A STABLE AND FAST ALGORITHM FOR UPDATING THE
SINGULAR VALUE DECOMPOSITION

MING GU* AND STANLEY C. EISENSTATt

Abstract. Let A € R™*™ be a matrix with known singular values and singular vectors, and
let A’ be the matrix obtained by appending a row to A. We present stable and fast algorithms
for computing the singular values and the singular vectors of A’ in O ((m+ n) min(m, n) log3 e)
floating point operations, where € is the machine precision. Previous algorithms can be unstable and
compute the singular values and the singular vectors of 4’ in O ((m + n) min?(m, n)) floating point
operations.

1. Introduction. The singular value decomposition (SVD) of a matrix A €
Rmxn is

(1.1) A=UvT

where U € R™*™ and V' € R™™ are orthonormal; and 2 € R™*™ is zero except on
the main diagonal, which has non-negative entries in decreasing order. The columns of
U and V are the left singular vectors and the right singular vectors of A, respectively;
the diagonal entries of Q are the singular values of A.

In many least squares and signal processing applications (see [1, 14, 19] and
the references therein), we repeatedly update A by appending a row or a column,
or downdate A by deleting a row or a column. After each update or downdate,
we compute the SVD of the resulting matrix. In [11] we consider the problem of
downdating the SVD. In this paper we consider the problem of updating the SVD.
The problem of updating the SVD is also related to the problem of updating the
URV and ULV decompositions (see [14, 15, 17, 18]).

Since appending a column to A is tantamount to appending a row to AT, we only
consider the case where a row is appended. Without loss of generality, we further
assume that the last row is appended. Thus, we can write

(1.2) A'=<(;‘;> ,

where A’ € R(™+1)X" i5 the updated matrix. We would like to compute the SVD of
A' by taking advantage of our knowledge of the SVD of A.
First consider the case m > n. We write

U= (U, Uy) and Q:(’g),

where Uy € R™*", U, € R™*(m=7) and D € R™ ", Equation (1.2) can be rewritten
as

D
uv; 0 U,
AI=< 1 2) ZT VT,
0 1 0o 0

*Department of Mathematics, University of California, Los Angeles. Email address:
mgu@math.ucla.edu. This research was supported in part by NSF Career Award CCR-9702866
and by Alfred Sloan Research Fellowship BR-3720.

tDepartment of Computer Science, Yale University. Email address: sce@cs.yale.edu.
1

Yob

where z = VTa € R™. Let (Ww)(%)QTbetheSVDosz (3) €

RMHxn with W e RDXn 4 € R*+! and O, Q € R™*™. Then the SVD of A’
is

(13) w=wivp(§)wer
where (U] Uj) € R(m+D)x(m+1) i5 orthonormal with

U]’ — (Uy ?)W € R(m+1)xn and Ué — (w/ ([{)2 >) e R(m+1)x(m+l-—n) ,

0

(1.4)
U 0
0 1

Since M is not related to U, the singular values and right singular vectors of A’
can be updated without it. When we need to update Uy, we compute U}; and when
we need to update U = (U; Us), we further compute w'.

Since error is associated with computation, a numerical SVD of A’ or M is usually
defined as a decomposition of the form

sy @ 09§)77+ 0l or 21 = (W 0) (%) Q7 vote)

where w' = w.

where € is the machine precision; Qis diagonal with non-negative entries in decreasing
order; and (U] U3) and ¥ or W and (W W) are numerically orthonormal. An
algorlthm that produces such a decomposition is said to be backward stable [16].

While the singular values of A’ and M are always well-conditioned with respect
to a perturbation, the singular vectors can be extremely sensitive to such perturba-
tions [5]. That is, {2 can be guaranteed to be close to 2, but Ul, (W) and Q can be
very different from U], (W w) and Q, respectively. Thus one is usually content with
backward stable algorithms for computing the eigendecompositions of A’ and M.

We compute a numerical SVD of M of the form (1.5) by using the techniques

n [8, 9, 10] (see Section 2). We compute the right singular vector matrix as VO.
If the left singular vector matrix is updated, we compute it according to (1.4) with
(W w) replaced by (W o).

It takes O(n?) floating point operations to compute a numerical SVD of M (see
Section 2). It takes O(mn) floating point operations to compute US. Since both
Q and (W) are dense matrices, it takes ostensibly about 2n® and 2mn? floating
point operations to compute Y and Ul, respectively. However, we show that by using
the fast multipole method of Carrier, Greengard and Rokhlin [3 7], the right and left
singular vector matrices of A’ can be stably computed in O(n? log3 €) and O(mn log3 €)
floating point operations, respectively (see Sections 3 and 4).

The case m < n is similar. We write

V=W W) ad Q=(D 0,
where V; € R»*™ V, € R*("=m) apnd D € RmXm, Equation (1.2) can be rewritten

as
wo (U D 0 VL
S\ 0 oz vy
(U
L0

where z; = Vi'a € R™ and 2o = Vifa € R*™; and H Tz = (¢,0,...,0)7 is an
orthonormal Householder transform. Let WQQT be the SVD of

(16) (l; 0) € R(m+1)x(m+1) .
zi ¢
Then the SVD of A4’ is
T
(1.7) A'=U"(Q 0) < V:’T) ,
where

U' = (I({ (1)>W , Wi=(Vi v)Q and (v Vi) =VH,
with v € R™ being the first column of Vo H. Since M; is not related to U we can
update the singular values and right singular vectors of A’ without it.

We compute a numerical SVD of M; (cf. (1.5)) by using the techniques in [8, 9, 10]
(see Section 2). We stably compute the right and left singular vector matrices of A’
by using the fast multipole method in O(mnlogj€) and O(m? log? €) floating point
operations, respectively. Similar to the previous case, the singular values of A’ and
M, are always well-conditioned with respect to a perturbation, the singular vectors
can be extremely sensitive to such perturbations [5].

In both cases, the problem of updating the SVD has been considered by Bunch
and Nielsen [1], using results from [2, 4]. Their scheme for finding the SVD of
M and M; can be unstable [1, 2]. And their algorithm takes about 2nmin?(m,n)
and 2m min®(m, n) floating point operations to update the right and the left singular
vector matrices, respectively. The lack of a fast algorithm for updating the SVD is one
of the reasons for the recent development of URV and ULV decomposition algorithms
to approzimately update the SVD [14, 15, 17, 18].

For the purpose of computing the SVD of M and M;, we take the usual model
of arithmetic

fifaof)=(aop) (1+§),

where a and 8 are floating point numbers; o is one of +, —, x, and +; fi(a o) is the
floating point result of the operation o; and |£| < e. We also require that!

A(Va) = va (1+¢)

for any positive floating point number «. For simplicity, we ignore the possibility of
overflow and underflow.

2. Computing the SVD of M and M. In this section we present a scheme
for finding the SVD of the matrix

d1
(2.1) M:(%): Ak
G o G

1 This model excludes machines that do not have a guard digit, such as CRAYs and CDC Cybers.
It also excludes machines that do not support binary floating point operations. Our algorithms can
be modified for such machines.

3

where D = diag(di,dz,...,d,) with0 < dy <dy <...<dp;andz = (21,23, ..., 2)7.
We further assume that

(2.2) d > 7|Mlly | digs—di > 7| Mll, and |z > r|M]]

where 7 is a small multiple of € to be specified in Section 2.2. Any matrix of the
form (2.1) can be reduced to one that satisfies these conditions by the deflation pro-
cedures described in [8, 9] and a simple permutation. The scheme for finding the
SVD of M; (see (1.6)) appears in [8, 9]. The techniques for both problems are very
similar.

The following lemma characterizes the singular values and singular vectors of M.

LEMMA 2.1 (Jessup and Sorensen [12]). Let W< S(')l)QT be the SVD of M
with

W = (wi,...,Wn,wWn41) , Q=diag(wr,...,ws) and Q= (q1,--.,qn),
where 0 < wy < ... < wy. Then
MTM = D? + 227 = QO2QT .

is the eigendecomposition of MT M. The singular values {wj};?zl satisfy the interlac-
ing property

0<d) <wy <dy<...<dp <wp <dp+||zll2

and the secular equation
n Zz
= 1 —_—_— L = 0 .
Fw) +Zh%w2

The singular vectors satisfy

dl z1 dnzn
2.3 w; = ey — ,
(2:3) i (@~@ P

T
(2 2
(24) wn+1—(d1,...,dn, 1> / . '
T
zZ1 Zn
2. ;=

where j =1,...,n.

On the other hand, given D and all the singular values, we can construct a matrix
with the same structure as (2.1).

LEMMA 2.2. Given a diagonal matrizx D = diag(dy,da,...,d,) and a set of
numbers {W;}7_, satisfying the interlacing property

(2.6) 0<di < <ds <...<dp <@y,
4

there exists a matriz

dy
M=
dn
2 .. 2
whose singular values are {©;}7_,. The vector 2 = (21, 22,...,2,)" is determined by
’ﬁ o) @3-
(2.7) 2] = | (@2 — i % i)
" o (& —di) i (4 -)

where the sign of 2; can be chosen arbitrarily.

2.1. Computing the Singular Vectors of M. For each ezact singular value
wj, equations (2.3) and (2.5) give the corresponding ezact singular vectors Observe
that if w; was given, then we could compute each difference d? — w to high relative
accuracy as (d; —wj)(d; +w;). We could also compute each product and each ratio to
high relative accuracy, and thus compute w; and g; to component-wise high relative
accuracy.

In practice we can only hope to compute an approximation @&; to w;. But problems
can arise if we approximate w; and ¢; by

T
N d1z1 dnz i d Zz
w.i-<d2 A2 d?,—:;2-> / 1+Z

J

and

A 21
q; = d2 A2’ o

(i.e., replace w; by &; in equations (2.3) and (2.5) as in [1, 12]) For even if &; is
close to wj, the approximate ratios z;/(d? — d)) and d;2;/(d? —) can still be very
different from the exact ratios z;/(d} — w3) and dizif (di — w3), requl’rmg in singular
vectors very different from w; and g;. And when all the apprommate singular values
{@;}7_, are computed and all the corresponding singular vectors are approximated
in thls manner, the resulting singular vector matrices may not be orthonormal.
Lemma 2.2 allows us to overcome this problem. After we have computed all the
approximate singular values {®;}% j=1 of M, we find a new matrix M whose ezact singu-

lar values are {@; }7 1, and then compute the singular vectors of M using Lemma 2.1.
Note that each difference

OF —di = (@ —di) (@ +d;) and d} —d} = (d; —d;)(d;j + d;)

in (2.7) can be computed to high relative accuracy. Each ratio and each product can

also be computed to high relative accuracy. Thus |2;| can be computed to high relative

accuracy. We choose the sign of 2; to be the sign of z;. Substituting the ezact singular

values {&;}7_; and the computed 2 into equations (2.3) and (2.5), each singular vector

of M can again be computed to component-wise high relative accuracy. Consequently,
5

after all the singular vectors are computed, the singular vector matrices of M will be
numerically orthonormal.

To ensure the existence of M, we need {@;}7_, to satisfy the interlacing prop-
erty (2.6). But since the exact singular values of M satisfy the same interlacing
property (see Lemma 2.1), this is only an accuracy requirement on the computed
singular values, and is not an additional restriction on M. We can use the SVD of
M as an approximation to the SVD of M. Since

z1 —2] cee Zp T Zp
we have
|0j —w;i| <M — Ml < lz = 2|2 .

Such a substitution is backward stable (see (1.5)) as long as 2 is close to z (cf. [8, 9, 10]).

2.2. Computing the Singular Values of M. In order to guarantee that 2 is
close to z, we must ensure that the approximations {@;}7_, to the singular values
are sufficiently accurate. The key is the stopping criterion for the root-finder, which
requires a slight reformulation of the secular equation (cf. [1, 8, 9, 10]).

Consider the singular value w; € (dj,d;j41), where 1 < j < n —1; the case j = n
is considered later. w; is a root of the secular equation

n 2
n
.F(w)=1+z————————d2:w2 =0.
=1 i

We first assume that? w; € (dj, d’—*’%—ﬂ) Let §; = d; — d; and let

~ i 2 _ i 22
¢(ﬂ) = 122; (6; — p)(d; + dj + 1) and - ¢(p) = 1232_:“ (0; — p)(ds +d; + ©) .

Setting w = d; + p, we have

Fp+dj) =1+4%(u) + ¢(u) = G(u) .

We seek the root p; = w; —d; € (0,0;41/2) of G(u) = 0.

An important property of G(u) is that we can compute each difference 6; — p
to high relative accuracy for any p € (0,d;41/2). Indeed, since d; = 0, we have
1(6; — p) = —f(p); since A(d;41) = A(dj1 —d;) and 0 < p < (dj41 — dj)/2, we
can compute fi(6;41 — p) as A(fl(dj41 — d;) — fi(w)); and in a similar fashion, we can
compute J§; — p to high relative accuracy for any 7 # j,7 + 1.

Because we can also compute d; +d; + i (a sum of positive terms) to high relative
accuracy, we can compute each ratio z2/((d; — u)(d; +d; + 1)) in G(u) to high relative

2This can easily be checked by computing F(4Egixl) 1f F(itditty 5 o then w; €

d) dj+d;
(d;, EL";&), otherwise w; € ["Ltgl;&adj-fl)-

accuracy for any p € (0,d;41/2). And, since both 1 (u) and ¢(u) are sums of terms
of the same sign, we can bound the error in computing G(u) by

(1 + ()] + o)) ,

where 7 is a small multiple of € that is independent of n and u.
We now assume that w; € [i—M———lﬂ- dji1). Let 6; = d; — dj+1 and let

2 2

_ - Zi
Z)(d; + djp1 + p) and - ¢lu) = ;7;1 (6; — p)(di +djy1 +p)

i=1

Y(p)

IH

Setting w = d;41 + p, we seek the root p; = w; —dj1 € [0;/2,0) of the equation

G(p) = F(p+djt1) =1+ 9(p) + o(p) =0.

For any p € [6;/2,0), we can compute each difference d; — u to high relative accuracy.

Since |p| < |d;]/2 < dj41/2, we can compute each sum d; + dj11 + p to high relative

accuracy as d; + (dj+1 + p). Thus we can again compute each ratio 22/((8; — p)(d; +

dj4+1+ 1)) to high relative accuracy and bound the error in computing G(u1) as before.
Finally we consider the case j = n. Let §; = d; — d,, and let

n 2
9

EZ (6; — w)(di + dp, + 1)

=1

and ¢(u) =

Setting w = dy, + p, we seek the root u, = w, —d, € (0,]|z||2) of the equation

G(w) = Flu+dn) =1+ 9%(p) + d(u) =

Again, for any p € (0, ||z]|2), we can compute each ratio 22/((6; — u)(d; + dp, + 1)) to
high relative accuracy, and we can bound the error in computing G(u) as before.

In practice the root-finder cannot make any progress at a point p where it is
impossible to determine the sign of G(p) numerically. Thus we propose the stopping
criterion

(2.8) G| < mn (1+ ()] + 1bw)])

where, as before, nn(1 + |¢(u)| + |#(u)|) is an upper bound on the round-off error in
computing G(p). Note that for each j, there is at least one floating point number that
satisfies this stopping criterion numerically, namely fl(u;).

We have not specified the scheme for finding the root of G(u). We can use the
bisection method or the rational interpolation strategies in [1, 6, 13]. What is most
important is the stopping criterion and the fact that, with the reformulation of the
secular equation given above, we can find a p that satisfies it.

For each j, we denote the computed value of pu; by fi;. Thus the computed
singular values {@;}7_; satisfy

(2.9) wj=dj +p; or @;=djy1+ [
and
(2.10) O<di< <dy <...<dp<p.

7

An argument similar to that of this section shows that we can compute wF — d?

to high relative accuracy. Thus we can compute 2 and the singular vectors of M to
component-wise high relative accuracy. Lemma, 2.3 shows that this approach is stable.

LEMMA 2.3 (Gu and Eisenstat [9]). Assume that the stopping criterion (2.8) is
satisfied by every computed p1;. Also assume that 7 > 2nn? in (2.2). Then

|2; — zi < 4nn®||2])s
fori=1,...,n.

3. Acceleration by the Fast Multipole Method. Suppose that we want to
evaluate the complex function

(3.1) B) = Y rip(d: ~)

at n points in the complex plane, where {z;}7_; and {d,;}?_, are constants and p(w) is
one of log(w), 1/w and 1/w?. The direct computation takes O(n?) time. But the fast
multipole method (FMM) proposed by Carrier, Greengard and Rokhlin [3, 7] takes
only O(nlog2 €) time to compute ®(w) at these points. In this section we describe a
modified FMM to accelerate our algorithms for updating the SVD.

With the singular vector matrices of M or M;, we compute the singular vector
matrices of A’ € R{™+1)*X" (see Section 1). In this section we only consider the
problem of computing the right singular vector matrix of A’ for the case m > n. The
techniques for other singular vector matrix computations are basically the same.

From Sections 1 and 2 (see equations (1.3), (1.5) and Section 2.1) we have

w=@1 0y () QT+ 4T,

where V' € R™*" is orthonormal and (W %) (g) QT isthe SVD of M = (2[;) €

R+ The matrix-matrix product VQ is an approximate right singular vector ma-
trix of A’ (see Section 2). The singular values of M are given as (see (2.9) and (2.10))

(3.2) Wj =dj+f1; or &j=djp1+iy

with {d;}}_, satisfying (2.2).
According to Lemma 2.1, we have Q = (G1,..-,G4n) with

R
a
I

Let T = (v,...,vn)T be arow of V. Then the corresponding row of VQ is v

T4, ..., 07 G,) with vTq; = &1 (@) / V(@) , where

~ n 292
ViZ; z;
(3.3) ‘Pl(“)ZE:dz_wz and dp(w) =Y ——.

i=1 (dz - w2)2

=1

8

Thus we can compute v7 Q) by evaluating &, (w) and ®,(w) at n points {w;}7_;. Note
that for each different row of V', there is a different function ®;(w), whereas ®,(w)
remains the same. Thus the major cost in computing VQ is for each v to evaluate
&, (w) at the same points {@w;}™_,. The direct computation takes O(n?) floating point
operations.

Note that ®;(w) is similar to the form in (3.1). In this section, we present a
modified FMM for computing

(3.4) B(w) = Z p

at n points {w;}7_, satisfying the interlacing property
(3.5) 0<di <wi <dp <...<dp < wy,

where the singularities {d;}?_, of ®(w) satisfy (??). The modified FMM takes
advantage of the fact that all the computations are real. We then show how to
use the modified FMM to compute ®(w) at {®;}7_,. Finally we use the modified
FMM to stably compute the matrix-matrix product VQ in O(n? log3 €) floating point
operations. Most of the results in Section 3 parallel those of {3, 7].

3.1. Chebyshev Interpolation. Our modified FMM is based on polynomial
interpolation. Define the Chebyshev polynomials
(3.6)To(z) =1, Ti(z) ==z, and Tpyi(z) = 22Tk(z) — Th—1(z), k=1,2,---

It is well-known that they satisfy |Ty(z)| < 1 for all z € [—1,1] and for all k. For
k > 1,Ty(z) has exactly k roots in the interval [—1,1] given by
25 -1

j J
(3.7) 6], = cos (%

Tl’),]=1,2’ak

These roots will be referred to as k-th order Chebyshev nodes throughout the rest of
this paper. The Chebyshev polynomials can also be written as

Ty (z) = cos (kcos™ z) = % ((:v-l— V2 — 1>n + (x - Va2 - 1)n) i

For |z| > 1, we have

(3.8) (Tu(e)| = Telle) ~ 5 (jo] + VEE 1)

The function |Tk(z)| monotonically increases to co for modest values of k (see Table).
Lemma 3.1 below is quite elementary. However, it is the main analytic tool in
our modified FMM. For its introduction we need the following polynomials

ar_ Tiyi(a) = Tipa (2)
P (z) = (:; —) Tk+:-(a) ,

where k is a non-negative integer and « is any real number. We note that while PX(z)
might appear to be a rational function, it is indeed a polynomial since the polynomial
in the numerator has a as a root.

9

LEMMA 3.1. Let k be any positive integer and let |a| > 1. Then

U poggy = Tera(@)
(3.9-a) a—z Pi(@) = Ti1(@) (@—z)’
1 1
(3.9-b) o—z -)] < [Tit1(a)| (le| = 1)

REMARK 3.1. Since the numerator on the right-hand-side of equation (8.9-a) is
Tgs1(x), it follows from (3.7) that it must vanish at the (k + 1)-st order Chebyshev
nodes. Consequently, The polynomial P (zx) is precisely the polynomial obtained by
interpolating the function 1/(a — z) at these Chebyshev nodes.

REMARK 3.2. For any given k, P{(z) is the polynomial that approzimates
1/(o — z) with the smallest relative error, i.e.,

(aix _p(‘”)) (a—z)

min max
deg(p)<k z€[-1,1]

I

]_ —
de&l;?<l. '::EnEla]XI] l O’ .’L‘) p(fl'))l

1
| Th+1(a)|”

Lemma 3.2 below is similar to Lemma 3.1.
LEMMA 3.2. Let k be any positive integer and let || < 1. Then

L1 uyg 2) = Ti1()
T—Fs 5 DT I8 A=Fa)
1 _ pl/B(, 1
gz ¢ O\ S moamra-my

Another advantage of Chebyshev interpolation is that it is also numerically stable.
Let P(z) be the unique polynomial of degree at most k that interpolates a function
f(z) at the Chebyshev nodes:

P(ri)=fi, i=0,1,---,k
P(z) can be written as
E: [1;(= -,)_f: Ty(z)
g Mg (g — i) = (& — 5) Ti(mi)
Let P(z) and P(z) be polynomials of degree at most k that interpolate

posesses the optimality properties in Remark 3.2, it

3.2. Basic Ideas of FMM. In this section we first consider methods for fast
evaluation of ®(w) of (3.4) for two special distributions of {d;}?; and {w;}7_,. We
then briefly show how to generalize these methods for distributions of {d;}?, and
{w;}7-; satisfying (??) and (3.5). This section is the basis of modified FMM.

Flrst assume that we want to evaluate ®(w) at w = wi,...,w, satisfying (see
Figure 3.1)
~ . ~ T
(3.10) |w? —¢| <7 and |df — ¢ >37 with 7= 3

10

—_ 2y — I 2r i

F1a. 3.1. Local FExzpansion

Under these conditions, the function ®(w) is quite smooth at {w;}%_,, which are
clustered around c. We take advantage of this smoothness by approximating ®(w)
via Chebyshev interpolation. Define £ = (w? — ¢)/r and a; = (d? — ¢)/r. It follows
that w = v/c + r£. With Lemma 3.1 and equation (3.10), we can rewrite (3.4) as

n

(3.11) Pw) =Y =2

roa;—§

YRR E L)
i=1

i=1

In our implementation, we compute the polynomial £y (§) directly without using
any of the P (£). To see how this is done, we observe that each P_* (§) is the poly-
nomial resulting from interpolating 1/(a; — &) at the (k+1)-st order Chebyshev nodes
(see Remark 3.1). Consequently, L, (¢§) must the polynomial resulting from interpo-
lating ®(w) at the same nodes. We write £, (€) in terms of Chebyshev polynomials
as follows:

k
(3.12) Lk (&) = %Ti(©)
j=0

It follows from the above argument that

B(yJe+r0i,) =Ly (0hyr) Zy, i), i=1,2,---,k+1.

The above equations can be written in matrix form as

" O(yJe+r0i,)

(3.13) Floo = : ,

Ve+1 D(c+r0,’:¢i)

where the coefficients in the matrix have the form

s = Btk = o 0™ 0 (7))) = ()

Hence F is a discrete cosine tranform matrix, and the linear system (3.13) can be
solved by using the inverse discrete cosine tranform in O (klog k) flops. Since it costs

11

O(n) flops to compute ®(w) at each Chebyshev node, the total cost for computing
the right hand side in (3.13) is O (n k) flops.
Now we estimate the error in approximating ®(w) using Ly, (£). Since

|47 —w?| = |(d =) = (@ = o) < |df = o] + | — |
<|di -l +r<2(|df -] = 1),

by Lemma 3.1 we have

1B = L O < 2 5 T el =D~ 2 o 7 T (o)

Z |.’L’l| 1
= |df = WP [T (ai)|

Furthermore, since |a;| > 3 for all i, it follows that

2 n
3.14 P(w) — Li ()| < -
For a given relative precision €, we choose k so that 2/T%41(3) = €. Since

k+1
Tio41(3) =~ -;— (3 +/32 - 1) e 5.85+1/9,

this implies that it is sufficient to choose
k =~ logs 5 (4/€) — 1.

In our numerical experiments, we chose k = 3 for 3 digits of accuracy, 7 for single
precision and 20 for double precision. See Section 7?7 for more detailed discussion on
the choice of k.

Directly computing ®(w) at {w;}}_, takes about 4n> floating point operations.
On the other hand, we can compute ®(w) at these points using L (£).

Computing the coefficients in (3.12) takes (nk) flops, and computing L;(€) at
¢ = (w)/r, -+, (wk — c)/r takes another O(nk) flops. Hence the total cost for ap-
proximating ®(w) at {w;}7_; via Lx(§) is O(n k) flops. This is a much smaller cost
than 4n? for large enough n.

Next assume that we want to evaluate ®(w) at w = wy,...,w, satisfying (see
Figure 3.2)
(3.15) ldi—c| <r and |w-—¢|>3r.

Under these conditions, {w;}7_; are well-separated from the singularities {d;}7-,
of ®(w). We take advantage of this well-separatedness by expressing ®(w) by an
expansion centered at c. Let 8; = (¢ — d?)/(3r) and ¢ = 3r/(c — w?). It follows that

|Bil <1/3 and w = +/c—3r/C.

For numerical stability reasons, we introduce the following function

n n

=~ def z; _ z;
2O=Y c—d *21-—@-(

=11 — i=1

c— w?
12

— 2 — I 2r

Y

F1G. 3.2. Multipole Ezpansion

The function ®(w) can be expressed as

1

B(w) = —— B(Q).
Now we apply Lemma 3.2 to &)(C) to get
(3.16) Z PO E M ().

As in (3.12), we compute the polynomial My (¢) directly without using any of

the P,: /8 (¢). We do this by interpolating ®(¢) at the (k + 1)-st order Chebyshev
nodes. We write M, (¢) in terms of Chebyshev polynomials as follows:

k
(3.17) M (€)=Y §;T5(¢)
j=0
Similar to (3.13), we have
b1 (9§+1)
(3.18) F : = ,
Fk+1 <1>(9fii)

Once again, the linear system (3.18) can be solved by using the inverse discrete cosine
tranform in O (klogk) flops. Since it costs O(n) flops to compute ®(¢) at each
Chebyshev node, the total cost for computing the right hand side in (3.18) is O (n k)
flops.

Now we use Lemma 3.2 to estimate the error in approximating ®(¢{) using My, (¢).

~ - 1
®(¢) — My (C)I S;I%l Tert (/8] (1= Bi]) = 2Tl-+1 Z'Tzl

where we have used equation (3.8) and the fact that |8;] < 1/3.
Tt is easy to verify that condition (3.15) implies that

4
@ —?| < 5 e
13

0 | . |

o [—— I, —— 3 —f—

F1G. 3.3. Mesh Level 2

With this relationship, we have

1 |€’(C) - My (C)I 3 n
(W) = =5 M (C)’ = - |c—w21 <3 = Tora (3) ;lmil
|771
(3.19) < TL+1(3 Z Faet

REMARK 3.3. We have avoided a multipole ezpansion directly on ®(w). It turns
out that such an expansion would not satisfy an error bound of the form (38.19), which
will be essential in guaranteeing numerical stability in computing the expansions.

Now we consider the problem of evaluating ®(w) for distributions of {d;}?, and
{w;}7=, satistying (??) and (3.5).

To illustrate how the expansions can be used to speed up the computation, we
divide the interval (0, 1) into four disjoint subintervals of the same size (see Figure 3.3).
Rewrite ®(w) as:

Y=Y F
”Zd2 wz"'zdz +Zd2 wz"'z

d; €l d; €Iy d; €14 7’
=&, (w) + @, (W) + @1, (w) + Py, (w) .

We can use a local expansion to compute ®,(w) for w € Ij as long as I is
separated from Ij. This is more efficient than the direct computation if the numbers
of singularities in I; and I}, are larger than p. For example, when {d;}?_, and {wi}ie
are evenly distributed on the interval (0, 1), each I} contains roughly n/4 qmgularltles
According to Section 3.2, using local expansions this way is more efficient than the
direct computation when n > 4p.

On the other hand, to compute ®j, (w) for w € I; when I} is adjacent or equal
to I;, we can continue to halve I; and Ij into disjoint subintervals of the same size
and apply the above techniques until the number of singularities in these intervals is
small (see Figure 3.4).

This process generates a hierarchy of intervals of various sizes. We will compute
a local expansion and a multipole expansion for each of these intervals. While the
basic ideas in Section 3.2 indicate that such expansions could lead to an efficient way
of evaluating ®(w), the basic ideas alone are not enough for fast evaluation of ®(w).
In the following we provide a systematic scheme to find all the expansions quickly.

14

I,

F1G. 3.4. The Computation Tree

3.3. The Computation Tree. Consider the interval depicted in Figure 3.3. n
singularities are arbitrarily distributed in (0,1). In order to evaluate ®(w) through
local expansions, we introduce a hierarchy of meshes which refine the interval (0, 1)
into smaller and smaller intervals. A tree structure, the computation tree, is imposed
on this mesh hierarchy.

Mesh level 2 corresponds to the four subintervals in Figure 3.3. Given a fixed
parameter s to be specified in Section 3.5, for each interval I in mesh level | with
I > 2, if the number of singularities in I is at least s + 1, we divide I into two
disjoint subintervals of the same size. These two subintervals are placed in mesh level
[+ 1. But empty subintervals are not placed in mesh level I + 1 and are ignored by
the subsequent process. The interval I is a parent interval and is the parent of the
subintervals. The subintervals in mesh level [+ 1 are the children of I. An interval
is a childless interval if the number of singularities in it is at most s. Figure 3.4 is a
computation tree with n = 12 and s = 1.

Let I and I be intervals on mesh levels [and k, respectively. If k < [, then I is a
coarser interval. If k = [, then I and I are on the same mesh level.

Let I and I be adjacent intervals on mesh levels I and k, respectively, with k <.
Then I is a neighbor of interval I if T is childless or k = [. In Figure 3.4, interval Ig
has one neighbor I7, and interval I5 has two neighbors Iy and Is. However, I5 is not
a neighbor of I. This notion of neighborship is not commutative in general.

Let I be a neighbor of interval I’s parent. If I is not adjacent to I and is childless,
then T is a colleague of I. If T is not childless, then its children that are not adjacent
to I are colleagues of I. In Figure 3.4, interval I1o has two colleagues Iz and Iy. The
colleagueship is not commutative in general.

LEMMA 3.3. Let I be an interval on the computation tree.

o If I and its colleagues are on the same mesh level, then I can have at most 3
colleagues;
e I can have at most one coarser colleague, and when it does,
— the colleague must be childless;
— I can have at most two colleagues;

Let ¢ and r be the center and the length of I, respectively. And let I be a
colleague of I. Then relation (3.10) holds for w € I and all d; € I. Thus for w € I,
we can replace Y., ;&i/(d — w?®) by a local expansion centered at c. Similarly,
relation (3.15) holds for w € I and and all d; € I. Thus for w € I, we can replace
> a.er %/ (df — w?) by a multipole expansion centered at c.

For each interval I, we denote by N(I) the union of I and its neighbors. We

15

denote by R(I) the union of the colleagues of I. The relationship in Lemma 3.4 is
easy to establish. B
LEMMA 3.4. Let I be the parent of I, then

R(T) = R(I) + R(I) .

We denote by Niey the number of mesh levels in the mesh hierarchy. Since the
singularities are at least 7/2 apart (see (?7)), Ny can be at most |log, 7/2| =
O(|log, e]).

We denote by Ncni, Npar and Neyee the number of child intervals, parent intervals
and intervals in the computation tree. Then

LEMMA 3.5.

2n n 3n
Nehi < ? Niev Npar < —S— Niev and Niree < ? Niev -

Proof. By construction, every parent interval can have at most two child intervals.
Thus, the number of childless intervals is at most twice the number of parent intervals.
On the other hand, there can be at most |n/s| parent intervals on each mesh level.
Hence the results hold. O

3.4. Computing the Coefficients of Local and Multipole Expansions.
Consider an interval I on the computation tree with center ¢ and length 2r. We let
M(¢) be a multipole expansion of the form (3.17) with ¢ = 3r/ (¢ — w?) such that
1/(c — w?) M;(¢) approximates Y, ., =;/(d} — w?). A multipole expansion will be
computed for every parent interval. Since singularities that are not in R(I) are well-
separated from points in I, we also let £7(£) be a local expansion of the form (3.12)
with £ = (w? — ¢) /r such that £;(€) approximates D aign(ny Til (& — w?).

Consider a split of the sum in ®(w) as follows:

n T
Pw)=> p P~
i=1

(3.20) =) =+ > oo
dign(I) diex(I) *

We can compute ®(w) for w € I by evaluating both £(£) and ZdieN(I) z;[(d? — w?).
In the following we show how to systematically compute the coefficients of £;(£) under
the assumption that the multipole expansions have been given. We will consider the
problems of computing the multipole expansions and evaluating Y-, cy(r) i/ (d? —w?)
at the end of this section.

Let I be the parent of I with center & and length 27. Instead of computing the
coeficients in L£y(€) for I directly, we exploit the following relationship. Lemma 3.4
implies that

(3:21) Y amt X gt Y aew

d:gR(I) digR(I) deR(I)

We approximate each of the sums on the right hand side in (3.21) separately, and
add the results together to get Lr(£).

16

o
o
o

I
| R
o T f T |
e—] — —] —~

F1a. 3.5. Conversion Among Local and Multipole Ezpansions

The first sum is precisely the one that is approximated by the local expansion for
the interval I. To establish notation, we let

k
(3.22) L&) =>_%Ti(), where = (w*-¢)/F
=0

denote this expansion. Comparing with (3.12), we need to write £7(£) in terms of

variable £ (shifting the center of L7(£) to c.)
Since R(I) is the union of at most 3 colleagues of I, the second sum in (3.21) can
be split into at most 3 sums of the form 3, .7 z;/(d} — w?), where I is a colleague of

I. The interval I in Figure 3.5 has only 2 colleagues. If I has a multipole expansion
M;(¢), then we compute a local expansion for 3, .7 2i/(d? —w?) with it. Otherwise,
we approximate), . %i/(d; —w?) by a local expansion of the form (3.12). To find
L1(€), we sum up all these local expansions. Algorithm 3.1 below summarizes this
process.

ALGORITHM 3.1. Computing Local(], ¢, r)

if I does not have a parent then
Lr(§) :=0;
else
Set I := parent of I;
Shift center of L;(£) to that of I to get L1(£).
endif
for each colleague I of I with center & and length 27 do
if M;(C) ewists then
convert 1/ (¢ — w?) M;(C) into a local ezpansion centered at c;
else
compute a local expansion centered at ¢ for Y, cjzi/(d} — w?);
endif
add this expansion to L1(§);
endfor o
To complete Algorithm (3.1), we now convert the expansion L£7(€) in (3.22) into
the form of (??). Note that we can write

(3.23) E=p+vé where p=(c—¢)/f and v=r/F.
17

Hence the equation (3.22) can be rewritten as
o k
(3:24) Lr@) =Y Ti(n+v&).
=0

Lemma 3.6 below rewrites T;(u + v) in standard form.

LEMMA 3.6. The polynomials {T;(p+v f)};?zo can be rewritten in standard form
as

To(p+vE) To (&)

T8 | | 1O

Ti(p+v) T (€)

where HY) is a (k+1) x (k + 1) lower triangular matriz
h(()ﬂd'/)

) — h,gl’tdv) h(n’f]”’)

) mE - ml?
with entries recursively defined as
h‘(()lf(;y) =1, hgﬁ)’y) =My hglfl’y) =
and for j =1,2,--- k—1,

oty = 2uhs”) + vRlY) — piey)

§—1,00
M, = 20+ 3+ —),
Wtk = 2ubs” +v (K5 +n8]) =B, for =251,

(?”) — (1,v) (s) (W) — (l"”)
hityy =2uhys” +vhi0 iU = vk,

Proof. We use mathematical induction. The formulas are obviously true for
J =0,1. Now assume they hold for any 1 < j < k. Then according to (3.6),

Tjta(p+v8) = 2(p + v&)Tj (1 + v€) — Tj—1 (p + v€)

J j—1
=2(u+v6) Y hAIT(E) - 3 AT (©).
=0 =0

In the above right hand side, we replace 267;(€) by Ty41(€) + Ti—1(€) for I > 1 and
replace 2£T4(€) by 271 (€). The recursion for {hj_,_l,l}{:é follows from simplifying the
resulting expression. 0

With this lemma, equation (3.24) becomes

e e

< = 1u+v

Lr&) =@ % -) M: = ((5/0) fH(u,V)) 1:
Ti(p+vE) Ty (€)

18

Comparing with (3.12), we see that £7(£) can be written as

ﬁf(f_)ZZVjTj(f), where (o M - W) =@ - M W) HE.

(3.25)

The shifting formula in (3.25) is exact. Thus the approximation error in Lf(€)
remains unchanged when we shift its center.

In Algorithm 3.1 we also need to convert multipole expansions of colleagues into
local expansions. Let I be a colleague of I with center ¢ and length 27. When the
multipole expansion

k
=2 hn0, = (o)

exists, the sum 3, ;z;/(d? — w?) is approximated by 1/(é — w?) M;(().

To approximate this sum using a local expansion of the form

k
&) =Y vTi(§), &= (w*—c)/r,
j=0

we should interpolate the sum at the (k + 1)-st order Chebyshev nodes, as suggested
in Section 3.2. However, since a multipole expansion is already available, we will
interpolate 1/(¢ — w®) M;({) at the same nodes instead. This allows us to avoid
evaluating the sum directly, leading to a large reduction in flops when the number of
singularities in I is large. It is easy to verify that

wr=c+rf, and (=37 (6-w?) =0/(a—§),

where 7 = 37/r and ji = (¢ — ¢) /r. Interpolating 1/(¢& —w?) MI-(E) on the Chebyshev
nodes gives :

Li(riy) =1/ (E—c—rriy) Mp (o) (B—r1i)), i=1,2,---,k+1.

In terms of the ceofficients of £7(¢) and M;(C), these equations take the matrix form

do
§é! z . .
5 T et
F = g .1 ; where gi,j = 4 (V/~(’u irk+1)))
: r(A=ri)
Ye+1 <
O
or
do
" | & i
(3.26) : =g , where G=F"1G.
YEk+1 Sk,

Now we consider the problem of finding the multipole expansions. Note that for
any parent interval I, we have

Z; T
Z_d?—uﬁ: Z _ Z(P wz’
diel Iis achild of I &€l

19

where I can have either one or two children. we replace each sum 3 aer Tif(dZ —w?)
by Mr(w). To compute Mf(w), we convert the center of M (w) to the center of I for
each I and sum up the converted multipole expansions (see Lemma 3.7). Procedure
Multipole(I) summarizes this process.
PROCEDURE Multipole(T)
1. If I is childless, find Mj(w) directly by (??);
2. Otherwise, set Mf(w) := 0;
For each child I of I:
a. convert Mr(w) into a multipole expansion centered
at the center of I;
B. add the multipole expansion to Mj(w).
Lemma 3.7 provides a formula for converting the multipole expansions.
LEMMA 3.7. Let ¢ and ¢ be the centers of intervals I and I, respectively, with T
being the parent of I (see Figure 3.5). Let

— bj - b;
dzef T j{;g e]z:; R
where
Z (d—c) and b= z;(d -
diel d;el
Then

b; _Zbk<) (@ -&) ",

The coefficients {b;} and {b;} are those given in (??) for 3", .y zi/(d? — w?) and
P aier Tif (&7 — w?), respectively. The formula for computing {b;} from {b;} is exact.
Thus, when Procedure Multipole(]) is used to find M7(w), the truncation error is
bounded by (11/21)P Y7, 7 lzil/|d? — w?).

To compute the multipole expansions for all intervals on the computation tree, we
run the procedure Multipole(I) bottom-up on the computation tree. The truncation
error of My(w) is (see Lemmas 3.3 and 3.7 and relation (?7))

11 Z;
(3.27) > d2 M;iw)| < (21> Z@%ﬂ
d;

d;el

for w in a colleague of I.

To compute the local expansions for all intervals on the computation tree, we
further run the procedure Local(I) top-down on the computation tree. Let I be a
colleague of I. For w € I, the truncation error in converting Y, - =;/(d? —w?) into a
local expansion is bounded by (11/21)? Y, 7 |;]/|d? — w?| (see Lemmas 3.3 and 77
and relation (?7)). Together with Lemma 77, we have

Z; 11 P I.’l),l
) — <= S] B
(3.28) 2 g L)< <21) > |2 = o2
di@R(I) ¢ dign(r) 't
20

for w € I.
Finally, we consider the problem of computing the second sum -, (1 Til (d? -
w?) in (3.20) for w € I. Since I can have at most two neighbors, the sum can
be further split into at most 3 sums, one is of the form), ., z;/(d} — w?) and
the other two are of the form 3, yzi/(d} — w?), where I is a neighbor of I. We
compute 3, o ; ;/(d} —w?) directly. We compute Y, _; i/ (d? —w?) via the following
procedure:
PROCEDURE Sum(I, I, w)
1. If I is childless, compute ¥ a.ei i/ (di —w?) directly and return;
2. otherwise set Sum := 0,
for each child [of I

a. if T is adjacent to I, then compute Sum := Sum +
Sum(I, I,w);

B. if I is not adjacent to I, then compute Sum := Sum +
M;j(w);

3. return Sum.
For each | , at most one child can be adjacent to I. If] is a child of I not adjacent
to I, then I is a coarser colleague of I. Similar to (3.27), the truncation error of
Sum(I, I, w) is

(3.29) > Y Sum(I,]w)| < 1 p}:——lﬁ’i‘—
‘ &2 —w? E =21 &2 — w2
d;el ~ d;el

Define
X(I)={I: Iisa colleague of I}

We denote |S(I)| by the number of intervals in S(I).
LeEmMA 3.8.

Z |%(I)' S Ntree .
I is childless

Proof. We prove Lemma 3.8 by showing that it holds for all the trees generated
through the process of constructing the computation tree.

Note that Lemma 3.8 holds for the simplest tree in Figure 3.3. We assume that
Lemma 3.8 holds for a tree T' (see the tree in Figure 3.6 without the thick vertical bar
in the middle). We also assume that on tree T intervals up to mesh level k have been
generated and we are in the process of generating intervals on mesh level k+ 1. Let T
be a childless interval of T on mesh level k. We divide I into two disjoint subintervals
I and I, to get tree T' (see Figure 3.6). We prove Lemma 3.8 by showing that it
holds for T".

For simplicity, we further assume that both I; and I5 are non-empty so that they
are all on mesh level k£ + 1. The case where one of I} and I is empty is similar. By
dividing I into two disjoint subintervals, we loss one childless interval (I becomes a
parent interval). In the mean time, we gain two childless intervals. Since there does
not exist an interval that is in both $(I1) and (1), and since any interval in $(I;)
or §(J2) must be in $(I), we have

IS+ I1S(EL)] < [SD)] -
21

— I

Fig. 3.6. Tree T'

On the other hand, for any other childless interval I in T, the value S?(i) can
change from T to T" only if I is not on level k+ 1 and I is a neighbor of I. There can
be at most two such childless intervals in 7. Assume that I is such an interval. The
situation is illustrated in Figure 3.6 with [= I;. S‘s(f) gets a new childless interval
Iy. Thus |S(])| is increased by 1 and the sum

S8

I is childless
increases by at most 2. Since Niree is increased by 2, Lemma 3.8 holds for 7. O

3.5. The Algorithm. The following algorithm computes ®(w) of (3.4) for {d;}_,
and {w;}7_, satisfying (?7) and (3.5).
ALGORITHM Modified FMM
1. Establish a computation tree on (0,1) (see Section 3.3);
2. Do j = Niey, 2, -1
For each interval I on the j-th mesh level, compute Multipole(I);
3. Do j =2 Niy,1
For each interval I on the j-th mesh level, compute Local(l);
4. For each childless interval I and each w; € I:
a. ®(wj) = Lr(w;) + X yer xi/(d} — w?’)?
B. For each neighbor I of I:
®(w;) == ®(w;) + Sum(l, I,w;).
For any w, the truncation error of the modified FMM is the summation of the
truncation errors in £r(w) and Sum(I, I,w). Relations (3.28) and (3.29) imply that
the truncation error of the modified FMM is

0] ({: |2]/|d? —w2|> .
i=1

In Section 3.6, we discuss numerical issues related to finding and evaluating the local
and multipole expansions.

Step 1 of the modified FMM takes O(nNjey) floating point operations.

In step 2 of the modified FMM, computing the multipole expansion of a child-
less interval takes about 2ps floating point operations; and computing the multipole
expansion of a parent interval takes about 2p* floating point operations. Thus the

22

total cost of step 2 is about
2ps - Nem + 2p2 : Npar < 2pn (2 + g) Niev

floating point operations (see Lemma 3.5).

In step 3, shifting the center of a local expansion or converting a multipole expan-
sion to a local expansion takes about p? floating point operations; and computing the
local expansion of a childless colleague takes about 2ps floating point operations. By
Lemma 3.3, an interval can have three colleagues only if they are on the same mesh
level; and an interval can have at most one coarser colleague. Thus the total cost of
step 3 is about

(p* + max(p® + 2ps, 3p?)) Niree < 6pn(p + max(p, s))/sNiey

floating point operations (see Lemma 3.5).

In step 4, each childless interval I may interact with at most 3 childless intervals,
|(I)| multipole expansions and one local expansion. Interacting with a childless in-
terval and an expansion take about 4s% and 2ps floating point operations, respectively.
Thus the total cost of step 4 is

(126> +2ps) - Nem +2ps - > |S(I)] < 2n (125 + 5p) Njey
I is childless

floating point operations (see Lemmas 3.5 and 3.8).
Summarizing, the total cost of the algorithm is about

8p? + 6pmax(p, s)
s

(14]) + 24s +) NNiev

floating point operations. To minimize the total cost, we take s = p/+/2. The total
cost under this choice of s is about 48pnNj., floating point operations. Since p =
O(]log, €]) and Niey = O(]log, €]), this total cost is of the order O(nlog e).

Remark 1: The modified FMM is designed primarily for large n. As mentioned
at the end of Section 3.2, the basic ideas there results in faster methods than the direct
method when n > 4p.

Remark 2: The algorithm is for a distribution of {d;}?_, satisfying (7?). This
implies that n < 1/e and thus logyn < |log,€|. In practice |log,€|/log,n is a
moderate constant. Thus the total cost is like O(n log3 n) floating point operations.

Remark 3: If the singularities {d;}}_, are evenly distributed, then the tree height
Niev is more like log, n; the numbers of parent and childless intervals are more like
n/s; each interval is likely to have three colleague; and the sum of |(I)| becomes
negligible. The total cost is more like

2
<6p+ 12s + 919’_) n -logyn

floating point operations. When we take s = p/ V2, the total cost is about 23pnlog, n
floating point operations.

Remark 4: We can replace the local and multipole expansions (?7?) and (?7?) by
faster convergent expansions, e.g, Chebyshev expansions. This leads to much smaller
values of p and thus much faster versions of FMM.

23

Remark 5: Since we use the modified FMM for n different functions of the
form ®(w) of (3.4) at the same distributions of {d;}, and {@;}7_; (see the begining
of Section 3), we can pre-compute step 1 and all the quantities that are unrelated to
{z;}, for all (w).

Remark 6: The modified FMM can be used to evaluate the function G(u)
in Section 2.2 at O(n) points in O(nlog3 ¢) floating point operations. It can also be
generalized to evaluate the function

at O(n) points in O(nlog €) floating point operations. This generalized version can
in turn be used to check the stopping criterion (2.8) at O(n) points in O(nlog e)
floating point operations. Thus we can compute all the singular values of M in (2.1)
in O(nlogj €) floating point operations (see Section 2.2).

3.6. Some Numerical Issues in Finding and Evaluating the Expansions.
In this section we discuss some numerical issues related to finding and evaluating the
local and multipole expansions.

According to our arithmetic model (see Section 1), we can compute the left bound-
ary, the right boundary, length, and center of each interval on the computation tree
ezactly. We show this by induction. Assume that we are given the left boundary ¢,
the right boundary 7, the length 7, and the center ¢ of a parent interval I ezactly.
This assumption is true when I is an interval on mesh level 2. Then 7 = 2! where
I < |log, €| is the mesh level of I. We compute the corresponding quantities of the
children of I exactly. In fact 7 = 7#/2 is the length of the children of I. For the left
child, the left and right boundaries are ¢ and ¢, respectively, and the center is & + r.
For the right child, the left and right boundaries are ¢ and ¥, respectively, and the
center is & + r. The quantities 7/2, £ + r and &+ r are computed exactly.

In procedures Local(I) and Multipole([) for finding £7(w) and M (w), we need
to compute quantities of the form ¢? — d? and & — ¢? and their powers, where ¢ and
¢ are the centers of intervals, and d; is a singularity of ®(w) of (3.4). To reduce the
effects of rounding errors, we compute ¢ — d? and & — ¢? to high relative accuracy
as (c—d;)(c+d;) and (¢ — ¢)(¢+ c), respectively. Similarly we computer their powers
to high relative accuracy.

In procedure Sum(I7, I ,w) and in evaluating the local and multipole expansions
at the points {w;}7_; (see (3.5)), we need to compute quantities of the form ¢ — w?
and their powers, where c is the center of an interval. As before we can compute
¢® — w? to high relative accuracy as (c — w;)(c + w;). Similarly we powers of ¢ — w?
to high relative accuracy.

But the situation is different when we apply the modified FMM to compute
®(w) at the points {w;}7;. Since {®;}7_; are given by sums (see (3.2) and (?7?)):

Wj =dj+f; or Gj=djp1+
with
O0<di<inn<dy<...<dp<p<1.

To reduce the effects of rounding errors, we want to compute c? — &2 to high relative
accuracy, where @ is one of {@¥;}7_;. According to the arithmetic model, we have

fi(@) =w(1+¢),
24

where || < e. Thus we can compute ¢ + & to high relative accuracy as fl(c + fi(®)).
In the following we present a scheme for computing ¢ — & to high relative accuracy.
With this scheme, ¢> — & is computed to high relative accuracy as (¢ — @)(c + @).

One of the basic ideas of this scheme is to compute a representation of & for each
interval & is in. To be more specific, assume that for a parent interval I with & € I,
we are given an exact representation & = £ + d + fi, where £ is the left boundary of
I. If I is the whole interval (0, 1), then € = 0 and d and i are given by (3.2). @& must
be in a child interval I of I. Let r = 7/2 be the length of I, Procedure Shift(d, i,)
finds out I and computes d and p in the representation @ = £ +d + p, where ¢ is the
left boundary of I.

PROCEDURE Shift(d, i,r)
1. Let d = max(d,) and g = min(d, ji);
2. If d > r, then
a. Letd=d—-r;
B. Ifd+p>0,then
I is the right child interval. Return d and pu;
v. Otherwise
I is the left child interval. Return d and f;
3. Otherwise if d > r/2, then
d =d —r/2 and return Shift(d, u,r);
4. Otherwise
I is the left child interval. Return d and p.

We run procedure Shift(d, fi,r) top-down on the computation tree to compute
these representations of {&;}7_;. The total cost of this computation is O(n|log, ¢|)
floating point operations.

Let & v and r be the left boundary, the right boundary and the length of a
childless interval I. Given a representation & = & + d + p, we discuss the problem of
computing ¢ — @ to high relative accuracy, where c is the center of an interval on the
computation tree.

If ¢ < &, then we compute ¢ — € < 0 and d+ g > 0 to high relative accuracy, and
thus we can compute ¢ — @ to high relative accuracy as (¢ — &) — (d + u).

If ¢ > v, then
(3.30) c—0=(c-v)+(r—d—up).

Since c—v > 0 and r —d — p > 0, if we can compute r — d — u to high relative
accuracy, then we can compute ¢ — @ to high relative accuracy as above. We may
need to compute ¢ — & for many values of ¢, but we only need to compute the value
r —d — 1 once.

If £ < ¢ < v, then c must be the center of I. Thus ¢ = ¢ + /2 and hence
(3.31) c—0=r/2—-d-p.

Thus if we can compute 7/2 — d — p to high relative accuracy, then we can compute
¢ — @ to high relative accuracy.

Procedure Rel(d, i1,7y) computes d + p — -y to high relative accuracy, where d, p
and v = 27% with k > 0 are floating point numbers such that 0 < d + p < 2.

25

PROCEDURE Rel(d, u,7)

1. Let o = max(d, 1) and § = min(d, p);

2. If a > ~, then
a=a—vand Rel(d, u,v) = a + B;

3. Otherwise if a > /2, then
a = a—v/2 and Rel(d, u, k) = Rel(a, B,7/2);

4. Otherwise if @ > /4 and B > v/4, then
a=a-7/4,=p~v/4and Rel(d, u, k) = Rel(e, 8,7/2);

5. Otherwise Rel(d, u, k) = a+ 8 — 7.

For each @, we run Rel(d, 1,r) and Rel(d, u,7/2) to compute 7 — d — p and
r/2 —d — p to high relative accuracy, respectively. Hence ¢ — & is computed to
high relative accuracy in (3.30) and (3.31). The total cost of this computation is
O(n|log, €|) floating point operations.

4. Numerical Stability. As the major result of this section, we show that the
modified FMM satisfies

(4.1) fle (2(@))) = ®(@;) + O (EZ ng-afl—Ql)
=1 ? J

for the function ®(w) in equation (3.4) and the points {@;}?; of (3.2), where fl¢ ((d;))
is the floating point result of using the modified FMM. The error term in (4.1) in-
cludes both truncation errors and round-off errors. In Section 3.5 we have shown that
the truncation errors satisfy the error term in (4.1). In this section, we show that the
round-off errors also satisfy the error term in (4.1).

To be more specific, we note that the modified FMM splits ®(w) as follows
(see (3.20))

d(w) = }:d +Z

d: @R(TI) di GN(I)

where [is the childless interval such that w € I. The modified FMDM replaces the
first sum by a local expansion, and replaces the second sum by a sequence of multipole
expansions and some direct sums of the form), ., z;/(d? — w?).

As noted at the end of Section 2.2, we can compute each ratio in 3, ., 2;/(d? —

w?) to high relative accuracy. Thus the round-off error in this direct computation is
of the form O (¢ Y, 7 |%:l/|d? — w?|). In Section 4.1, we show that

(4.9 1AMy (@) - Y P

— 2|
diel

And in Section 4.2, we show that

R A ||
(4.3) 1B (Lr(@) - Li@)|=0e > Cr]
dign(1) 't
Relation (4.1) thus follows by combining these results.
As the second major result, in Section 4.3 we further show that relation (4.1)
implies that the modified FMM stably computes the matrix-matrix product V Q).

26

4.1. Round-off Errors in the Multipole Expansions. We consider the round-
ing errors in computing the coefficients of

p—1

(4.4) Mi(w) = ,
j;o @ - wz)JH dzei dz —

where (see Lemma, 3.7)

(45) I—)j = x; (d,2 - Ez)j .

First assume that I is a childless interval. In this case {I_)j};’;ll are computed
from (4.5). Since each difference d7 — ¢® is computed to high relative accuracy (see

Section 3.6), each term in the sum in (4.5) is also computed to high relative accuracy.
Thus

(4.6) fi(b;) = Z z; (d7 — “2) T+ 0ij),

d;el

where? |p; j| < o with g being a small multiple of p € that is independent of e. This
implies that

(4.7) [8(b;) —b;] <0 |ail|d — 2| .

d;el

Now assume that I is a parent interval. For simplicity, we first assume that I has
only one child interval I. We consider the rounding errors in computing the coefficients
{b; Yz 1 of Mj(w) in (4 4). According to Procedure Multipole(I) and Lemma, 3.7,

the coeﬁ‘laents {b; . ~1 are computed as
(4.8) b; —Z%() C——c)_’c and bk=2xi(d%—c2)k.
d;el

We determine the rounding errors in {b; Yoz r—1 by induction. In light of (4.1)
and (4.7), we assume that the rounding errors in {b Yooi 1 and {b}?Z; have the form

(49) |80 ~ B < 3 lmil 6 £, and [8() bl < Y leil s £ -

d;el d;el

Since the difference ¢* —* is computed to high relative accuracy (see Section 3.6)
each term in the sum of b; in (4.8) is also computed to high relative accuracy. Thus

)

J .)
(4.10) 66) =380 (1) (- arau),
k=0

3Here and elsewhere in Section 4 we use p as the same upper bound for similar round-off errors.

27

where |0 ;| < o. This implies that, by using Lemma 3.2,

(b)) —b;| < (1+0) D 1f(br) — byl (i) NI

k=0

j : ,
+o Y [bl (!) | — "
k=0
i . ‘
< (1+0))] |zl Hi,zl;)fff (i) -

d; el
i . .
+ ,QZ I-’L‘AZ |d,,2 _C'Z|k (i) ICZ _EQl]—k
d;el k=0
(4.11) < Z |.'I',| ((1 + 9)91‘,’] +0) (max (f,"l, Id? - C2I) -+ |62 - _2|)] .
d; el

Thus in (4.9) we can set
(412) 6;,;=(1+0)0ir+eo and f;;=max(fir,]d,2 - czl) +| -2 .

Now we assume that I has two children. In this case the sum of b; in (4.8) is
replaced by a summation of such sums over these two children; and the sum on the
right hand side of (4.11) is similarly replaced by

Z Z || (14 0)8;,1 + o) (max (fir, |d} — ¢*|) +|c* - 52|)j .
Tisachild of I &€l

Thus recursion (4.12) still holds.

Now we solve the recursion (4.12). For any d; € I, let Ij, be the childless interval
such that d; € Ij. Alsolet I = I, I, ..., I} be intervals on the computation tree such
that I; is the parent of I;; for 1 < j <k — 1. Let ¢; and r; be the center and the
length of I;, respectively. Relations (4.7) and (4.12) imply that

fin = Idf - Ci! and fir, = max (fir;., |d3 - C?HD + lC§+l - C?])
and
0,1, =0 and Gi,[j =(1+p) Hi:IHl +o0.

Solving this recursion we have
k—1
(4.13) fir= |df —ci|+ Z |c? - C§+1l and 6;7=(1 + o)f —1.
j=1
Since multipole expansions are computed only for Njey — 1 mesh levels, we have
k < Niev — 1 and thus
(4.14) 071 < (140N —1x (Niev — 1)0

for any singularity d; and any interval I.
Before deriving a bound for f; 7, we introduce the following lemma.

28

LEMMA 4.1. Let I1,I5,..., I} be intervals on the computation tree such that I;
is the parent of Ij, for 1 < j <k —1. Let ¢c; and r; be the center and the length of
I;, respectively. Then for any d € I,

2
|d? —cll<|d2—ck|+Z|c j+1|§(01+%) -cl.
Proof. Since

d2—c%=(d2—-ci)+§:(c?—c?+l) ,

taking absolute values on both sides gives the first inequality of Lemma 4.1. We
prove the second inequality of Lemma 4.1 by induction on the number of intervals.
Lemma 4.1 is true for the case of one interval. Assume that Lemma 4.1 is true for
k — 1 intervals I, ..., I, where k > 2. Then

k-1
—ql+2lc Gl =18 =i+ L1 = Gl +1 =
j=2

r2\? 4 2 2
< (cz—l——Q-\) -G +|g - .

Since I is a child of I;, we have ¢y = ¢1 £ 75/2. The value ¢2 = ¢; + r2/2 makes the
last relation larger. Plugging this value into the last relation and using the fact that
re =11/2 we have

2
—CL|+ZIC 7~+1]§(01+%) -c2.

Thus Lemma, 4.1 is proved. O
Using Lemma 4.1, relation (4.13) implies

7\ 2
(4.15) |2 - 2| < fir < (f;+g—) 2.

We now consider the round-off errors in evaluating Mp(w) of (4.4) at a point @,
where @ is in a colleague of I and is one of {®;}7_; in (3.2).
Since the difference ¢ —&? is computed to high relative accuracy (see Section 3.6),

similar to (4.10) we have

b; - B
|8 (Mr(@)) — Mp(@)|<(1+0)Z“‘—72—|J+—1|+92‘5§_—]2‘!‘2|7ﬁ'

=0

Using relations (4.5), (4.9), (4.14) (4.14) and (4.15), and assuming that |&* — &?| >
fi,1, we have

® Yaerlml £
IA(M7(@) - M@) < (1+0) (14N =) S ~—‘1—"—+
=0 & -ajf

29

+o ZZd el |$z||d I

=0 |02—-w2|]+1
© Serlil £,
Niev _ d;el 1"l J g T
S((1+9) l 1)2 |52_w2‘j+1
J:
|
S (T AR\ |y g e 1 E—
()L E= T

d;el

Since d; € I we have |d; —¢&| < 7/2. Since & is in a colleague of I, from Lemma 3.3
we have either | — ¢| < 37/2 with ¢ > 57/2 or & > ¢+ 37/2 with & > 7/2. These
conditions imply

0< -7 | — 7| <4
e A e e R
Thus
. . x; 4|
8(M7(@) = M@ < 4 (140N = 1) T o~ N ¢ Y i
d;eT d;el

which is (4.2).

2. Round-off Errors in the Local Expansions. We first consider the round-
off errors in computing the coefficients of

p—l . .
(4.16) Lrw) =Yg (-~ 3 _QLJ
=0 i

digh(r)

by bounding the round-off errors in the coefficients of local expansions obtained by
(see Procedure Local(I))

expanding 3, 7%:/(d? — w?) for a coarser colleague I of I;

transforming the multipole expansion of a colleague of I on the same mesh level;

shifting the center of the local expansion of the parent of I.
We then consider the round-off errors in evaluating the local expansions.

First assume that smgularltles not in N(I) are those in I, where I is a coarser

colleague of I. In this case {a;}2_ 1:1 are computed as in (?7) (see Procedure Local([)):

T

aj:E R e o

2 o\Jt+l
diei(d"' C)

Since each difference d? — ¢? is computed to high relative accuracy (see Section 3.5),
each term in the sum of a; is computed to high relative accuracy. Similar to (4.6) we
have

|xz|
(4.17) [fi(a;) —ajl <o Z 2|J+1 .
d; er
We also have
||
|aj| < Z ld2 —62[j+1 .
7

diei
30

Next assume that singularities not in R(7) are those in I, where T is a colleague
of I on the same mesh level. In this case {a; };.’;11 are computed as in Lemma 77 (see
Procedure Local([)):

"tk b .
;= g . . i) 2 _ 2
iy (k) @y Vith be=) w(d-@)
+=0 d;el
Since & — ¢? is computed to high relative accuracy (see Section 3.5), each term

in a; is computed to high relative accuracy. Similar to (4.6) we have

p—1—j ﬂ(I;k) —Ekl
itk ‘
fi(a;) —a;l < (1+0) Z () [— 2[Frit]

p—1—j Y

ji+k |0k]

+e Z ()|52_62|k+j+1 .
k=0

According to Section 4.1, we can write the round-off errors in {by, }’D —o as

lﬂ(i)k) - Bk[< (4™ =1) D faal £

d,’Ei

where f; ; satisfies (4.15). We also have

|I;k| < Z |:1:l| ld? - j2[k < Z |.’1:l|f,’:f .

diel d;el
These relations imply
k
- itk fir
fi(a;) — aj| < (1 + N> —1) > IEZIZ () m
dief
(4.18) < ((1+ "N —1) iz

310
wer (l2 =2l - 1)

where we have used the fact that |¢* — ¢*| > f; ;. Similarly we have

|
lajl <) :

Jj+1 -
d;el (|C2—C"|— zI)

Now assume that singularities not in R¥(I) are those not in R(I), where T is the
parent of I. In this case {aj};’;ll are computed as in Lemma ?? (see Procedure
Local(])):

iy k k—j
(IJ:E(_L]‘,(J.>(52—62)’],
py

where {dj}?;ll are the coefficients of L5(w).
31

Since the difference ¢2 — c? is computed to high relative accuracy (see Section 3.6),

each term in the sum in a; is also computed to high relative accuracy. Similar to (4.10)
we have

() — 0] < 1+921ﬂ(m —akl()l -

=j
- k 2 2|k
(4.19) + Q,;jlak‘(i > |c c | .

Similar to Section 4.1, we determine the rounding errors in {a; };.’;é by induction.
In light of (4.17), (4.18) and the corresponding bounds for {|aj[}";;3, we assume that
the rounding errors in {a;}5_ —s and {a;}i- o have the form

_ _ |z5| 9; 1 LARVE,
(420) @) -al< Y UL and () - gl Y Filer
digr(D) Yi,J digx(ny Jid
We also assume that
_ |i] |
(4.21) lael <) e and Jag| < >
digR(T) 7i,d a:gn(r) i1
Plugging these relations into (4.19), we have
|e® — ¢?| -
[fi(a;) —ajl < (1+0) Z EARS IZ I m—
dign(D) 9; 1
2 — 2|t
o > iy (}) Q
d;gn(T) k=j gv:,i

i) (L + 0)9; 1 + o)

(4.22) < ‘ <,
awpnn (91— 122 =)’

provided that g; ; > |¢® — ¢?|. Similiarly
_ k—j
|aJ|<Z|a1_|<) C2l J
k=j

> [z

digR(T) (9:7— 22 - 021)”1 :

Comparing this with (4.20), (4.21) and (4.22), we can set
(4.23) 9ir=1+0);r+e¢ and gir=g,7— |-,

provided that g; ; > 0. Similar to the recursion (4.12) for the multipole expansions,
recursion (4.23) holds for any parent interval I and its child 1.

Now we solve the recursion (4.23). For any d; & N(I), let I, I5,..., I = I be
intervals on the computation tree such that I; is the parent of I;1q for 1 <i <k —1.

32

Also let I; be the colleague of I; such that d; € I. Let ¢; and r; be the center and
the length of I;, respectively.

If [; is a coarser colleague of I}, then relations (4.17) and (4.23) imply that
9i,ln = |d12 - c%| and gir;. = Gig; — IC? - C?+1i)
and
Yi, =0 and Yir,, = (1405, +o.

Solving this recursion we have
(4.24) g,;,,=|d2—q[—§:|c o] and 9 =(1+0)f-1.

If I is a colleague of I; on the same mesh level, then relations (4.17) and (4.23)
imply that
9i,n = lé% - C?! - fi,f] and gi’IH‘l = givIJ' - |C? - C.?'f’l[’
and
i, <1+ Q)N“"’ -1 and 955, =0+ +0.

Solving this recursion we have
(425951 = |&f — i — fiz, Z | — ¢l and 9ip < (L4)Nt — 1.

To complete the induction, we need to show that g; 7 > 0. We discuss this when
we bound the round-off errors in evaluating the local expansions.

Since local expansions are computed only for Njey — 1 mesh levels, we have
k < Njey — 1. Thus relations (4.24) and (4.25) imply

(4.26) i1 < (14)2MNev=1 _q

for any singularity d; and any interval 1.

Finally we consider the round-off errors in evaluating £7(w) of (4.16) at the point
winl, where @ is one of {@;}7_; (see (3.2)).

Since the difference &? —c? is computed to high relative accuracy (see Section 3.6),
each term in the sum in (4.16) is also computed to high relative accuracy. Similar
to (4.10) we have

p—1

. p—1
I8 (Lr(@) = Lr@)] < (1+0) D A(a;) - ajl | - " + @Z laj||@* =)’

Jj=0

By (4.20), (4.21) and (4.26) , this implies

(427) A(Lr(@) - Lr@)] < (140" 1) Y Iwzlzl ez

d; gR(T) j=0 9i,1

(4.28) <(A+o™=~-1) ¥ |zl

NS RCTIE
gign(n) I |* - |

33

provided that g;; > |@* —c?|. This assumption implies g;;; > 0 and hence the
completion of the induction.
By Lemma 4.1 we have

k—1

(4.29) 5 @+ 3 |é — | < (@ +) -4
j=1

In the following we bound the ratio |d? — &?2| / (gi,1, — |®® — ¢}|). For any d; & R(I),
let I, I, ..., I, = I be intervals on the computation tree such that I; is the parent of
Iy for1 <i<k-1. Alsolet I; be the colleague of I such that d; € I. Let cj and 1
be the center and the length of I;, respectively. Since & € I; we have | —c;| < 71/2.
Since I; is a colleague of I, according to Lemma 3.3 we have either
37’1 5’!‘1

7 .

3
di,ch-i-—gl_ or d<(‘1——2— , €2

If I; is a coarser colleague of I, then applying (4.29) to relation (4.24), we have

. : 1?2
gin —[0? = | > |2 - ci| - (e + T) + 3,
which implies

|4 — 7|
<4.

0< ———F5——>7<
gi,h_l —Ckl

If I; is a colleague of I; on the same level, then applying (4.29) and (4.15) to
relation (4.25), we have

2 ~ L1 2 -2
k2184 (o 5) e (e)
Since |é; — ¢1] > 2rq, this relation implies

2 _ A2
|4 —& <4

0< ———F5——7<4.
gin — |0 = c

Plugging these relations into (4.28) we have

B - L@ <41+ =1) 5 P a3

0 172 — 52|
d; gR(I) Id ’I di ER(I) v l
which is (4.3).

4.3. Numerical Stability in Singular Vector Computations. As men-
tioned in Sections 1 and 3, we use the modified FMM to accelerate the computation
of the singular vectors of A’. With the singular vector matrices of M or M;, we
compute the singular vector matrices of A’ € R(™+t1)*X" Ag in Section 3, we only
consider the problem of computing a numerical right singular vector matrix VQ of A’
for the case m > n, where V and @ are orthonormal.

34

Let v7 = (v1,...,v,)T be a row of V. Then |jv||; = 1 and the correspond-
ing row of VQ is v7Q = (W q,...,v7¢,) with 07§ = ‘I>1(wj)/ ®5(w;), where
(see Section 3)

& (w) = Z d“‘Zz and %(w):i——i——

We compute @1 (w;) using the modified FMM with a precision satisfying (see (4.1))

(4.30) fle (21(w;)) = ®1(w;) + O < Z I_dl_vl—ﬁ'——o ’
1 j

As in Section 2.1, we directly compute /®2(w;) to high relative accuracy

(4.1 1 (/22)) = /2uli) (1+0(@)

By the Cauchy-Schwartz inequality, we get

Plugging this into (4.30) and using (4.31) we have

ﬂf(®1(w;)) = (1 (w;)) (14 0(e€)) + O(e)

Vv ®2(wj) P (wy)
_ P (wy)
- @2((’01) + O(ﬁ) bl

where we have used the fact that

21 (wy) / JEawp) | <1

Thus, each component of UTQ is computed to high absolute accuracy. When all
the rows of V() are computed, the resulting matrix

fle(VQ) = VQ + O(e)

is numerically orthonormal.

REFERENCES

[1] J. R. BuncH AND C. P. NIELSEN, Updating the singular value decomposition, Numer. Math.,
31 (1978), pp. 111-129.

[2] J. R. BuncH, C. P. NIELSEN, AND D. C. SORENSEN, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

35

[3] J. CARRIER, L. GREENGARD, AND V. ROKHLIN, A fast adaptive multipole algorithm for particle
simulations, STAM J. Sci. Stat. Comput., 9 (1988), pp. 669-686.

[4] G. H. GoLuB, Some modified matriz eigenvalue problems, SIAM Review, 15 (1973), pp. 318~
334.

[5] G.H. GoLuB AND C. F. VAN LOAN, Matriz Computations, The Johns Hopkins University Press,
Baltimore, MD, second ed., 1989.

[6] W. B. GRAGG, J. R. THORNTON, AND D. D. WARNER, Parallel divide and conquer algorithms
for the symmetric tridiagonal eigenproblem and bidiagonal singular value problem, in Pro-
ceedings of 23rd Annual Pittsburgh Conference, University of Pittsburgh School of Engi-
neering, vol. 23 of Modelling and Simulation, 1992.

[7] L. GREENGARD AND V. ROKHLIN, A fast algorithm for particle simulations, J. Comp. Phys.,
73 (1987), pp. 325-348.

[8] M. Gu, Numerical Linear Algebra Computations, PhD thesis, Department of Computer Sci-
ence, Yale University, November 1993.

[9] M. Gu AND S. C. EISENSTAT, A divide-and-conquer algorithm for the bidiagonal SVD, Re-
search Report YALEU/DCS/RR-933, Department of Computer Science, Yale University,
December 1992. To appear in SIMAX.

[10] , A stable and efficient algorithm for the rank-one modification of the symmetric eigen-
problem, Research Report YALEU/DCS/RR-916, Department of Computer Science, Yale
University, September 1992.

[11] , Downdating the singular value decomposition, Research Report YALEU/DCS/RR-939,

Department of Computer Science, Yale University, May 1993.

[12] E. R. Jessup AND D. C. SORENSEN, A parallel algorithm for computing the singular value
decomposition of a matriz. Revision of Tech. Report ANL-MCS-TM-102, Argonne National
Laboratory, 1991.

[13] R.-C. L1, Solving secular equations stably and efficiently. Unpublished manuscript, October
1992.

[14] M. MoOONEN, P. VAN DOOREN, AND J. VANDEWALLE, A singular value decomposition updating
algorithm for subspace tracking, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1015-1038.

[15] M. MOONEN, P. VAN DOOREN, AND F. VANPOUCHE, On the QR algorithm and updating the
SVD and URV decomposition in parallel. IMA preprint, 1992.

[16] G. W. STEWART, Introduction to Matriz Computations, Academic Press, New York, 1973.

[17] , An updating algorithm for subspace iracking, Tech. Report CS TR~2494, Department
of Computer Science, University of Maryland, July 1990.

[18] , Updating a rank-revealing ULV decomposition, Tech. Report CS TR-2627, Department
of Computer Science, University of Maryland, March 1991.

[19] , Determining rank in the presence of error, Tech. Report UMIACS TR~92-108 and CS

TR~2972, Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, October 1992.

36

