
We prove that the tree construction of Fakcharoenphol, Rao, and Talwar [2] can be used
to approximate snowflake metrics by trees with expected distortion bounded independently
of the size of the metric space. The constant of distortion we derive depends linearly on
the dimension of the metric space. We also present an algorithm for building a single tree
whose cost is linear in the problem size.

A note on approximating snowflake metrics
by trees

William Leeb
Technical Report YALEU/DCS/TR-1501

November 20, 2014

Dept. of Mathematics, Yale University, New Haven CT 06511

Approved for public release: distribution is unlimited.
Keywords: tree metric, partition trees, tree approximation, snowflake metric, dimen-
sion of a metric space

1 Introduction

A basic problem in the theory of metric spaces is to approximate an arbitrary metric
d(x, y) on a finite set X by a convex combination of dominating tree metrics [1]. In other
words, we seek a random family of partition trees T on X, with tree metrics dT (x, y),
such that

d(x, y) ≤ dT (x, y) (1)

for all trees T in the collection, and

ET dT (x, y) ≤ Kd(x, y) (2)

for some constant K > 0. In general, one cannot hope for K to be smaller than
O(log |X|), as shown by the example of the n-cycle [5]. The paper [2] describes a random-
ized construction of partition trees that achieves this O(log |X|) bound for any metric
space X. If |X| is large, however, a size O(log |X|) distortion can be too big to be useful.

In Section 3, we make the following simple observation about the trees considered
in [2]. For any 0 < α < 1, these trees can be used to approximate the snowflake metric
d(x, y)α with expected distortion O(dim(X)/(1− α)), where dim(X) is a version of the
doubling dimension of X that we define in Section 2.

In Section 4 we give an algorithm for constructing the trees in [2] that has cost
O(|X2|). Though such an algorithm is alluded to in [2], we have not seen it described in
the literature. We also point out that the näıve algorithm described in [2] and elsewhere
can have arbitrarily high running time independent of |X|.

2 Background: dimension, snowflake metrics and trees

If (X, d) is a metric space, we define its dimension to be

dim(X) = sup
x∈X,r≥0

log2

(
V (x, 2r)

V (x, r)

)
where V (x, r) denotes the number of points contained in the closed ball of radius r
around the point x ∈ X. The key fact about the quantity dim(X) is that it often does
not depend on the number of points in X. For example, a uniform grid of points in d-
dimensional Euclidean space will have dimension approximately equal to d, independent
of the number of points in the grid.

Another basic idea we need is that of the snowflake metric. A snowflake metric
ρ(x, y) satisfies the property that ρ(x, y)p is also a metric for some p > 1. Put another
way, if we start start with any metric d(x, y), the new metric ρ(x, y) = d(x, y)α is a
snowflake metric whenever 0 < α < 1.

The snowflake metric d(x, y)α is often better-behaved than the original metric d(x, y).
There are many manifestations of this phenomenon. In classical analysis, for instance,
spaces of functions that are smooth with respect to the snowflake metric |x − y|α can
be easily characterized along with their duals when α < 1, but not when α = 1 (|x− y|

1

denotes Euclidean distance) [4]. Another example is Assouad’s Theorem; any snowflake
metric space subject to a doubling condition can be embedded into Rn for some n [3].
Such embeddings do not exist for arbitrary metric spaces; the Heisenberg group is a
counterexample [6].

Finally, we introduce the definition of tree metric that we will be using in this paper.
A partition tree T on a set X is a collection of subsets F ⊂ X, which we will call folders,
with the following properties:

1. The set X itself is in T ;

2. All the singletons {x} lie in T ; and

3. For any two folders F and F ′ in T , either F ⊂ F ′, F ′ ⊂ F , or F and F ′ are
disjoint.

We assume that each folder F ∈ T has a weight w(F) placed on it. We require
that if F (F ′, then w(F) < w(F ′); and that every singleton folder as weight zero, or
w({x}) = 0 for all x ∈ X. We then define the tree distance dT (x, y) between x and y to
be the weight of the smallest folder containing both x and y. It is easy to see that this
is a distance.

3 Approximating snowflake distances by random trees

Let (X, d) be a finite metric space. Assume that the diameter of X (that is, the maximum
distance between any two points) is 1 (note that this convention is not standard; many
authors scale the metric to have minimum distance 1).

We now describe the random trees of [2]. Much of the notation we use here comes
from that paper. There are two random objects that define each tree: a random permu-
tation π of the points in X, and a random number β ∼ Uniform(1, 2). We require that
π and β be drawn independently of each other. Define βl = 2−lβ.

For each x ∈ X and l ≥ 0, let x∗l be the first point in X (according to the permutation
π) such that d(x, x∗l) ≤ βl. We will say that “x has been assigned to x∗l at level l.”

We recursively define a partition tree on X as follows. The only level 0 folder in the
tree is the entire set X, and its center is the first point on the list (since the diameter
of X is 1, and β0 ≥ 1). For each folder F at level l, the subfolders of F (at level l + 1)
are formed by grouping together the points in F that were assigned to the same point
at level l + 1.

Consequently, for each folder F at level l, there is a point xF such that all the points
x ∈ F were assigned to xF at level l; in particular, d(x, xF) < βl. Therefore, for any two
points x and x′ in F , d(x, x′) < 2βl ≤ 2−l+2.

Each point in X therefore belongs to a single folder, one at each level of the tree.
We define the tree distance between two points to be dT (x, y) = 2−l+2, where l is the
last level at which x and y are in the same folder. We will denote the diameter of a
set S ⊂ X under the distance induced by T as diamT (S), and the diameter of S in the
original metric d as diam(S).

2

Note that if F is this folder for x and y, then as we have seen the diameter of F
(in the metric d) is no more than 2βl; therefore, the tree distance dT (x, y) is an upper
bound on the distance d(x, y), and so diamT (S) ≥ diam(S). Consequently, the same
inequality holds for the snowflake metrics: diamT (S)α ≥ diam(S)α.

We will prove the following theorem:

Theorem 1. The tree construction of [2] produces a family of trees T such that for any
0 < α < 1 and any subset S ⊂ X,

ET diamT (S)α ≤ K diam(S)α

where K = O(dim(X)/(1− α)) as α→ 1−.

In fact, we can prove trivially that the distortion for snowflakes can never be worse
than the distortion of the original metric, raised to the power α. This follows trivially
from Jensen’s inequality, as

ET diamT (S)α

diam(S)α
= ET

(
diamT (S)

diam(S)

)α
≤
(
ET diamT (S)

diam(S)

)α
.

In particular, since α < 1, the snowflake’s distortion is smaller than that of the original
metric. Of course, this simple calculation does not prove that the distortion for the
snowflake is bounded independently of the size of X; this is the content of Theorem 1.

The remainder of this section will be devoted to proving Theorem 1. The basic
outline of the proof is the same as in [2]; the proofs differ at the end to account for
the snowflake, and there are minor adjustments throughout due to our analyzing an
arbitrary set S rather than a pair of points ([2] considers the case S = {x, y} only).

Define the integer l∗ ≥ 0 by

2−l
∗−1 < diam(S) ≤ 2−l

∗
.

Observe that if all points in S are in the same folder at level l, the diameter of S must
be less than the diameter of their shared folder, which implies that diam(S) ≤ 2−l+1.
Therefore,

l ≤ l∗ + 2.

For brevity, denote by Gl the event that all points in S are assigned to the same
point at level l. Then we have shown

ET diamT (S)α ≤
∞∑
l=0

2−(l−2)αPr[Gl \Gl+1] ≤
l∗+2∑
l=0

2−(l−2)αPr[Gcl+1]. (3)

We will prove an upper bound on Pr[Gcl+1] that will give us the desired result.
We introduce some language and notation that we will use throughout the proof:

• For each y ∈ X, let wy be any point in S that is closest to y.

3

• For each y ∈ X, let xy be any point in S that is farthest away from y.

• For each y ∈ X, let Ly denote the number of points in X that are as close or closer
to S than y.

• Say that a point y ∈ X splits S at level l if y is the first point to which any point
in S is assigned at level l, but not all points of S are assigned to y at level l.

We state the following lemma:

Lemma 1. At most one point can split S at level l. Furthermore, if y splits S at level
l, then wy must be assigned to y and xy must not be assigned to y at level l.

Proof. The first claim is obvious. For the second claim, suppose that y splits S at level
l. Suppose for contradiction that wy were not assigned to y. There must be some point
x that is assigned to y, or else it could not split S; consequently, d(x, y) ≤ βl. Since
wy is the closest point to y in S, d(wy, y) ≤ d(x, y) ≤ βl; so the point to which wy is
assigned at level l must be a point in X that precedes y; call it y′. But x is assigned to
y, not y′; and therefore, since y′ precedes y, y cannot be the point that splits S (it must
be y′ or an even earlier point); contradiction. Therefore, wy is assigned to y.

Similarly, suppose for contradiction that y splits S at level l, and that xy is assigned
to y at level l; then d(xy, y) ≤ βl. Since xy is the point farthest away from y in S, it
follows that every other point in S is within βl of y as well. The only way that y could
split S, therefore, is if there were some other point y′ ∈ X preceding y such that some
point w ∈ S is assigned to y′. But xy is assigned to y, not to y′, and since y′ precedes y,
y cannot split S; contradiction. Therefore, xy cannot be assigned to y, and the proof is
complete.

We now begin to develop the upper bound on Pr[Gcl+1]. The next inequality is
obvious from the definitions:

Lemma 2. Let l ≥ 0. Then

Pr[Gcl+1] ≤
∑
y∈X

Pr[y splits S at level l + 1]. (4)

To bound Pr[Gcl+1] we will bound the probabilities Pr[y splits S at level l + 1] that
appear in (4). Recall that Ly denotes the number of points as close or closer to S than
y.

Lemma 3. For any point y ∈ X and any l ≥ 0,

Pr[y splits S at level l + 1] ≤ 1

Ly
2l+1 diam(S).

Proof. Take any y ∈ X. In order for y to split S at level l + 1, it is necessary that the
following two events occur:

4

(A) βl+1 ∈ [d(wy, y), d(xy, y));

(B) y appears before all other points in X within distance βl+1 of S.

The necessity of event A follows immediately from Lemma 1. Event B is necessary, for
otherwise the point that appears before y would be the first point on the list to which
some point of S is assigned, making it impossible for y to split S.

We claim that, conditional on any fixed value of β, the probability of event B can
be bounded above by 1/Ly. This follows because if y is within βl+1 of S, then so is
any point that is closer to S than y; in order for y to split S, it must appear before all
these other points. The probability that y appears first is no more than 1/Ly, since all
permutations of these Ly points is equally likely to occur.

Using the triangle inequality and the fact that β ∼ Uniform(1, 2), the probability of
event A can be upper bounded by

Pr[A] ≤ d(xy, y)− d(wy, y)

2−l−1
≤ 2l+1d(wy, xy) ≤ 2l+1 diam(S).

Therefore

Pr[y splits S at level l + 1] ≤ Pr[A ∩B] ≤ Pr[A]Pr[B|A] ≤ 1

Ly
2l+1 diam(S)

as desired.

We now derive the upper bound on Pr[Gcl+1] that, when plugged into (3), will yield
Theorem 1.

Lemma 4. Suppose l ≤ l∗ − 2. Then

Pr[Gcl+1] ≤
6

ln 2
2l diam(S) dim(X).

Proof. If

d(wy, y) ≤ 2−l−2

then

d(xy, y) ≤ d(xy, wy) + d(wy, y) ≤ 2−l
∗

+ 2−l−2 ≤ 2−l−2 + 2−l−2 = 2−l−1 ≤ βl+1

and so xy is within βl+1 of y, which implies that xy is assigned to y at level l + 1, and
so, by Lemma 1, y does not split S at level l + 1. So if l ≤ l∗ − 3, in order for y to split
S at level l + 1, it must be that d(wy, y) > 2−l−2. Lemma 1 also implies it is necessary
that d(wy, y) ≤ βl+1 ≤ 2−l. Consequently, the only points in X that could possibly split
S at level l+ 1 are those whose distance to S is no greater than 2−l and strictly greater
than 2−l−2.

5

Now, list the points in X in order of their distance to S:

y1, . . . , y|X|.

Ties are broken arbitrarily; all that matters is that there are at least j points in X as
close or closer to S as is yj ; in other words, Lyj ≥ j.

Let I be the number of points in X whose distance to S is less than or equal to 2−l−2,
and J the number of points whose distance to S is less than or equal to 2−l. Then the
points whose distance to S is no greater than 2−l and strictly greater than 2−l−2 are

yI+1, . . . , yJ

and hence these are the only points that could possibly split S at level l+1. Consequently,
applying Lemmas 2 and 3 and the fact that Lyj ≥ j we get

Pr[Gcl+1] ≤
∑
y∈X

Pr[y splits S at level l + 1] ≤
J∑

j=I+1

Pr[yj splits S at level l + 1]

≤
J∑

j=I+1

1

j
2l+1 diam(S) ≤ 1

ln(2)
2l+1 diam(S) log2(J/I).

(5)

The result will follow if we can prove that log2(J/I) ≤ 3 dim(X). To show this, take any
x ∈ S. Observe that if y is within 2−l of S, then d(x, y) ≤ d(x,wy) + d(wy, y) ≤ 2−l

∗
+

2−l ≤ 2−l+1 (since l ≤ l∗ − 2), and therefore J ≤ V (x, 2−l+1); also, V (x, 2−(l+2)) ≤ I (if
y ∈ X is within 2−(l+2) of x, then obviously y is within 2−(l+2) of S). Therefore,

log2(J/I) ≤ log2

(
V (x, 2−(l−1))

V (x, 2−(l+2))

)
≤ 3 dim(X)

as desired.

We can now combine (3) and Lemma 4 to prove Theorem 1. We have

ET diamT (S)α ≤
l∗∑
l=0

2−(l−2)αPr[Gcl+1] =

{ l∗−2∑
l=0

+

l∗∑
l=l∗−1

}
2−(l−2)αPr[Gcl+1]

≤ 6

ln 2
diam(S) dim(X)4α

l∗−2∑
l=0

2l(1−α) + 4α
l∗∑

l=l∗−1
2−lα

≤ 6

ln 2
2−l

∗
dim(X)4α

1

21−α − 1
2(l
∗−1)(1−α) + 4α(2α + 1)2−l

∗α

≤ 4α
(

dim(X)

21−α − 1

3 · 2−α

ln 2
+ 2α + 1

)
2−l

∗α

≤ 8α
(

dim(X)

21−α − 1

3 · 2−α

ln 2
+ 2α + 1

)
diam(S)α.

6

Consequently, we have shown that

ET diamT (S)α ≤ K diam(S)α

where K = O(dim(X)/(1− α)) as α→ 1−, proving Theorem 1.

4 The algorithm for building a single tree

In this section we describe an explicit algorithm for constructing a single tree T , given
the permutation π and the parameter β. We will show that the algorithm has cost
O(|X|2), which is linear in the problem size. In [2], the authors state the existence of
such an algorithm, though we have not encountered it in the literature.

A näıve construction of the trees from [2] may repeat the same folder multiple times
at different levels. This will occur when all the points in a folder at level l are assigned
to the same point at level l + 1. Of course, the tree distance in this case will only be
determined by the copy of this folder at the smallest level, so there is no need to include
the redundant copies in the tree.

Furthermore, we note that any algorithm whose running time is to be controlled solely
in terms of the size of X must avoid forming redundant folders. To see this, consider
a metric space with three points, X = {x, y, z}. Suppose d(x, y) = ε, d(x, z) = 1, and
d(y, z) = 1 − ε for some ε < 1/2. Suppose too that the permutation π places x first, y
second, and z third. Then it is easy to see that if 0 < l < log2(β/ε), then the level l
partition consists of the two folders F1 = {x, y} and F2 = {z}; in particular, there are
at least log2(β/ε) many levels before the tree splits into singletons and the construction
terminates. Consequently, if an algorithm performs operations level-wise, the running
time on this example can be made arbitrarily large by taking ε→ 0. An algorithm whose
cost depends only on |X| must automatically skip over redundant folders.

We present such an algorithm in this section. Throughout the remainder of this
section, we will list the points in the order given by π as x1, . . . , x|X|. The following
lemma will be useful.

Lemma 5. Suppose x has been assigned to xk0 at level l0, and to xk1 at level l1. Then
if l1 > l0, it must be that k1 ≥ k0.

Proof. Suppose k1 < k0, i.e. xk1 occurs before xk0 on the list. Since x is assumed to be
assigned to xk1 at level l1, therefore d(x, xk1) ≤ βl1 < βl0 . But then, since xk1 precedes
xk0 , x would have been assigned to xk1 at level l0; this is a contradiction.

In other words, we never need to backtrack through the list when looking for the
next point to which x is assigned.

Given any points x and y in X define

l(x, y) = blog2(β)− log2(d(x, y))c.

Lemma 6. Suppose that x has been assigned to xk at level l. Then l ≤ l(x, xk), and x
will be assigned to xk at all levels l′ such that l ≤ l′ ≤ l(x, xk).

7

Proof. By definition, l(x, xk) is the largest integer such that d(x, xk) ≤ 2−l(x,y)β. Since
d(x, xk) ≤ βl = 2−lβ, we must have l ≤ l(x, xk). Now suppose that x gets assigned to xj
at level l′, l ≤ l′ ≤ l(x, xk). By Lemma 5, j ≥ k, i.e. xj does not occur before xk in the
list. On the other hand, d(x, xk) ≤ 2−l(x,y)β ≤ 2−l

′
β = βl′ ; so x will not be assigned to

any point occurring after xk at level l′. Consequently, x is assigned to xk at level l′.

In other words, if x is ever assigned to a point y, then l(x, y) is the last level at which
x is assigned to y.

We introduce some terminology. For every folder F on the tree, we will refer to:

• The center of F . This is the point xk that all points in F were assigned to when
they became members of F .

• The level of F . This is the minimum of the numbers l(x, xk) for x ∈ F , denoted
l′. Then 2−l

′+2 is an upper bound for the diameter of F .

Observe that if a folder has center xk and level l′, then by Lemma 6, l′ + 1 is the
first level at which the folder F can be split into subfolders. Consequently, when we are
splitting F into its children we never need to consider any subfolders at levels less than
l′, since they will all be equal to F . Also, if x ∈ F and l(x, xk) = l′, by Lemma 5 the
point xj to which x is assigned at level l′+ 1, is the first point on the list xk+1, xk+2, . . .
such that l(x, xj) > l′.

These observations yield the following algorithm for constructing the tree. Initialize
the tree with the single folder X, with center point x1. Recursively build folders as
follows. Take any folder F whose children have not yet been added to the tree. Let xk
be its center and l′ its level. Take those points x ∈ F with l(x, xk) > l′, if any exist.
These points will remain assigned to xk at level l′ + 1. So one of the children of F will
consist of all points with l(x, xk) > l′, if there are any.

The points with l(x, xk) = l′ are no longer assigned to xk at level l′ + 1. To find
where they go, for each such point search through xk+1, xk+2, . . . until the first xj is
encountered with l(x, xj) > l(x, xk). This xj is the next point to which x is assigned.
Therefore, the remaining children of F are formed by grouping together those points
that have been advanced to the same point in this manner.

Of course, it could happen that the numbers l(x, xk) are equal for all x ∈ F , and
that all x ∈ F get advanced to the same point xj after xk. In this case, we can keep the
identity of F intact, update its center to xj , find its new level, and repeat the process.

We give a summary of the algorithm:

Algorithm for building T

I. Initialize the tree with folder X and center x1.

II. Take any non-singleton folder F with center xk and level l′ whose children are not
on the tree

8

1. If possible, form a child F0 of F consisting of points with l(x, xk) > l′

2. Advance each remaining x to the first xj , j > k, with l(x, xj) > l′

3. There are two cases:

i. If F0 = ∅ and all points in F advanced to the same point xj , simply make
xj the new center of F and update F ’s level l′ = minx∈F l(x, xj)

ii. Otherwise, break F \ F0 into children of F by grouping the points that
advanced to the same xj , and let l′ be the level of F

Repeat step II until the children of every folder have been added to the tree.

We now analyze the cost of this algorithm. Observe that every time a folder is
processed, the operations fall into two categories. First, there is the cost of advancing
each point x ∈ F to the next point to which it is assigned. However, once a point x is
advanced to xk, it is never necessary, when considering x, to look at any points preceding
xk in the list, by Lemma 5; so the most that all such advances can cost over the entire
algorithm is O(|X|2), since each point x sweeps over all the points in X exactly once.

Second, there are those whose costs are directly proportional to the number of points
in F , such as the cost of computing l(x, xk) for each x, where xk is the center of F . We
will break these costs into two cases. The first is when the folder F ends up being broken
apart into subfolders. Since this only happens once per folder, the total cost of all such
operations can be bounded above by a constant times∑

F∈T
|F | ≤

∑
F∈T
|X| = O(|X|2)

since there are at most 2|X| − 1 folders in the tree.
The second case is when F does not get broken into subfolders. This can only happen

when every point in F is advanced to the same point (so the center of F changes, but
F is not broken apart). This does not pose any additional costs, however, since we have
already counted these costs when we computed the cost of all advances.

The total cost of the algorithm, therefore, is O(|X|2).

References

[1] Bartal, Y. (1996, October). Probabilistic approximation of metric spaces and its
algorithmic applications. In Foundations of Computer Science, 1996. Proceedings.,
37th Annual Symposium on (pp. 184-193). IEEE.

[2] Fakcharoenphol, J., Rao, S., and Talwar, K. (2003, June). A tight bound on ap-
proximating arbitrary metrics by tree metrics. In Proceedings of the Thirty-fifth
Annual ACM Symposium on Theory of Computing (pp. 448-455). ACM.

[3] Heinonen, J. (2001). Lectures on analysis on metric spaces. Springer.

9

[4] Meyer, Y. (1992). Wavelets and operators (Vol. 37). Cambridge: Cambridge Uni-
versity Press.

[5] Rabinovich, Y., and Raz, R. (1998). Lower bounds on the distortion of embedding
finite metric spaces in graphs. Discrete and Computational Geometry, 19(1), 79-94.

[6] Semmes, S. (1996). On the nonexistence of bilipschitz parameterizations and geo-
metric problems about A∞-weights. Revista Matemática Iberoamericana, 12(2).

10

