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Abstract — The spectrum of current supercomputing technologies ranges from a single
very fast processor to 64K single-bit processors. What is the best approach for super-
computing? In this paper, we study the relation between performance and cost of single-
processor systems, as well as parallel systems. The optimal processor speed and number
of processors caﬁ be found for either a performance requirement or a given budget. Fur-
thermore, we conclude that the highest performance can be obtained by using a few fastest
available processors and the most efficient computation may be obtained by using many

fast microprocessors with good parallelization techniques.
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1. INTRODUCTION

Mainline supercomputers employ the fastest but very expensive processors with small-
scale parallelism. Recently, many people have claimed that they can use hundreds, thou-
sands, even tens of thousands of low-cost processors to achieve the same performance
[1, 2, 3]. For GFLOP computation, every approach is used ranging from 64K single-bit
processors in the Connection Machine to eight very powerful processors in Cray Y-MP [4].
Although parallelization is already an important technique, it is still not clear how large

parallelism can best be used for supercomputing.

In one extreme, some people believe parallelization is a very complex task. Parallel
performance will suffer from the non-parallelizable fraction of computation and paralleliza-
tion overhead. They believe that high performance can be obtained mainly by using the
fastest processors with simple vectorization. However, when technology approaches its
limit, performance cannot be gained merely by increasing processor speed. Actually, the
number of processors in a system is steadily increasing even in mainline supercomputers
[5]. In the other extreme, some people believe in massively parallel systems. They have
given examples where performance can be increased linearly with the number of processors
[6]. Thus, they simply estimate their system performance by multiplying the individual
processor performance by the number of processors. However, performance can not be pre-
dicted in this way because of parallelization loss. Usually, the aggregate performance drops
when the number of processors increases. This performance loss depends on parallelization

techniques and the nature of applications.




While some supercomputer users are looking for the highest possible performance, other
users prefer effective computation, that is, maximized performance for a given cost or the
minimized cost for a performance requirement. Our study concerns both absolute per-
formance and effective computation. These goals may be reached by either more powerful
processors or more processors, or both. As single processor technology approaches its phys-
ical limit, parallel processing becomes more important. The trade-off between powerfulness
and parallelism depends on many factors, such as performance requirements, budget limits,

and level of technology.

In this paper, the cost-performance ratio of single processor systems is studied first.
The impact of parallelization is illustrated by Amdahl’s revised law. Then, we show how

to obtain highest performance, and how to maximize performance and reduce cost.

2. COST-PERFORMANCE RATIO

For proper configuration of supercomputers, not only performance but also cost must
be considered In each processor technology, the cost of a processor may increase with its
performance sublinearly, linearly, or superlinearly. Usually, as shown in Figure 1, the cost
increases sublinearly with performance at the low end of the technology. At the high end of
the technology, the cost increases superlinearly before reaching the next technology. At the
low end of the next technology, the cost increases sublinearly again. For each technology,
the lowest cost-performance ratio is at the point where the cost-performance curve changes

from sublinear to superlinear.

We are interested in two technologies for supercomputing: microprocessor technology

and mainframe technology. The cost for single processor systems is shown in Figure 2.
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Figure 1: The cost-performance curve of two technologies.




Notice that the cost of the microprocessor here is the system price instead of the processor
price. The cost of the microprocessor increases with processor performance sublinearly be-
fore 20 MFLOPS. Then the curve increases superlinearly until it meets the next technology.
In mainframe technology also, the cost-performance curve is sublinear before reaching the
high end of the technology. We have to point out that this curve is only valid at the current

level of technology. It will change with the progress of technologies.

The cost-performance ratio is shown in Figure 3. It can be seen that the best cost-
performance ratio is about $1K per MFLOP at 20 MFLOPS. The cost-performance ratio is
about $5K to $10K per MFLOP for mainframe technology. These ratios will decrease with
the progress of technologies. Since mainframe technology is approaching the physical limit,

it seems unlikely that the ratio will be lower than that for the microprocessor technology.

Modern supercomputers seldom consist of only one processor. Usually, many processors
cooperate to obtain high performance. However, the performance of such a system cannot
be calculated by multiplying individual processor performance by the number of processors.

The impact of parallelization must be considered.

3. IMPACT OF PARALLELIZATION

The speedup of a parallel system is limited by the sequential part of a program [7],
as well as parallelization overhead [8]. Because of these limits, high performance cannot
be obtained by simply increasing the number of processors. The impact of parallelization
can be modeled by two parameters, the Amdahl fraction a and the parallelization loss

coefficient c.
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Figure 2: The cost vs. performance of single processor systems.
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Figure 3: The cost-performance ratios.




In a parallel system, speedup is defined as:

T(1)
=T

where T'(1) is the execution time on a single processor without overhead, and T'(IV) is the

execution time on N processors. Efficiency is defined as:
h=y
where N is the number of processors.
T(1) can be divided into a sequential part T, and a parallel part T}, :
T =T,+1,
Parallel execution time can be represented as:
T,
T(N)=T, + £ +T(N)

where Tj(N) is the parallelization loss in executing the parallel part of a program.

vThe Amdahl fraction is:

T
a =
T(1)
Similarly, we can define a parallelization loss coefficient as:
Ti(N)
b(N) = ——=
(N) 0

With the Amdahl fraction and the parallelization loss coefficient, the speedup can be rep-

resented as:
_ T(1) _ N
T T+ Z4T(N) THe(N-1+HN)N




b(N), the parallelization loss coefficeint, is a complicated function of many factors,

which increases with O(logN) in hypercube systems [9]. It can be simply modeled as:
b(N)=c-logN

where c is the base parallelization loss coefficeint, which is equal to b(2), the parallelization

loss with two processors.

Then the speedup becomes:

5= N
" 14a(N—1)+cNlogN
and the efficiency is:
1
©

- 14+ a(N—=1)+cNlogN

The value of ¢ depends on the parallelization loss and problem size. The parallelization
loss T reflects the combination of system hardware and software quality. The value of T;

is affected by

e communication overhead, latency, and bandwidth;

e bookkeeping overhead and other software overhead; and

e dependencies between different processes.
It includes not only overhead but also the idle time caused by load imbalance of the par-
allel part of the computation. The value of T} depends on the parallelization techniques

used. The relevant issues include partitioning, scheduling, and synchronization, as well as

hardware technology. When parallelization techniques become mature, the value of T; will
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Figure 4: Efficiencies for different values of c.

decrease. At a certain level of parallelization technique, ¢ also depends on problem size.

The larger the problem size, the better performance will be.

In the following, we set the value of a, the Amdahl fraction, to 0.0001 and vary ¢ to
show different effects of parallelization techniques. In Figure 4, the efficiencies for different
values of ¢ are shown with various numbers of processors. The impact of efficiency will be

studied in the next section.

4. OPTIMAL PROCESSOR SPEED AND NUMBER OF PROCESSORS

Although the cost-performance ratio reaches its minimum at 20 MFLOPS as shown in

10




Figure 3, many applications require much higher performance. Some performance require-
ments, say 10 GFLOPS, cannot be satisfied by using a single powerful processor at the
current level of technology. Therefore a parallel system is necessary. However, as discussed
previously, a parallel system has an efficiency loss, and the efficiency loss increases with
the number of processors. For this reason, we cannot simply expect that 500 20-MFLOP)
processors or 10,000 1-MFLOP processors will achieve 10 GFLOP performance. We must

consider the efficiency, and the performance of a parallel system becomes:
V(N) = uNV(1)

where V(1) and V (V) are the performance of a single processor and N processors, respec-
tively. Besides the parallelism of applications, efficiency y depends on the parallelization
loss coefficient, c. The smaller the value of ¢ is, the better the parallelization technique is.
The effect of ¢ on the cost-performance ratio is shown in Figure 5. The curves represents
the costs for 300 MFLOPS performance, on the assumption that the cost is proportional
to the number of processors. All the curves except the lowest one assume the value of
the Amdahl fraction a to be 0.0001. The lowest curve is the ideal case with a = 0 and
¢ = 0. The cost increases with the value of c. When ¢ becomes large, the advantages of
low-price microprocessors will disappear due to large parallelization loss. In other Words,
a parallel system built of many small processors can deliver high performance with good
cost-performance ratio only when the parallelization technique is satisfactory. Furthermore,

there is an additional cost for rewriting the existing code for parallel systems.

In many circumstances, we are given a fixed budget instead of a performance require-
ment. The goal is to maximize performance with the budget. In Figure 6, the budget is

fixed to 2.5 million dollars. It shows that one GFLOP can be obtained with many small

processors if we apply a good parallelization technique. However, if the parallelization
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Figure 5: The costs for a performance requirement with different values of c.
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Figure 6: The performance for a fixed cost.

technique is not satisfactory, say ¢ = 0.01, the best performance of 300 MFLOPS will be
obtained by a single processor instead of a parallel system. It confirms that performance of
a parallel system depends heavily on the parallelization technique. Before parallelization

techniques become mature, using less processors may be the best choice for many users.

An interesting fact is that if we have an unlimited budget, the highest performance is
obtained by using a small scale parallel system consisting of the fastest processors. Figure 7
shows when the budget increases, the advantage of using parallel systems declines. Thus,

investment in increased numbers of processors cannot always be exchanged for higher per-
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formance. With the exception of certain applications, system performance is limited by
the speed of processors in general. When the highest possible performance is required,
fast processors are necessary. Some massively parallel machines consist of large numbers of
single-bit processors. The single-bit approach suffers in low-parallelism parts of programs,
for example, an operation executed on a single column of a matrix. When there is not
enough parallelism, this approach may cause serious load imbalance. As an example, when
executing an operation on a column of a 2K x 2K matrix on 64K single-bit processors,
31/32 processors are idle. However, if it is executed on 2K 32-bit processors, all processors
are busy and the execution time is reduced by a factor of 32. The single-bit approach
does not utilize the available parallelism in application problems. Therefore, this approach
is not appropriate for general-purpose supercomputing, except for some special purpose

applications, such as image processing.

Figures 8 and 9 show the relation of performance, cost, and the number of processors
for ¢ = 0.001 and 0.0001, respectively. From the figures, one can see the relation between
performance and cost for a given number of processors. Furthermore, for a given cost,
the best configuration can be found for the highest achievable performance. For example,
with a budget of one million dollars, 64 20-MFLOP processors can deliver 800 MFLOPS
when ¢=0.001, or 1.2 GFLOPS when ¢=0.0001. With thirty million dollars, 1K 20-MFLOP
processors gives 10 GFLOPS when ¢=0.0001. However, if parallelization techniques are not
good enough, say ¢=0.001, one may select 16 300-MFLOP processors for 4.5 GFLOPS. The

figures can also be used to find the lowest price for a required performance.
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Figure 7: The achievable performance for different costs.
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Figure 8: The relation of performance, cost, and number of processors (c=.001).
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Figure 9: The relation of performance, cost, and number of processors (¢=.0001).
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5. CONCLUSION

Parallelization techniques play an important role in supercomputing. A parallel system
can potentially deliver high performance at low cost. However, the success of parallel sys-
tems depénds heavily on the progress of parallelization techniques. The parallelization loss
coefficient ¢ has been defined to represent the impact of parallelization techniques. The
value of ¢ decreases when the parallelization techniques, including hardware, software, and
application techniques, become mature. The value of ¢ can also be reduced by running
problems of large size. Since the problem size running on supercomputers is usually large,
we can expect small ¢. With a small value of ¢, a parallel system consisting of many micro-
processors can deliver higher performance than mainframe systems. For best performance,
there is an optimal tradeoff between processor speed and number of processors. Further-
more, system performance will always be limited to some extent by the speed of individual
processors. In general, we should not expect a huge number of slow processors to deliver
very high performance. Fast processors are necessary for high speed computing even in a

parallel system.
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