A Minimal Space Selection Algorithm
That Runs in Linear Time
by

David Dobkin and Ian Munro

Research Report #106







A MINIMAL SPACE SELECTION ALGORITHM THAT RUNS IN LINEAR TIME%*

by
David Dobkin
Department of Computer Science
Yale University
New Haven, Connecticut
Ian Munro
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT

An algorithm is given for computing medians in minimal space. This
elgorithm is shown to run in linear time and hence is asymptotically
optimai with respect to time requirements and optimal with respect to space
requirements. The algorithm is derived as an iterative procedure in which
increasingly larger sets of data are shown to be non-medians. At each step
of the algorithm, after suitable initialization, only a constant number of

operations is done for each element deleted.

*This research was done while the first author was visiting the University
of Waterloo and the second author was visiting Yale University. Portions
of this research were supported by the National Science Foundation under
Grant MCS76-11460 and the National Research council under Grant A8237.




Page 2
1. INTRODUCTION

During the past few years, considerable attention has been focused on
the discovery and improvement of algorithms for computing the t-th largest
from a set of n elements[K]. Of particular interest have been algorithms
for computing medians or doing particular selections that have running
times which are linear in n, the number of elements[BFPRT, SPP]. The

existance of such algorithms has created the following open question:

What is the minimum space required by an “algorithm wusing only

comparisons which computes the median in linear time?

In this paper we show that a linear algorithm is possible for the
median problem which requires a workspace of only [n/2] + 1 cells.Since the
éeneration of the median of a set requires showing that all but one element
havé the property of being either larger or smaller than n/2 of the other
elements, this space requirement is clearly within an additive constant of
being optimal. Variations of the algorithm yield similar results for other

selection problems.

The algorithm is derived as an iterative scheme’which is based on a
procedure to eliminate sets of increasing size from consideration as the
median at succesive iterations. After an initial preprocessing consisting
of finding the largest, third largest, seventh largest,... and smallest,
third smallest, seventh smallest... of the first half of the original
list, it is possible to eliminate n/2 elements from consideration as
possible medians by a set of operations which requires a constant number of

comparisons to eliminate each single element. And, we show that the



Page 3

initial preprocessing can be aéhieved in linear time. Continued
application of this procedure results in an algorithm for finding the
median in linear time and at no time in the computation are more than
[n/2]41 storage cells accessed beyond the read-only tape on which the

original input is written.

2.MAIN RESULTS

We shall use as our model of computation the RAM model as presented in
[AHU] with the added constraint that the memory of the machine will be

limited. The RAM will consist of a oneway

read-only input tape, a write-only output tape and k words of internal
memory. We shall refer to computations on such a machine as being of space
complexity k. Our basic operation will be the comparison and our time
complexity measure will be the number of comparisons that may possibly be
done by an algorithm for its worst case input. Throﬁghout, whenevgr we
require the median of a set of t elements and have t available words of
memory, we will use the algorithm of [SPP] to compute this median. This
algorithm requires 3t+o(t) comparisons to do this operation and- is the
currently best known algorithm for computing medians. Since we are showing
the existance of a linear time algorithm, any linear time median algorithm
could be used. We shall use the notation M(t) to represent the complexity
of computing the median of a set of t integers via a linear time median

algorithm. Thus; at present M(t) is 3t+o(t).



Page 4

Basically, our algorithm worké by iteratively considering larger sets
of elements and showing for each set that half of its members cannot be
medians. This is accomplished for a given element by showing that the
element is either larger or smaller than at least half of the elements in
the original set. Since our algorithm will always maintain a balance by
discarding equal numbers of elements on each side of the actual median,
this condition is equivélent to showing that a discarded element is larger
or smaller than half of the remaining elements, We initialize our
algorithm by taking the first half éf the input and finding the largest,
ﬁhird largest, seventh 1arge§t,... of the set as well as the smallest,
third smallest, seventh smallest, ... of the set. As our iteration we
then consider the set of the Zi-l largest remaining elements of the initial
set, the Zi—'1 remaining smallest elements of this set, Zi-l new input
elements and the 21_1—1 elements remaining as the residue of the péevious
iteration. For this set, we find the sets consisting of the largest 2].‘-1
elements, the smallest 2].'_1 elements and the remaining Zi-l elements. The
first two sets can be shown to be non-medians and the elements of the third
set remain as the residue to be used in the next iteration. If the initial

k=-1,3

input consisted of 2k+1 elements, then after k-2 iterations, 2
elements remain whose median is the median of the original set. This

median can then be computed by any linear median algorithm.

Before presenting a thorough analysis of this algorithm, we present an
example of its performance on a set of 33 elements. At the start, the
first 17 elements of the input are read and their largest, 3-rd largest,
7-th largest, smallest, 3-rd smallest, and 7-th smallest elements are

found. At the first iteration, we sort the largest and smallest of this



Page 5

set along with a new element 6ff the input tape. The largest of these
three is at least as large as 17 inputs and hence is not the median. A
similar argument handles the smallest. And the median of this set then
forms the residue for the next iteration. A£ this iteration, we consider
the 2 Jlargest and 2 smallest remaining of the original set and two new
inputs along with this residue. Of these seven elements, thé two largest
(resp. smallest) cannot possibly be the median as each is larger (smaller)
than 17 of the elements of the original set. These four elements are

discarded and the remaining three form the residue for the next iteration.

The algorithm can then be stated as the following Pidgin ALGOL

procedure:
Procedure MSPMED
Input:A set X of 2k+1 elements

Output: The median of the set
begin
1. Let L be composed of the first 2k_1+1 elements of X
and
for i from k-1 to 0 step-l1 do
find the Zi largest and smallest elements of
L and appropriately partition the set such elements determined
larger by this

partition follow elements determined smaller.

2. For i from 1 to k-2 do




Page 6

begin
3. read in the next 21—l elements from X to the front of L.
4. find the upper and lower quartiles (21_1 elements each)

of the set of Zi+1—1 elements composed of the first 2i and last
oi-1
elements of L

5. drop elements in the upper and lower quartiles, place other
considered elements at the end of L (in the last Zi—l
locations) (the
residue is now of size 21—1 and Zi locations are now vacant at
the front of the
list).

end
6. Find the median of the 257143 remaining elements
7. Output this median |

end

Next we turn to a proof of the correctness of the above algorithm. We
do so via a pair of assertions about its state at various stages in the

computation.

Claim 1: For each i in the range 1<i<k-2, the elements dropped in step 5.

of the algorithm cannot be medians.

Proof: We do the proof by induction, we observe that for i=l, one element

k-1

is dropped at this stage because it has a value bigger than 2 of the

original elements as well as one new element and one element is dropped

because it has a value smaller than Zk_l of the original elements as well



Page 7

as one new element. Furthermore, fhe elements dropped are larger (resp.
smaller) than any remaining elements that have been considered. Assume
that the claim is true for all i<I<k-3 and assume that in the first I-l
iterations of the 1loop, 2I elements have been dropped, 21—1 of which are
larger than any of those remaining and 21.-1 of which are smaller than any
of those remaining. Then at the Ith stage we have a residue set of 21-1
elements which we consider in connection with the 2I remaining largest and
o1 remaining smallest element of the original set and with ZI new inputs.
We observe that elements in the top quartile of this set are larger than
the 3*21—1 elements in this set and are larger than the ZI elements which
have already been discarded for being too small as well as being larger

2k—l 2

than the +1—(21+ -2) remaining elements and hence each is larger than

at least 2k~1+1 elements and cannot be the median of the original set.

Claim 2: The elements remaining after k-2 iterations of the for loop have

the same median as the original set.

Proof : We observe that at each iteration of the for loop, equal numbers of
elements are discarded for being too large and too small. Hence the

Yremaining elements have the same center as did the original set.
Therefore we have the following:

Theorem: The above algorithm correctly computes the median of the set X

L -1 . . .
while never using more than 2k +3 storage locations on an input of size

K4




Page 8
We now turn to a proof of the linearity of the algorithm.
Theorem:Algorithm MSPMED has a running time of O(N) on an input of size N.

Proof: (We assume that N=2k+1 for some k, (other cases folow easily). the
We observe that the only steps of the algorithm which require any work are

steps 1,4 and 6. In step 1 we are computing the first, third,

seventh,...Zk_Z—lth largest and first, third,seventh,...Zk—z—lth smallest

elements of the set L. We do this by recursively doing problems on smaller

sets. To begin we find the Zk’Z-I largest and smallest of the original set

of Zk"1

Sk=3_

+l elements. This requires 2M(2k_1+1)operations. Next we find the
1 largest(smallest) of . the first(second) of these sets requiring

k-2

M(257°-1) operations. Continuing this procedure, we see that the first

step can be performed in

k-1

M2 1y + 2m2%72 - 1y 4 2M(3)

or M(Zk+1

-2(k+l)) operations because of the linearity of M(.). Step 4
requires that for each i in the range 1<i<k-2, we find the upper and lower
quartiles of a set of 21+1-1 elements. Each of these operations can be

1+1-1)+2M(21-1) operations and hence, at the ith

done in at most M(2
iteration, at most M(Zi+2-3) comparisons need be done. Thus, the entire
set of iterations requires‘ at most M(2k+1—2(k+1)) comparisons. In the
sixth step we are merely computing the median of a set of 2k~1+3 elements

at a cost of M(Zk—1+3) operations. The total cost is therefore bounded by

M(9x25 1o (4k41)) or 4.5M(N).




Page 9

4. REFERENCES

[AHU] Aho, A. V., J. E. Hopcroft and J. D. Ullman.

The Design and Analysis of Computer

Algorithms.

Addison-Wesley, Reading,Massachusetts 1974.

[BFPRT] Blum,M., R.W.Floyd, V.R.Pratt, R.L.Rivest and R.E.Tarjan.
Time Bounds for Selection.

JCSS vol.7,no.4,pp.448-461.

[K] Knuth,D.E.

Sorting and Searching.

Addison-Wesley, Reading,Massachusetts 1973.

[SPP] Schonhage,A., M. Patqrson and N. Pippenger
Finding the Median.

JCSS vol.13,pp.184-199 (1976).







