as the fanout of the nodes. We give

a lower bound ;%"2' on the number of nodes in a subtree of the root with the fewest number of

nodes, which is low by at most a term of approximately %3’- We also derive an upper bound of
% on the number of nodes in a subtree. We present a table for the actual number of nodes in
the maximum and minimum subtrees generated by the SBnT algorithm for up to 20-dimensional

cubes, and show that the relative difference approaches 0 as the number of nodes grow, Table 1.

We define the balanced n-tree by two alternative functions: the childrensp,r(i,s) and
parentspnr(i,s) functions.

{(in_lin-z...;m...io_)},Vm € M(C), ife= 0;
childrenspar(i,s) = {gm = (in-1in—2---tm---%0)},
Vm € M(c) and indez(gm @ s) = index(c), if ¢ # 0.
. _ | ife=0;
parentspnr(iys) = { (in—1%n—2.--3...50), otherwise.

The indez(parentspnr(i, s)) is the same as indez(c), since for any node with relative address
¢, k is the highest-order bit of R"4¢%(?)(¢) that is 1. Complementing this bit cannot change the
index. It is also readily seen that the parentsp,r and childrensp,r functions are consistent,
i.e., for any node ¢ it is a parent of a node j iff j is a child of .

Lemma 1 The parentsp,r (childrensp,t) function defines a spanning tree rooted at node s.

Proof: The parent node of a node at distance d from node s is at distance d — 1 from node s,
and each node only has one parent node. Traversing the edges defined by successive applications
of the parentsp,r function of any node generates a path to node s for any node. Hence, the
graph is a spanning tree rooted at node s. 1

Figures 1, 2 and 3 show spanning trees generated by the algorithm above for the root located
at node 0 in 3-, 4- and 5-cubes. Figure 4 shows subtree 0 of an SBnT in a 6-cube. Nodes in
square boxes are cyclic nodes.

Lemma 2 The number of nodes at level | from the source is (7).

5

000

001 010 10
011 110 101
111

Index 0 1 2

Figure 1: A spanning balanced 3-tree in a 3-cube.

0000

0001

0111

1111
Index 0 1 2 3

Figure 2: A spanning balanced 4-tree in a 4-cube.

00000

00001 00010 00100 01000 10000

000114 00101® 001104 01010® 011004 10100® 110004 01001® 100014 10010

00111¢ 01011® 01110¢ 10110 111004 01101e 11001¢ 110108 10011¢ 10101

01111 11110 11101 11011 10111

11111
Index 0 1 2 3 4

Figure 3: A spanning balanced 5-tree in a 5-cube.

000000

001111

011111 [e]= cyclic node

Figure 4: Subtree 0 of a spanning balanced 6-tree in a 6-cube.

Proof: From the parentsp,r function it follows that node 7 with ||c|| = [is at level /. Further-
more, there exist (7) distinct permutations of I 1-bits out of a string of n bits. 1

The SBnT is a greedy tree [5] in the sense that the distance for any node in the SBnT to the
root is minimal. Personalized communication using a greedy spanning tree guarantees that the
minimum communication bandwidth is used. All data is sent via a shortest path.

Corollary 1 The height of one subtree is n, and the height of all other subtrees is n — 1.

Proof: There is only one node at distance n from the root, and there are n nodes at distance
n — 1 from the root, each of which has a different index. 1l

The fan-out of nodes is of particular importance for estimating the complexity of scheduling
algorithms for personalized communication. If the fanout is non-increasing as a function of the
distance from the root, then the analysis is considerably simplified.

Lemma 3 The mazimum fanout of a node at level | is I"‘T'“’], for1 <l<n.

Proof: Let the relative address ¢ = 2/ —1. Then ||¢|| = [and complementing bits {/,{+1,...,I+
["T'l] — 1} does not change the index, but complementing the higher-order bits does. Hence,
the maximum fanout is at least ["—;L] But, for any other ¢ such that ||c|| = !, the maximum
size of any block of consecutive zeroes, cyclically, is also n — [; hence |[M(c)| < n — [, and the
argument can be applied to the leading block of R"4=(c)(¢), and the proof is complete.

For one-to-all personalized communication in Boolean cubes that allow concurrent communi-
cation on all n-ports of a node one effective scheduling discipline is a reverse-breadth-first order
[5], i.e., scheduling data for all nodes at a given distance during the same routing cycle, and in
order of decreasing distance from the source. The complexity analysis of this scheduling disci-
pline is simplified, if the communication bandwidth required by nodes forwarding data from the
root to the final destination is guaranteed to be at most the same as that required by the root.
If the following property holds, then it suffices to consider the root alone.

Lemma 4 Let ¢(c,l) be the number of nodes at distance | from node c in the subtree rooted at
node c. Then, ¢(c,l) > ¢(c/,1), where node ¢’ is a child of node c.

Proof: Let ¢’ be any non-root node and node c its parent node. We prove the lemma first
for subtree 0 by showing that for any node at distance ! below node ¢/, there is a unique
corresponding node at distance ! below node ¢. Recall that a. is the number of leading 0’s of
R""de"’(c')(c') = ¢’. Clearly, the number of leading 0’s of ¢ must be a4+ 8+ 1, where 8 > 0 is the
number of consecutive 0’s in ¢’ between the two leftmost 1-bits. Any node at distance ! below
¢/, say c}, has an address that can be derived by complementing [out of the o leading 0’s of ¢/,
and with the index unchanged. There exists a corresponding node ¢; at distance ! below node
c. The address of node ¢; can be constructed by leaving 3 + 1 leading 0’s of the address of ¢

unchanged, and making the following o bits equal to the first o bits of node ¢j. This process
preserves the index for any given node ¢;. The same argument applies to any other subtree j by
considering R’(c) and R(c’). |

Lemma 5 FEzcluding node ¢ = (11...1), all the subtrees of the SBnT are isomorphic if n is a
prime number.

Proof: For n a prime number there are no cyclic nodes, except the nodes with relative addresses
(00...0) and (11...1). Since different subtrees are obtained through rotations of the addresses,
the proof is complete. ll

Corollary 2 The subtrees of the root of the SBnT are isomorphic, if cyclic nodes are ezcluded.

For communication from every node to every other node, all-to-all communication, using
2" distinctly translated balanced n-trees a number of tree edges are mapped to the same cube
edge. Since translation preserves the dimension of an edge (but not necessarily the direction)
the number of tree edges mapped to any cube edge in a given dimension, say d, is equal to the
number of SBnT edges in that dimension. For the complexity analysis of scheduling algorithms
it is also necessary to know at what distance from the source node these edges are [1].

Corollary 3 If n is prime, the number of edges in dimension d between levels | — 1 and [is
equal to %(’,‘) forl={1,2,...,n—1}. Forl = n there is only one edge, and it is in dimension
n — 1. The total number of edges in dimension d is equal to ln’ﬁ + 1 for dimension n — 1 and
N—n'z for the other dimensions.

Definition 1 A treetop of a tree T is a tree which is a connected subgraph of T containing the
root of T.

Lemma 6 Subtree i of the root of an SBnT is isomorphic to a treetop of subtree j of the root
of the SBnT, if i > j. 4

Proof: Subtree ¢ is derived from subtree j by pruning away cyclic nodes that have periods p
with j < p < 7 and corresponding incident edges, and performing a left cyclic shift of ¢ — j bits
for all nodes in the pruned subtree. 1

Corollary 4 Subtree ¢ contains all the nodes with periods p > 1.

Corollary 5 There are %n subtrees without cyclic nodes if n is even, and at least %n subtrees

without cyclic nodes if n is odd.

Lemma 7 Subtree 0 of an SBnT is isomorphic to a treetop of a Spanning Binomial Tree of an
(n — 1)-cube. Subtrees 1 through n — 1 of an SBnT are isomorphic to a treetop of a Spanning
Binomial Tree of an (n — 2)-cube.

Proof: Consider the relative addresses of nodes in subtree 0 of an SBnT of an n-cube. They all
have the form (¢p—1én—2 - -#11), where i, = 0 or 1. From the definition of the children function
of an SBnT, if node j is a child of node ¢ then node j can be derived by complementing one of the
leading 0-bits of node i. Recall that the children function of the spanning binomial tree(SBT)
is defined by complementing any one of the leading 0-bits. Hence, subtree 0 of the SBnT is a
treetop of an SBT of an (n — 1)-cube. For the nodes in subtree 1 of the SBnT, they all have
a relative address of the form (¢,-1%p—2---9210). Again, the addresses of the children can be
derived by complementing one of the leading 0-bits. So, subtree 1 is a treetop of a SBT of an
(n — 2)-cube. By lemma 6, it follows that subtree 2 to subtree n — 1 are treetops of a SBT of an
(n — 2)-cube. 1

Lemma 8 Any cyclic node is a leaf node of the SBnT.

Proof: From the definition of the indez(c) and childrenspnr(i,s) functions for a node ¢ in a
tree rooted at node s, the connections to the children nodes are defined by complementing the
subset of the leading zeroes of R*4¢%(c)(c) that preserves indez(c). But, if ¢ is periodic, then the
index is changed since the leading repetitive pattern of ¢ has a larger value than the following
patterns. I

The imbalance between the subtrees of the root is caused by the cyclic nodes. We will now
study the distribution of cyclic nodes in some detail. First we give a bound on the total number
of cyclic nodes in a subtree.

Theorem 1 The number of nodes in a subtree is of order O(X).

Proof: With A cyclic nodes there are at least -IY;'-‘A nodes in a subtree. Denote the number
of degenerate necklaces by B. Since the length of each necklace is at least 2, except for the
necklaces formed by nodes (00...0) and (11...1), B < 452 + 2. It follows that the maximum

number of nodes in a subtree is Nn;A +B-1< 31&"—'%%'—'-2-&. To derive bounds on A we use the

complex-plane diagram used by Hoey and Leiserson [3] in studying the shuffle-exchange network.
Leighton[6] shows that B = O(v/N).

Full necklaces are mapped to circles. Degenerate necklaces are mapped to the origin. In the
context of the shuffle-exchange graph each node that is mapped to the origin of the complex
plane is adjacent (via an exchange edge) to a node at position (1,0) or (—1,0). Hence, for every
full neckla.ce of n nodes there are at most 2 cyclic nodes. It follows that an upper bound on
Ais +2 and the number of nodes in a subtree is at least === +2 and at most ﬂ The relative
difference in the number of nodes in the maximum and minimum subtrees is —-—N— = %ﬁ.(‘_/lfvil,

o(3)
which approaches 0 for N — co. |

10

| B | SBT(max) | SBnT(max) | SBaT(min) | (N —1)/n | factor |

rl 4
2 2 2 2 2 1 1.50 1.33
3 2 2 4 3 2 2.33 1.29
4 4 3 8 5 3 3.75 1.33
5 2 2 16 7 6 6.20 1.13
6 10 5 32 13 9 10.50 1.24
7 2 2 64 19 18 18.14 1.05
8 16 6 128 35 30 31.88 1.10
9 8 4 256 59 56 56.78 1.04
10| 34 9 512 107 99 102.30 1.05
11 2 2 1024 187 186 186.09 1.00
12| 76 17 2048 351 335 341.25 1.03
13 2 2 4096 631 630 630.08 1.00
14| 130 | 21 8192 1181 1161 1170.21 1.01
15| 38 10 16384 2191 2182 2184.47 1.00
16 | 256 | 36 32768 4115 4080 4095.94 1.00
17 2 2 65536 7711 7710 7710.06 1.00
18 | 568 | 70 131072 14601 14532 14563.50 1.00
19 2 2 262144 27595 27594 27594.05 1.00
20 | 1036 | 111 524288 52487 52377 52428.75 1.00

Table 1: A comparison of subtree sizes of spanning binomial trees and spanning balanced n-trees.

Table 1 gives the sizes of the minimum (SBnT(min)) and maximum (SBnT(max)) subtrees
generated according to the definition of the SBnT for up to 20-dimensional cubes. The relative
difference approaches 0 rapidly. For comparison we have included the number of nodes in the
largest subtree of the corresponding Spanning Binomial Tree. The last column contains the ratio
of SBnT(max) to % Figure 5 contains the same information as the table. The curves for the
maximum and minimum SBnT become indistinguishable as the cube dimension increases.

In theorem 1 we showed that the total number of cyclic nodes is at most ;;2%% We now first

show that the ratio of the number of cyclic nodes at level [to the total number of nodes at level
l is at most ;2; Then show that for any level of any subtree of the root, the ratio of the number
of cyclic nodes to the total number of nodes at the same level of the same subtree is at most ﬁ;
with the exception of the last level of subtree 0. We do that by defining a function described in
lemma 12 and by showing that this function maps each cyclic node to a disjoint set of non-cyclic
nodes at the same level of the same subtree (except the root node, s, and the node at the last

level of subtree 0, 3). Some properties of the period of a cyclic number are needed.

Note that

1. if a|¢, and b|c then lecm(a, b)|c, where a, b, ¢ are integers,

11

s Comparing subtree sizes of the SBT and SBnT
1°|1||‘||||l1r||‘||11

IJII | lllIIJ]] L

max/min SBnT

10?

log (number of nodes of the subtree)
—
o
w

jLLLLIJJJI Illllllll IHIIllll

0 5 10 15
Cube Dimension

N
o

From top to bottom: max subtree size of SBT,
max subtree size of SBnT, min subtree size of SBnT.

Figure 5: Comparing subtree sizes of spanning binomial trees and SBnT.
2. if ¢ is an n-bit cyclic number with period p, then % ||c||.

Lemma 9 Let ¢; and ¢, be two distinct n-bit cyclic numbers with periods p; and ps respectively
and ||e1]| = ||e2||. Then ged(p1,p2) > 1.

Proof: Let ||ci|| = ¢. Assume gcd(py,p2) = 1. Then pi|n,pa|n and ged(ps,p2) = 1 imply
n = yp1p2 for some positive integer v. By property 2, we have ﬁlq, ;}‘;Iq. But n = yp1p2 = vp2lq
and ypi|q, which imply vp1p2|q, i.e., n|g, by property 1. But 0 < ¢ < n since ¢; # ¢z and we
have a contradiction. lI

Lemma 10 Let ¢, and ¢y be two distinct n-bit cyclic numbers with periods p; and p, respectively,
?|p2 and ||c1|| = ||c2||. Then Hamming(cq,c2) > iz—"

Proof: We derive a lower bound for the Hamming distance between ¢; and ¢z, by finding the
minimum number of bits of ¢; that have to be complemented to yield c;, for all possible ¢;
and c3. c¢o consists of % blocks of length p; each. In order to change the period from p; to p:
(or change from ¢; to c; if py = p3), at least one bit in each block of p, bits of ¢; should be
complemented. So, at least p% bits of ¢; should be complemented. However, either all bits are
changed from 1 to 0 or vice versa to maintain periodicity. Hence, the number of 1-bits either
decreases or increases by 1—,2“— and thus :—2 bits should be changed in the opposite direction to

satisfy ||e1|| = [|e2]|- It follows that the Hamming distance between ¢; and c; is at least -27)—:-. |

12

Lemma 11 Let ¢; and ¢, be two distinct n-bit cyclic numbers with periods p; and py respectively

and ||e1|| = |legl|- Then Hamming(er,cz) > ;22(p1 + p2 — 28cd(p1, p2))-

Proof: Let g = gcd(pi1,p2) and ¢ be an n-bit cyclic number with period g and ||c|| = ||e1]|.
By lemma 10, the Hamming distance between ¢ and ¢; is at least %’1‘-. Similarly, the Hamming

distance between ¢ and c¢; is at least 22, To obtain ¢; from ¢ we change 1-bits to 0-bits (and
0-bits to 1-bits) for every p; bits of ¢ to produce ¢;, and change 1-bits to 0-bits (and 0-bits to
1-bits) for every p2 of ¢ bits to produce ¢;. The number of common bit positions of ¢ that has

been changed to generate ¢; and c; is mﬁf’ if we cha.nged and 2" bits of ¢ to convert it

to ¢; and c; respectively. In general, < of the bits we changed to generate ¢; and 31- of the bits
we changed to generate c; correspond to the common bit positions. So, the Hamming distance
between c¢; and c; is at least Z? + i’; - m‘%‘l—m, ie., plm(pl +p2—29). 1

Corollary 6 Let ¢y and ¢ be two distinct n-bit cyclic numbers with periods p, and p, respec-
tively, ||c1]| = llczl| and ged(p1, p2) # p1 and # pa. Then Hamming(cy,) > 6.

Proof By lemma 11, Hamming(cy,c2) > p:pz = (5 + py — 2gcd(p1, p2)), i.e., Hamming(cq,c3) >
m(g—c% — 2). The maximum value of lem(p;,ps2) is » and the minimum value of
37:%1(3'-1%7 is 5 (for ged(p1,p2) # P11 and # pa). So, Hamming(cy,cz) > 6 follows. I

Corollary 7 Let ¢y and c2 be two distinct n-bit cyclic numbers with periods p; and p, respec-
tively, ||c1]| = ||e2||. Then Hamming(cq,c2) > 4.

Proof: If gcd(p1,p2) = p1 or ps, then by lemma 10, Hamming(cy,c2) > w. Since
max(p1,p2) < 5, Hamming(cy, c) > 4.

If gcd(p1,p2) # ;1 and # p2, then by corollary 6, Hamming(c;,cs) > 6. 1
Corollary 8 Any node has at most one cyclic node as a child.
Proof: It follows from corollary 7. I

The following theorem gives a bound on the ratio of the number of cyclic nodes at each level
of the whole SBnT.

Theorem 2 In an SBnT, the ratio of the number of cyclic nodes at level I, 0 < | < n, to the
number of nodes at the same level is at most %

Proof: To prove the theorem we show that for each cyclic number i such that |[i|| = I, we
can find a set NC; of non-cyclic numbers such that |[NC;| = 3 — 1 and for j € NC;, ||j]| = L.

13

Moreover, the sets for different cyclic numbers are disjoint. A binary number consists of a string
of bits. Let f be a function that maps a string s of length ¢ to a set of strings of the same
length Sy. We define f to be the function that exchanges any 0-bit with the rightmost 1-bit,
or any 1-bit with the rightmost 0-bit. The number of strings in the set Sy is 0, if s contains all
0-bits, or all 1-bits, and ¢ — 1 otherwise. That |Sf| = ¢ — 1, if ||s|| # 0 follows from the fact
that each 1-bit and 0-bit determine a unique string, except that the rightmost 1-bit and the
rightmost 0-bit determine the same string. For each cyclic string s of length n and period p,
we first find the largest p’ satisfying p|p/, p’|n and p’ < n. Note that p’ < %. We now want to
generate n — p’' — 1 non-cyclic strings from the given string s. The first p’ bits of these strings
are the same as the first p’ bits of the string s. The last n — p’ bits of the strings are derived by
applying the function f to the last n — p’ bits of the string s. Each generated string is non-cyclic
because the Hamming distance between string s and each generated string is 2, and any two
cyclic strings of the same length and containing the same number of 1-bits have a Hamming
distance of at least 4, corollary 7. Since p’ < %, the generated number of non-cyclic strings is at
least 2 — 1. We now show that the sets Sy generated by two distinct cyclic strings are disjoint.
Let ¢; and ¢ be two distinct cyclic strings with periods p; and p, respectively, and ||c1|| = ||c2||-
Consider the following three cases:

e p; = py: Clearly, the two generated sets are disjoint because ¢; # c;.

e gcd(p1,p2) # p1 and # p2: Since the Hamming distance between the generated strings
and the given string is 2, and by corollary 6 the Hamming distance between c; and c; is
at least 6, the two sets are disjoint.

o gcd(p1,p2) = p1 or pa: Let ged(pr, p2) = p1 without loss of generality, i.e., p1|p2. Since the
first po bits of the generated strings of ¢; and ¢, are distinct, the two generated sets are
disjoint. i

Let ¢ be a cyclic node at level I, 1 <[< n, of subtree 0, and with period p. Let f(c) be the
set of nodes obtained by complementing the leftmost 1-bit of ¢ and complementing one of the
[251] closest 0-bits to the right of it. For example, for ¢ = (0010100101), f(c) = {(0001100101),
(0000110101), (0000101101)}. Let C; = {c1,¢2,...,¢cs5} be the set of all cyclic nodes at level [of
subtree 0.

Lemma 12 Every node in the set Ugec, f(¢i) is a non-cyclic node at level | of subtree 0. More-
over, if ¢; # ¢;, ¢i,cj € Cy, then f(c;) N f(c;) = ¢.

Proof: By corollary 7, the mapping function ¢ — f(c¢) maps a cyclic node to a set of non-cyclic
nodes. Since the leftmost 1-bit of ¢ and some 0-bit to the right of it are exchanged, the index
is preserved, i.e., the node obtained through the exchange operation is in the same subtree as
¢, and at the same level since the number of 1-bits is preserved. Let ¢; = (ri72.. 'Ti?{) and
e = (8182.. .s%) be two arbitrary nodes in C; with periods p; and p; respectively, and r; (s;)
is the bit string of length p; (p2). Without loss of generality we assume p; < p; and consider
the following cases:

14

e p; < po and ged(p1,p2) # pr: From lemma 6, Hamming(cy,c2) > 6. Since the Hamming
distance between ¢; and any node in f(¢;) is 2, and the Hammmg distance between ¢, and

any node in f(cz) is 2, Hamming(c, c3) > 2,Vc] € f(c1), ch € f(cz),i.e., f(c1)N f(cz) =

e p1 = p2 = p: Pick any node ¢} € f(c1) and any node ¢4, € f(cz). Let z; (z2) be the
number of bits in the string r; (s;) which is to the right of the leftmost 1-bit including this
1-bit. From the definition of f, the last z; bits of ¢} are the same as the last z; bits of ¢;.
Similarly, the last z2 bits of ¢, are the same as the last z, bits of c;. If 23 = z2, then the
string formed by the last z; bits of ¢; and the string formed by the last z; bits of ¢; are
distinct since ¢; # co. Hence, the last z; bits of ¢} and ¢ are distinct, i.e., ¢} # ¢} and

f(e1) N f(ez) = ¢, since ¢} and ¢ are arbitra.rily chosen.
If z; < z3, then the last z; bits of ¢] has & ! 1-bits and the last z5 bits of ¢5 has also
1-bits. The leading bit of the last z; bits of ¢5 is a 1-bit by definition. Hence, the last a:l
bits of ¢} contain at most 1;} — 1 1-bits. So, ¢} # ¢5 or f(c1) N f(c2) = ¢. The proof for
Ty > T is similar.

e py < p2 and ged(p1,p2) = p1: Let po = yp1, ¥ > 1. Partition each bit string s; of ¢z, each
of length p;, into ¥ sub-strings of length p; each. Denote these substrings s}, s?, ..., s].

So,
co=(sls?...s)s}ksd...s] .. .sasha ...s%h)
P2 P2 P2
For convenience, we also relabel
a=(rir2. o rlrir2)tk)
P2 P2 P2

Note that rfll = f:, V1 < 43,72 < m 1 < j1,J2 < v; also sf = 312, V1 < 1,42 < pﬂ,
1 < 7 < 4. Let the leftmost 1-bit of ¢; be in s{ If 7 > 1, then the last (y — 7 + 1)p;y bits of
¢, contain “' 1 bits, while the last (¥ — 7 + 1)p; bits of ¢} contain (=i+lnl 4 pits, which

P2
is less tha.n . So, ¢} # ch. If j =1, then consider the two cases:

— ¥ # §¥ for some y,1 < y < v: By definition, the last (4 — 1)p; bits of ¢} are identical
to the string (rlr1 .77), and the last (¥ — 1)p; bits of ¢} are identical to the string
(sisi...s7). So, ¢} # ¢}

-l ;6 s}: Let z; (z2) be the number of bits of] (s}) to the right of the leftmost 1-bit
of r} (s}) including this 1-bit. Consider the last z; (z3) bits of r% (s%) The proof

of ¢} # c} follows that of the case p; = ps. |

Theorem 3 For an SBnT, the ratio of the number of cyclic nodes at any level I, 1 < I <
n, of any subtree to the number of nodes at the same level of the same subtree is at most

4
Trmax (20 S Ton

Proof: By lemma 12, the function ¢ — f(c¢) maps any cyclic node ¢ € C; at level [of subtree 0
to a set of ["—;L] non-cyclic nodes at the same level of the same subtree. Moreover, the sets f(c)

15

for different cyclic nodes are disjoint. Since complementing all bits of a binary number preserves
the period, the number of degenerate necklaces with [1-bits for the nodes in the necklace is the
same as the number of degenerate necklaces with n — [1-bits for the nodes in the necklace. So,
the ratio of the number of cyclic nodes to the total number of nodes at level ! of subtree O is
the same as the ratio at level n — ! of subtree 0. Since subtree 0 has the maximum number of
cyclic nodes at each level, and non-cyclic nodes at each level are evenly distributed among the
n subtrees, the ratio for subtree 0 is an upper bound for all subtrees. §l

Corollary 9 With the exception of the last level, the number of cyclic nodes at any level of any
subtree of an SBnT is at most the same as the number of non-cyclic nodes at the same level of
the same subtree of the SBnT.

Proof: By theorem 3, ;7 + 1 for n > 4. But since for n = 2 and n = 3, n is a prime number
and there are no cyclic nodes, except nodes ¢ = (00...00) and (11...11) the proof is complete.
1

Theorem 3 gives a bound on the ratio of the number of cyclic nodes at each level in each
subtree. Figure 6 shows the ratio of the actual number of cyclic nodes to the total number of
nodes for each level of up to 16-dimensional cubes for subtree 0. The bound given by the theorem
is pessimistic, and we conjecture that the ratiois £ (whlch is true for up to 16-dimensional cubes).
In Figure 6 the letters encode cube dimensions greater than 9, and digits cube dimensions less
than 10. For the number of cube dimensions being a prime number there are no cyclic nodes,
except at levels 0 and n. Note that the ratio neither decreases monotonically with the cube size
for a given level, nor decreases monotonically with increasing level for a given cube size.

Corollary 10 If n is even, then the ratio of the number of cyclic nodes at level 2 (or | — 2) of
subtree 0 to the number of nodes at the same level of the same subtree is -;‘:-

Proof: There is only one cyclic node and % — 1 non-cyclic nodes at level 2 (I — 2). 1

If the conjecture is true, then for all even n the maximum ratio occurs at levels 2 and n — 2
(excluding levels 0 and =).

The definition of the SBnT given above has a unique path from the source to every other
node. For personalized communication the number of data elements that need to be transferred
to subtree 0 exceeds the number of elements that need to be transferred to subtrees % - n—1 by
the number of degenerate necklaces times the data set transferred to each node (assuming the
same amount of data to each node). By allowing multiple parent nodes for every cyclic node c,
and by splitting the data set for each cyclic node of period P, into P parts, the load becomes
the same for each subtree of the root. The bandwidth requirement for each link from the root
is M where M is the size of the data set for each node.

To carry out the load balancing operation, the definition of the set M(c) is modified by
using the set index,,(c) for the definition instead of index(c). Let k, be such that ¢z, = 1,

16

10° =

I TTTT
(RN

MP>O0 W —
(<]

107t

aQ ©
> O o
0

Q
@]
Q
11 IIIIIII

—
o
)
L I|||I|I

| 1 lIIIHl

-3 | | | | I | | | | I | | | | I
10 10 15
The level of the SBnT

The ratio between the number of cyclic nodes
and the total number of nodes in subtree 0
o
S)

The cube dimensions are in hexadecimal representation,
and G = 16.

Figure 6: The ratio of the number of cyclic nodes to the total number of nodes at level I,
1 <[< n, of subtree 0.

¢r = 0,7 € {(kq + 1) mod n,(k; + 2) mod n,...,(j, — 1) mod n} and k = —1 if ¢ = 0. Then,
Mu(c) = Uj,eq.{(kq + 1) mod 2, (k; + 2) mod n,...,(j; — 2) mod n, (j, — 1) mod n}.
The childrensp,r and parentsp,r functions are modified as follows:

{(in=1%n—2.--tm-..%0) }, YM € Mp(c), if ¢ = 0;
childrenspg(i,s) = { {gm = (in-1n-2...tm-.-%0)},

Vm € Mp(c) and indez,(gm @ s) = indezm(c), if c#0.
parentspa(t, s) { ¢, = if e =0;

’ (tn-1in—2...tky--30),¢ = {1,2,...,m}, otherwise.

For example, node (011011011) appears in subtrees 0, 3 and 6 with parents (001011011),
(011011001) and (011001011), respectively. The modified SBnT, SBG, is a spanning graph [5],
which can be viewed as composed of n rotated SBnT’s with a weight of L each. The parent of a
cyclic node c in the j** SBnT is derived by choosing the dimension from the set indezm(c) that
is of the lowest order greater than j, cyclically.

4 Other Choices of Spanning Balanced n-Trees

For the definition of the balanced n-tree and the balanced graph SBG we defined the generating
subtree based on distinguished nodes selected as the node of a necklace with minimum value.
Another obvious choice is to select the node with maximum value. Generating subtrees defined

17

on distinguished nodes obtained from these two definitions are not rotations of each other. For
instance, the nodes with relative addresses (0001), (0011), (0111), and (1111) are all minimal
in their respective necklaces, and belong to the generating subtree for the SBnT we defined
previously. Nodes (1000), (1100), (1110), and (1111) are all maximal in their respective neck-
laces, and belong to the generating subtree for an SBnT based on selecting maximum values
in necklaces. The number of right rotations to match a node from one selection criteria with
a node from the other selection criteria is node dependent. We will now define and compare
spanning balanced trees based on maximum values, and minimum and maximum bit reversed
values. Different definitions of the distinguished nodes result in balanced trees, or graphs, that
use different edges of the cube, with the exception that they all use all the edges directed away
from the root.

We refer to a balanced n-tree defined through maximizing left rotations by SBnT™2L, and
the previous tree as SBnT™"R, The set of indices that maximizes the left rotations is denoted
Jmazl = {4, jo....,im} and it is defined by L¥*(c) = L¥(¢), if u,v € J*L and L*(c) > L*(c),
ifue JZ"“"”L and w € {0,1,...,n — 1} — J;"“"L. Moreover 0 < j; < j2 < *++ < jm < n and
indez™*%L(c) = j; and indez™**L(c) = JM3*L, The formal definitions of the parentgg,rmast
and childrengg, rmesz functions are based on a set of dimensions M™2%L(¢) similar to the set
M(c) for right rotations. Let k be such that ¢, = 1 and ¢; = 0,5 € {(k — 1) mod n,(k —
2) mod 7,...,(n — indez™**L(c)) mod n} = M™3L(c) and k = n if ¢ = 0. The SBnT™2%L s
defined by

childrengg,rmasL(%,)

{gm = (in-1in-2.-im...10)}, Ym € M™L(¢)

and indez™**L(q,, @ s) = indez™**L(c), if ¢ #0.
é, if ¢ = 0;
(th—1%n—2...2%...79), otherwise.

{ {(in=1in=2-im-..i0)}, Ym € M™%L(c), if ¢ = 0;

parentsp,rmass(i,8) = {

Figure 7 shows the SBnT™2*L in a 5-cube. A balanced SBG™2*L graph can be defined
similarly to the balanced SBG™"E graph. Note that the choice of minimizing the right rotation
in the SBaT™"R is made such that the root of subtree j is (00...01,0...0). If the number of
left rotations that identifies a node with a distinguished node were used instead of the number
of right rotations for the assignment of a node to a subtree, then subtrees 1,2,...,7 — 1 in such
an SBnT™"L are relabelings of subtrees n — 1,7 — 2,...,1 of the SBnT™"E respectively. A
SBnT™"L and an SBnT™"R are identical and only differ in the labeling of the subtrees. A
similar argument applies to the SBnT™2*L and the SBnT™?*E,

Lemma 13 The number of nodes of each subtree of the tree SBnT™*L is equal to the number
of nodes in the same subtree of the tree SBnT™"E,

Proof: For a non-cyclic node, all the n nodes in the same necklace belong to n different subtrees.
For a cyclic node with period p, all the p nodes in the same necklace belong to subtree 0 to
p—-1.1

18

00000

10000 01000 00100 00010 0000
110004 10100® 011004 01010e 001104 00101e® 000114 10010® 10001& 01001
11100¢ 11010 01110¢ 01101 00111¢ 10110® 10011¢ 01011® 11001¢ 10101
11110 01111 10111 11011 11101

11111
Index 0 1 2 3 4

Figure 7: A SBnT™L in a 5-cube.

Theorem 4 The SBnT™**L gnd SBnT™"R gre not topologically equivalent, in general.

Proof: We prove the theorem by a direct evaluation for a 6-cube. In a 6-cube, the maximum
fanout of any node at level 2 of an SBnT™"% is 2, Figure 4, and the maximum fanout of any

node at level 2 of an SBnT™2*L is 3, Figure 9. I

Two definitions of balanced n-trees dual to the SBnT™"® and the SBnT™*L and that
use mostly a different set of edges can be derived from the bit-reversed representation of the
addresses. The dual of the SBnT™"E is denoted SBnT™"BL and the dual of the SBnT™a*L js

denoted SBnT™ezBR_ The SBnT™"BL i5 defined as follows:

.Let ng'nBL = {jlyj?y--*aij where 0 < jl. < j2 <---< jm <mn, Lu(c) = Lv(c)v u,v €
JminBL and B o L*(¢c) < Bo L¥(c), u € J™"BL w € {0,1,...,n — 1} — J™"BL Then
indez™"BL(¢) = j; and k is defined by ¢t = 1 and ¢; = 0, j € {(k — 1) mod n, (k — 2) mod

n,...,(n — indez™"BL(¢)) mod n} = M™"BL(c) and k = nif c = 0.

{qm = (in—lin—2---im...i0)}, VYm € MminBL(c)

{(in-18n—-2---tm-..10)}, Ym € M™"BL(¢), if ¢ =0;
childrengg,rminpL(3,8) = i

and indez™"BL(q,. @ s) = indez™"BL(c), ifc#0.

@, ife=0;

arent i 1,8) = . - . .
p sBnrminBL (i, 5) {(zn_lzn_z...zk...zo), otherwise.

The SBnT™ezBR jg defined as follows:

Let JmazBR = (4 j5,...,jm}, Where 0 < ji < j2 < --- < jm < m, R¥c) = R¥(¢),
u,v € J™*BR and Bo R%(¢c) > Bo R¥(c), u € J"*BE 4 ¢ {0,1,...,n — 1} — JrazBE,

19

Then indez™**BR(c) = j; and k is defined by ¢y = 1 and ¢; = 0, j € {(k + 1) mod n, (k +
2) mod n,.. ., (indez™**BR(c) — 1) mod n} = M™32BR(¢c) and k = —1 if ¢ = 0.

{(Gn=1%n=2-..tm.-..50)}, Ym € M™2=BE(¢), if e =05
ChildrenSBnT"'“BR(i,s) = {Qm = (in—lin_z-.--{m...io)}, VYm € Mm“"'BR(c)

and indez™**BR(q,, @ s) = indez™**BE(c), ifc #0.

. P, if ¢ = 0;

parentsgprmessr(i,s) = { (fn—1%n—2---3-..50), otherwise.

indez™"R(¢) is the number of right rotations yielding the longest block of leading 0-bits, and
indez™L(c) the number of left rotations yielding the longest block of leading 1-bits. Similarly,
indez™"BL(¢) is the number of left rotations yielding the longest block of trailing 0-bits, and
indez™*BE(c) the number of right rotations yielding the longest block of trailing 1-bits. For
example, indez™" R index™*L index™"BL and indez™**BR of node (1110100010) are 5, 0, 8
and 7, respectively.

Note that the rotation and bit-reversal operations do not commute, i.e., Ro B # Bo R and
LoB# Bol.

Lemma 14 The bit-reversed value of a bit string with a minimum value among all its ro-
tations is not necessarily the mazimum value among the bit-reversals of its rotations, i.e.,
B min, R*(i) # max, BR*(%) for some i.

Proof: (001101) is the minimum value among all its rotations. But, (101100) is not the
maximum bit-reversed value among all rotations of (001101).

Note that for n < 5, the minimum value among all rotations of an address also yields the
maximum bit-reversed value of its rotations. This means that the SBnT™2*BR (SBnT™**L) and
the SBnT™"R are topologically equivalent for up to 5-dimensional cubes.

Theorem 5 The SBnT™"E and SBnT™"BL are topologically equivalent for all n, and so are
the SBnT™*L qnd SBnT™e*BR,

Proof: Consider any node 7 in subtree 0 of the SBnT™"® and the node B(:) in SBnT™nBL,
This mapping is one-to-one and onto. We first show that every node of subtree 0 of the SBnT™inR
has a corresponding node in subtree 0 of the SBnT™"BL, To show this property we need to show
that BL® B(i) is minimized for = 0 since i is in subtree 0 of the SBnT™"E, But, BL*B(i) =
BL*"'LB(i) = BL*~! BR(i) and it follows that BL? B(i) = R%(4), which is minimized for z = 0.
Correspondingly, every node of subtree 0 of SBnT™"BL has a counterpart in subtree 0 of the
SBnT™"R. The same argument applies for any other subtree and it follows that the number of
nodes in every subtree of the SBnT™"F is the same as the number of nodes in the same subtree
of the SBnT™"BL, To complete the proof we notice that the bit-reversal operation preserves
adjacency.

For the SBnT™3*L and SBnT™%*BR case we instead use the property that BR® B(3) = L*(3).
]

20

000000

111110 [e]= cyclic node

Figure 8: Subtree 0 of an SBnT™"BL in a 6-cube.

Figures 8, 9 and 10 show subtree 0 of an SBnT™"BL SBnT™e*L and SBnT™*BER ip ,
6-cube. The nodes in square boxes are cyclic.

For n-port one-to-all personalized communication, the SBnT™"E routing has an advantage
over the SBnT™*?L routing in that the maximum fanout is for most levels lower than for the
SBnT™2L routing. The fanout decreases monotonically for the SBnT™"E by lemma 4, but this
is only true for the SBnT™%L for levels I > 2. Any spanning tree satisfying lemma 4 guarantees
that the complexity of personalized communication with concurrent communication on all ports
is determined by the root. The maximum fanout of nodes at level I of the SBnT™3=L g

24, ifl=1;
n—-1-1, if2<I<n-2
1, ifl=n-1.
For the .SBnT"“""R the fanout at level I is ["T"I'I, 1 £ ¢ < n, by lemma 3. The preference of
the SBnT™"E over the SBnT™"BL is due to the simpler computation of the index.

Lemma 15 For any node below level 1 of an SBnT, the parentgg,rminr and parentgg,rminBL
functions define two distinct nodes, if the relative address has a unique longest consecutive block
of zeroes, cyclically.

Proof: By definition, indez™"F is the dimension of the 1-bit immediately to the left of the
longest block of zeroes. The parent address can be derived by complementing the 1-bit, which is

immediately to the right of the longest block of zeroes. Similarly, indez™"BL is the dimension

21

000000

111110 [e]= cyclic node

Figure 9: Subtree 0 of an SBnT™2%L in a 6-cube.

000000

011111 [e]= cyclic node

Figure 10: Subtree 0 of an SBnT™**BR jp 3 6-cube.

22

of the 1-bit immediately to the right of the longest block of zeroes. The parent address can
be derived by complementing the 1-bit, which is immediately to the left of the longest block of
zeroes. 11

The parentgg,rminr and the parentgg,rminpL functions are distinct. It can be shown that
the SBnT™"E and the SBnT™"BL are edge-disjoint below level 1 for up to 4-dimensional cubes.
For 5- and 6-cubes, there are 5 and 6 common edges. For 7- and 8-cubes, there are 14 and 16
common edges. The incoming edges of nodes (01011), (010111) and (0010011) are examples of
shared edges. Modifications to the parentsp, function, such as permutation of the dimensions,
can be made to insure that the modified SBnT, and, for instance, SBnT™"®, are edge-disjoint
below level 1. The existence of SBnT’s that are edge-disjoint below level 1 is important for
fault-tolerance.

5 Personalized Communication Based on an SBnT Graph

As an example of the use of the SBnT we give some complexity results for personalized communi-
cation in a Boolean n-cube. We first consider the case of one-to-all personalized communication
with the communication restricted to one-port at a time. With this restriction we assume that
the entire data set for the subtree rooted at the sending node is communicated in one routing
cycle. For each node we employ a scheduling discipline for which data is sent to subtrees in
order of increasing dimension of the connecting edge. For the root there is a minor difference in
the data volume to the different subtrees for SBnT routing, but no difference for SBG routing.

With one-port communication the root requires a time of M(N — 1)t. + nt for packet
switched communication with an unbounded buffer size, a data set M communicated to each
node, a transfer time of ¢, for each element of the data set, and a start-up time 7 for each
routing cycle. After the last routing cycle of the root, the last subtree to receive the data has to
distribute it to its nodes. We will now prove that a node c in subtree indez(c) receives its data
during routing cycle indez(c) + n — 1 — a,, and that the data transfer time for each subtree is
bounded from above by O(M N—l:ﬂtc). To prove these results we need the following lemmas.

Lemma 16 Let k be the dimension of the edge through which a non-root node ¢ connects to its
parent in an SBnT. Let the number of children of ¢ be 8. Then, the 8 children of ¢ are connected
through edges in dimensions (k+ j)mod n, 1 < j < S.

Proof: Consider nodes in subtree 0 first. From the definitions of the parentsp,r and
childrenspnr functions, the k** bit is the leftmost 1-bit of ¢, and the dimension of the edges
connecting ¢ to its children can be derived by complementing each of the leading 0-bits for
which the index is preserved. Notice that if complementing the (k + 5)** bit of ¢ (k47 < n—1)
changes the index, then so does complementing each of the bits {k+ 57+ 1,k+j7+2,...,n—1}.
So, the dimensions of the edges connecting to the children nodes of ¢ form a contiguous set of
dimensions (modulo n). For nodes in other subtrees, we consider R"#%(?)(¢) instead, and the
proof is similar. 1l

23

Corollary 11 The longest path in a subiree of the root is the path corresponding to the path
(00...01),(00...11),...,(01...11),(11...11) in subtree O.

Lemma 17 With a scheduling of all data for one subtree during a single routing cycle and
subtrees in order of increasing dimension of the edge through which they are connected, a node
¢ receives the data for the subtree rooted at it during routing cycle index(c) + n — 1 — o, with
the first cycle being numbered 0. The total number of routing cycles, 2n — 2, is the minimum
possible of the SBnT routing for one-port communication.

Proof: We prove the lemma by labeling the edges of the SBnT. A labeling is valid, if for each
node the labels of edges connecting to its children are distinct and greater than the label of the
edge to the parent node. The smallest label is greater than or equal to 0. Define a labeling scheme
for subtree 0 first. Edges are labeled according to their corresponding dimensions. Hence, the
edge connecting to the parent of a node ¢ with a, leading 0’s is labeled n — 1 — ;. This labeling
is valid by lemma 16. For the other subtrees, we simply add indez(c) to the corresponding labels
of subtree 0.

The maximum label is n — 1 for subtree 0 by lemma 16 and corollary 11 and indez(c) +n — 2
for subtree indez(c). So, the maximum label of the SBnT is 2n — 3. Interpreting the labels on
the edges as routing cycles, the proof is complete by noticing that the total number of cycles,
2n — 2, is the minimum possible since the root has n children and each subtree of the root is of
height at least n — 2. 11

Note that the length of a routing cycle is determined by the data volume that needs to
be transmitted over a single edge. The data volume depends on the number of nodes in the
subtree connected through that edge. Different edges in a given dimension connects to subtrees
of different sizes, unlike in a spanning binomial tree for which all tree edges in a given dimension
connects to subtrees of the same size. To estimate the data transfer time we need to find the
edge in each dimension that transfers the maximum number of elements, since each dimension
is routed only once within a subtree.

Lemma 18 FEach of the edges forming the longest path transfers the mazimum number of ele-
ments of any edge in that dimension.

Proof: Consider subtree 0 first. Let T; be the subtree rooted at the child of node ¢ connected
through an edge in dimension (k¥ + j)mod n, 1 < j < 3, and S; be the number of nodes in
subtree T;. Then the proof is complete by proving that S; > S; > --- > Sg. Every node in
subtree T4, have addresses with bit k + j equal to zero, bit k¥ + j + 1 equal to one, and the
k least significant bits equal to the k least significant bits of ¢. By moving bit k£ + j to the
most significant bit, we map every node in subtree Tj4; to a unique node. Since the mapping
preserves the index, the nodes in subtree T, are mapped to subtree T}. So, S;41 < S; and the
proof for subtree 0 is completed by induction. For nodes in other subtrees of the root, we apply
the arguments to the binary number R"4%(c)(¢) instead of . |l

For the estimate of the element transfer time we need the following lemma. For proof of this
lemma, see [6].

24

Lemma 19 The number of n-bit binary strings for which the longest block of consecutive 0-bits
(1-bits) has length logn — loglnn — 1, or length greater than 2logn, is at most 0(-1;1)

Theorem 6 The communication complezity of an SBnT based one-port one-to-all personalized
communication with a scheduling of all data for a subtree during a single routing cycle, and
subtrees in order of increasing dimension of the edge through which they are connected is bounded
from above by N (1 + O(lﬁﬁﬁ))Mtc +(2n-2)r.

Proof: The root needs n routing cycles and a time of (N —1)Mt.+ nt to send the data to its n
children. The communication time required after the final routing cycle of the root is at most the
same as the time required for communication in subtree 0. By lemmas 11 and 18 the communica-
tion time for subtree 0 is dominated by the path (00...01),(00...11),...,(01...11),(11...11).
The data transfer time is

n
= Mit.x Z (the number of nodes with at least ¢ trailing 1’s and indez = 0)

=2

n
= Mt.x Z (1=1) x (the number of nodes with ¢ trailing 1’s and indez = 0)

=2
< Mt x zn: (¢#—1) x (the number of nodes with the length
of’ ?lzle longest consecutive 1-bits being i and indez = 0)
~ Mt. x zn: (t-1)x -11; X (the number of nodes with the length
sz :fle longest consecutive 1-bits being)
< Mt x ~(n x O() +2logn x N)

Nlogn
n

= Mt.xO().

Note that nodes with ¢ trailing 1’s and index = 0 may have a length of the longest substring of
consecutive 1’s greater than %, such as node (0000111101). So, the third equation is an upper
bound of the second equation. The order of the fourth equation is the same as that of the third
by theorem 3. The fifth equation follows from lemma 19. The first term in the parenthesis is
a bound for the nodes below level 2logn and the second term is a bound for nodes above level
2logn. The proof is completed by noticing that the last subtree needs only n — 2 start-ups after
the last routing cycle of the root. 1

A lower bound for one-port one-to-all personalized communication is max(M(N — 1)t.,nt).
Routing according to a spanning binomial tree and the above scheduling discipline is optimal
within a factor of two. For n-port communication the lower bound is max(M]X——lltc, nt). The
SBnT routing with a reverse breadth-first scheduling [5] is optimal within a factor of two. Rout-
ing according to a spanning binomial tree has a complexity which is O(n) worse than the lower
bound.

25

Comm. one-to-all person. comm. all-to-all broadcast all-to-all person. comm.
one-port | < N(1+ O(ZE2)Mt. + (2n —2)7 | (N —)Mt + (2n—)7 sfM 4+ (2n —)
n-port L——L—N_nl Mtc + nT g———l—N'nl Mt +nr NMy +nr

2

Table 2: Complexities for some communication algorithms based on the SBnT routing.

The lower bound for one-port all-to-all personalized communication is max("A;M te,nT) [5].
A spanning binomial tree routing with an appropriate scheduling discipline is optimal within
a factor of two. The minimum number of start-ups for the SBnT routing is approximately
twice that of the binomial tree routing, but the data transfer time is approximately the same.
For n-port communication the SBnT routing again is a factor of two within the lower bound
ma.x(%]‘—ltc, nT), but the binomial tree routing is at least O(y/n) worse than the lower bound [5].

The complexities for some communication algorithms based on the SBnT routing are sum-
marized in Table 2.

6 Implementation Issues

We have implemented the SBnT™"E routing algorithm for personalized communication on an
Intel iPSC Boolean cube configured multiprocessor with 64 nodes. In the SBnT routing, the
root determines which node belongs to which subtree. If n is a prime number the subtrees are
isomorphic (excluding node (3,-13,—2 . ..30)) and the root only needs to keep one table of length
= % with each entry of size n bits. The order of the entries corresponds to the transmission
order for each port. The table entries point to the messages transmitted over port 0. The
pointers for the other ports are obtained by (left) cyclic shifts of the table entries. A one step
cyclic rotation is used for port 1, two steps for port 2, etc. For n not a prime number there are
also other cyclic nodes. The period P, for each table entry needs to be found, and the message

divided into P, pieces for the SBG routing.

Internal nodes can either route according to the destination address, if it is included, or use
tables. If the destination is included, then a node first checks if it is the destination. Otherwise,
the output port is determined by finding indez((myaddress) @ (source)) and then finding the
first bit that is equal to 1 in ((myaddress) @ (destination)) to the left (cyclically) of the bit
corresponding to the index. If tables are used instead of a destination field, then for postorder
scheduling [5] it suffices that each internal node keeps a count for each port. Since the number
of ports used in each subtree is at most n — 3 and the number of nodes in the entire subtree
is approximately a’-, a bound on the table size in each node is n? bits. A reversed-breadth-first
scheduling [5] can be implemented by internal nodes keeping a table of how many nodes there
are at a given level in each of its subtrees. The table has at most n? entries. An upper bound
for the number of nodes in a subtree at any level is TWNg, and the total table size in a node is at

most n3 bits. Hence, without a more sophisticated encoding the postorder scheduling discipline
requires less table space. It is used for the measurements presented in Figure 11.

26

SBnT and SBT, M = 1 kbytes
T

300 : | : | |
B SBT h

9200 [— —
g , SBoT
£ r .
£
& 100 — -

0 I |

Cube Dimension

message size = 1 K bytes per node

Figure 11: One-to-all personalized communication for the SBnT and SBT routings.

With communication restricted to one port at a time, the expected time of one-to-all person-
alized communication for the SBT routing and SBnT routing is the same for B = M. For one-to-
all personalized communication based on the SBT routing we schedule port communications in
a binary-reflected Gray code order to take advantage of the partial overlap in communication on
different ports that is possible on the Intel iPSC. The observed advantage of the SBnT over the
SBT routing is due to the fact that the SBnT can take better advantage of the overlap. In the
SBT case, even though messages were communicated over different ports in a binary-reflected
Gray code order, the nodes adjacent to the root may not be finished with retransmitting the
last packet received when a new packet arrives. In the SBnT, a subtree receives a packet once
every n cycles.

7 Summary

The Spanning Balanced n-Tree (SBnT) allows for scheduling disciplines that realize minimum
time (within a factor of two) one-to-all personalized communication, all-to-all broadcasting and
all-to-all personalized communication on a Boolean n-cube with n-port communication [5]. The
number of nodes in each of the n subtrees is O(-ﬁ—’) The SBnT can be modified to a perfectly
balanced graph by allowing multiple parents for cyclic nodes, i.e., splitting the data sets for
such nodes. A few different definitions of Spanning Balanced n-trees are given, and shown
to be essentially edge-disjoint. They are of particular interest with respect to fault-tolerant
communications. Single edge failure, with the exception of the edges from the root, and several
forms of multiple edge failures can be routed around, given that the failure is known and the
proper SBnT is chosen.

27

We also show that for 0 < I < n the ratio of the number of degenerate necklaces to the total
number of necklaces with precisely ! bits equal to one is at most e flz'-{—'H o <

Acknowledgement

This work has in part been supported by the Office of Naval Research under contracts
N00014-84-K-0043 and N00014-86-K-0564.

References

[1] Ching-Tien Ho and S. Lennart Johnsson. Distributed routing algorithms for broadcasting
and personalized communication in hypercubes. In 1986 Int. Conf. Parallel Processing,
pages 640-648, IEEE Computer Society, 1986. Tech. report YALEU/DCS/RR-483, May
1986.

[2] Ching-Tien Ho and S. Lennart Johnsson. Matriz Transposition on Boolean n-cube Configured
Ensemble Architectures. Technical Report YALEU/DCS/RR-494, Yale University, Dept. of
Computer Science, September 1986.

[3] D. Hoey and Charles E. Leiserson. A layout for the shuffle-exchange network. In Interna-
tional Conference on Parallel Processing, IEEE Computer Society, 1980.

[4] S. Lennart Johnsson. Communication efficient basic linear algebra computations on hyper-
cube architectures. Journal of Parallel and Distributed Computing, 4(2):133-172, April 1987.
(Report YALEU/DCS/RR-361, January 1985).

[5] S. Lennart Johnsson and Ching-Tien Ho. Spanning Graphs for Optimum Broadcasting and
Personalized Communication in Hypercubes. Technical Report YALEU/DCS/RR-500, Yale
University, Dept. of Computer Science, November 1986. To appear in IEEE Trans. Comput-
ers.

[6] F. Tom Leighton. Complezity Issues in VLSI: Optimal Layouts for the Shuffle-Ezchange
Graph and Other Networks. MIT Press, 1983.

28

