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Abstract

We investigate the diameter problem in the streaming and sliding-window models. We
show that, for a stream of n points or a sliding window of size n, any exact algorithm for
diameter requires Ω(n) bits of space. We present a simple ε-approximation1algorithm for
computing the diameter in the streaming model. Our main result is an ε-approximation
algorithm that maintains the diameter in two dimensions in the sliding windows model using
O( 1

ε3/2 log3 n(log R + log log n + log 1
ε
)) bits of space, where R is the maximum, over all

windows, of the ratio of the diameter to the minimum non-zero distance between any two
points in the window.

1 introduction

In recent years, massive data sets have become increasingly important in a wide range of ap-
plications. In many applications, the input can be viewed as a data stream [12, 7] that the

∗This work was supported by the DoD University Research Initiative (URI) program administered by the
Office of Naval Research under Grant N00014-01-1-0795.

†Supported in part by ONR grant N00014-01-1-0795 and NSF grants CCR-0105337, CCR-TC-0208972, ANI-
0207399, and ITR-0219018.

‡Supported in part by NSF grant CCR-0105337.
§Supported by NSF grant CCR-0105337.
1Denote by A the output of an algorithm and by T the value of the function that the algorithm wants to

compute. We say A ε-approximates T if (1 + ε)T ≥ A ≥ (1 − ε)T .
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algorithm reads in one pass. The algorithm should take little time to process each data element
and should use little space in comparison to the input size.

In some scenarios, the input stream may be infinite, and the application may only care about
recent data. In this case, the sliding-window model [6] is more appropriate. As in the streaming
model, a sliding-window algorithm should go through the input stream once, and there is not
enough storage space for all the data, even for the data in the window.

In this paper, we investigate the two dimensional diameter problem in these two models. Given
a set of points P , the diameter is the maximum, over all pairs x, y in P , of the distance between
x and y. There are efficient algorithms to compute the exact diameter [5, 16] or to approximate
the diameter [1, 3, 4]. However, little has been done for computational geometry problems in the
streaming or sliding-window models. In particular, little is known about the diameter problem
in these two models.

We show that computing the exact diameter for a set of n points in the streaming model
or maintaining it in the sliding-window model (with window-width n) requires Ω(n) bits of
space. However, when approximation is allowed, we present a simple ε-approximation algorithm
in the streaming model that uses O(1/ε) space and processes each point in O(1) time. We
also present an approximate sliding-window algorithm to maintain the diameter in 2-d using
O( 1

ε3/2 log3 n(log R + log log n + log 1
ε )) bits of space.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the streaming
and sliding-window models. In Section 3, we present our streaming diameter-approximation
algorithm, and, in Section 4, we present our sliding-window diameter-approximation algorithm.
Section 5 shows lower bounds for the exact diameter problem in both models. We also discuss
space requirements for approximation in this section. Section 6 concludes this paper.

2 models and related work

The streaming model was introduced in [12, 7]. A data stream is a sequence of data elements
a1, a2, . . . , an. We will denote by n the number of data elements in the stream. In this paper,
the data elements are points.

A streaming algorithm is an algorithm that computes some function over a data stream and has
the following properties:

1. The input data are accessed in sequential order.

2. The order of the data elements in the stream is not controlled by the algorithm.

The sliding-window model was introduced in [6]. In this model, one is only interested in the n
most recent data elements. Suppose ai is the current data element. The window then consists
of elements {ai−n+1, ai−n+2, . . . , ai}. When new elements arrive, old elements are aged out.
A sliding-window algorithm is an algorithm that computes some function over the window for
each time instant. Note that the window is a subset of contiguous data elements of the stream.
Properties (1) and (2) above hold in the sliding-window model as well as the streaming model.
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Figure 1: Two Examples of Sectors

Because n (the stream length in the streaming model or the window-width in the sliding window
model) is large, we are interested in sub-linear space algorithms, especially those using polylog(n)
bits of space.

Previous work in the streaming model addresses computing statistics over the stream. There
are streaming algorithms for estimating the number of distinct elements in a stream [8] and for
approximating frequency moments [2]. Work has also been done on approximating Lp differences
or Lp norms of data streams [7, 13]. There are also algorithms to compute histograms for the
data elements in the streams [10, 9]. Previous work in the sliding-window model [6] addresses
the maintenance of the sum of the data elements in the window. The same work also shows
how to maintain Lp norms in the window. However, aside from the related work on stream
clustering [11, 15], little is known about computation-geometry problems in the streaming or
sliding-window models.

For the problem of computing the diameter on the plane, the following is a simple algorithm
that uses O(1/

√

(ε)) space and time. Let l be a line and p, q ∈ P be two points that realize
the diameter. Denote by πl(p), πl(q) the projection of p, q on l. Clearly, if the angle θ between

l and the line pq is smaller than
√

2ε, |πl(p)πl(q)| ≥ |pq| cos θ ≥ (1 − θ2

2 )|pq| ≥ (1 − ε)|pq|. By

using a set of lines such that the angle between pq and one of the lines is smaller than
√

2ε, the
algorithm can approximate the diameter with bounded error.

The algorithm can go through the input in one pass, project the points onto each line, and
maintain the extreme points for the lines. Thus, it is essentially a streaming algorithm. However,
the time taken per point is proportional to the number of lines used, which is Ω(1/

√
ε). We

present an almost equally simple algorithm that removes this dependence of running time on ε.

3 A Sector-Based Streaming Diameter-Approximation in the

Streaming Model

Our basic idea is to divide the plane into sectors and compute the diameter of P using the
information in each sector. Sectors are constructed by designating a point x0 as the center and
dividing the plane using an angle of θ. We show two sectors in figure 1.
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Algorithm Streaming-Diameter

1. Take the first point of the stream as the center, and divide the plane into sectors
according to an angle θ = ε

2(1−ε) , where ε is the error bound. Let S be the set of
sectors.

2. While going through the stream, for each sector, record the point in that sector
that is the furthest from the center. Also keep track of the maximum distance,
Rc, between the center and any other point in P .

3. Let |ab| be the distance between points a and b. Define Dij
max = max |uv| for

u ∈ boundary arc of sector i and v ∈ boundary arc of sector j, and define
Dij

min = min |uv| for u ∈ boundary arc of sector i and v ∈ boundary arc of sector

j. Output max{Rc, maxi,j∈S Dij
min} as the diameter of the point set P .

The sectors have outer boundaries (the arcs aa′ and bb′ in the figure) that are determined by
the distance between the center and the farthest point from the center in that sector. The
algorithm records the farthest point for each sector while it goes through the input stream. The
full description of the algorithm is given in algorithm “Streaming-Diameter”. The algorithm’s
space complexity is determined by the sector angle θ.

Claim 3.1 The distance between any two points in sector i and sector j is no larger than

max{Rc, Dij
max}. (Here i could be equal to j.)

Proof. Let u be a point in sector i and v be a point in sector j. Extend x0u until it reaches the
arc aa′. Denote the intersection point u′. Also extend x0v until it reaches the arc bb′. Denote
the intersection point v′. Then we have |uv| ≤ max{|x0v|, |vu′|} ≤ max{Rc, |x0u

′|, |u′v′|} ≤
max{Rc,D

ij
max}. (In the two inequalities above we have used the fact that, if a, b, c occur in that

order on a line and d is some point, then the |db| ≤ max(|da|, |dc|).
Claim 3.2 With notation as in Figure 1 and in the description of the algorithm, Dij

max ≤
Dij

min + length(aa′) + length(bb′) ≤ Dij
min + 2Rc · θ .

Proof. Let |uv| = Dij
max and |u′v′| = Dij

min. Because u, u′ ∈ arc aa′ and v, v′ ∈ arc bb′, There

is a path from u to v, namely u ∼ u′ ∼ v′ ∼ v. Therefore Dij
max ≤ |uu′| + Dij

min + |vv′| ≤
Dij

min + 2Rc · θ.

Assume that the true diameter diamtrue is the distance between a point in sector i and another
point in sector j. Let diam be the diameter computed by our algorithm. We observe the
following:

max{Rc, Dij
min} ≤ max{Rc, max

m,n∈S
Dmn

min} = diam ≤ diamtrue ≤ max{Rc, Dij
max}

Depending on the relationship between Rc and Dij
min, we consider two cases: In the case where

Rc ≥ Dij
min, we want Rc ≥ (1− ε)Dij

max in order to bound the error. This leads to θ ≤ ε
2(1−ε) . In
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the case where Rc < Dij
min, we want Dij

min ≥ (1 − ε)Dij
max. Again, this leads to θ ≤ ε

2(1−ε) . We
then have the following theorem.

Theorem 3.3 There is an algorithm that ε-approximates the 2-d diameter in the streaming

model using storage for O(1
ε ) points. In order to process each point, it takes O(1) time.

The above algorithm does not work in the sliding-window model. In the streaming model, the
boundaries of sectors only expand. This nice property allows us to keep only the extreme points.
However, in the sliding-window model, the diameter may decrease with different windows. One
may need more information in order to report the diameter for each window. In next section, we
give a deterministic algorithm that maintains an approximation to the diameter in the sliding-
window model.

4 maintaining the diameter in the sliding-window model

First, we consider maintaining the diameter for points on a line. In the sliding-window model,
each point has an age indicating its location in the current window. The recently arrived points
are new points, and the expiring points are old points. We denote by |ab| the distance between
point a and point b. We also say that the distance r = |ab| is realized by points a and b. We
may further say that r is realized by a, when it is not necessary to mention b or b is clear within
the context. In particular, the diameter realized by a, denoted diama, is the maximum distance
realized by point a within some window.

Given three points a, b, c and an approximation error of ε̂, if we treat point c as a center (the
coordinate zero), we can “round” point b to point a if |ac| ≤ |bc| ≤ (1 + ε̂)|ac|. Given a set of
points in the window, we can pick some point as the center and round the other points in the
same manner. We keep the following invariant in rounding:

Invariant 4.1 If a point is translocated2in a “rounding,” it can only be translo-
cated toward the center.

Consider the distance intervals [c, t0), [t0, t1), [t1, t2), . . . , [tk−1, tk], such that c is the center and
|cti| = (1+ ε̂)id, where d is the minimum distance between the center and any other point. Each
point in the interval [ti, ti+1) can be rounded down to ti (Figure 2).

If multiple points are rounded to the same location, we can discard the older ones and only keep
the newest one. We will then have at most one point in each of these intervals.

2If a point is rounded to a new location, we say that the point is “translocated”.
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Let D be the diameter of a set of points. The number k of points that result from rounding all
the points in this set will be bounded as follows:

k ≤ log1+ε̂
D

d
=

log D/d

log(1 + ε̂)
≤ 2

ε̂
log

D

d

We call the set of points that results from rounding a cluster. Note that the points in a cluster
are different from the points in the original input stream. A point a in the cluster may represent
several original points rounded to it. (We call the point a the representative point of these
original input points in the cluster.) The location of the representative point in the cluster may
not be the same as the location of the original points. If 2l original points are represented by
a cluster, the cluster is said to be at level l. The diameter of the original set of points can be
approximated by the diameter of the cluster.

With this scheme, we are able to round a point, say b, to another point, say a, because there
is some distance (for example |bc|) realized by b that promises a lower bound for any diameter
realized by b, and the error incurred in the rounding is a small fraction of this lower bound. In
the sliding-window model, the point c may be aged out in the future, making the approximation
error too large. Another issue is whether to recenter the points each time a new point arrives.
This will result in too many roundings and introduce too much error in the approximation as
well.

To overcome these problems, we maintain multiple clusters each of which has the following
properties:

1. A cluster represents an interval of points in the window (the set of points within a time
interval of the window). The newest point in the interval is picked to be the center.
The other points in the interval are rounded. The resulting points forms a cluster that
represents the original points in the window interval.

2. The levels of the clusters are integers.

3. We allow at most two clusters at each level.

4. When the number of clusters at level i exceeds 2, the oldest two clusters (where the age of
a cluster is determined by the age of its center) at that level are merged to form a cluster
at level i + 1.

Imagine a tree built on the original input points in a window. The points are the leaves. Two
consecutive points can form a node (a cluster) at level 1. Two consecutive level-1 clusters can
merge to form a node (a cluster) of level 2. This can be repeated recursively until we reach the
top level. In this structure, The original input points represented by a cluster are the leaves of
the subtree rooted at the node corresponding to that cluster. Note that, at each level, we only
keep at most 2 nodes (clusters). The original input points represented by all the clusters that
we keep form a cover of the window. Thus, the whole window can be represented by O(log n)
clusters. Figure 3 shows an example of the clusters built on a window.

When the window slides forward, new points are added to the window and new clusters are
formed. To maintain the required number of clusters at each level, clusters are merged whenever

6



cluster 3

cluster 2

cluster 1

level 2

level 3

level 4

32Age

cluster 4

level 0

level 1
cluster 5,6

1

Current Window 

Figure 3: Clusters built for the First Window

there are too many clusters at some level. Once a cluster reaches the top level, it stays at that
level. Points in this cluster will ultimately be aged out until the whole cluster is gone.

In order to merge clusters c1 centered at Ctr1 and c2 centered at Ctr2 to form cluster c3, we go
through the following steps: (We can assume, w.l.o.g. c2 is newer than c1.),

1. Use Ctr2 as the center of newly formed cluster c3.

2. Discard the points in c1 that are located between the centers of c1 and c2.

3. After (2), if point p in c1 satisfies |pCtr2| < |pCtr1| ≤ (1 + ε̂)|Ctr1Ctr2|, discard p.

4. Let Pmerge consists of the remaining points of c1 and the points in c2. Round points in
Pmerge. The new center is Ctr2, and the new value of d is the minimum distance from
Ctr2 to any other point in Pmerge. The new value of d may be different from the one used
in building the cluster c2. We may need to round the points in cluster c2.

From step (4), we know that the new value of d is the minimum distance between Ctr2 and any
other point in Pmerge. Let pmin be this minimum distance point. If pmin belongs to cluster c1,
The distance |Ctr2pmin| may be much smaller than the distance between the point Ctr2 and
the original point(s) represented by pmin. This happens because when the points are rounded to
form the cluster c1, the rounding is based on the distance between these points and the center
Ctr1, not the point Ctr2. Thus we can’t lower bound the value of d for the new cluster c3

by the minimum distance between its center and any other original point whose representative
point is in the cluster. However, step (2) (3) assures that |Ctr2pmin| is at least ε̂ · |Ctr1Ctr2|.
Otherwise, pmin will be discarded. We know that the two points Ctr1 and Ctr2 are at their
original locations. Thus, d is bounded by ε̂ times the minimum distance between the cluster
center and any other original points whose representative point is in the cluster. The lower
bound for the whole window will then be the minimum over all the clusters.

Define a boundary point in a cluster to be an extreme point. We keep track of the boundary
points for each cluster as well as the boundary points for the whole window. Points may expire
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Algorithm Sliding-Window Diameter

Update: when a new point arrives:

1. Check the age of the boundary points of the oldest cluster. If one of them has
expired, remove it and update the boundary point.

2. Make the newly arrived point a cluster of size 1. Go through the clusters from
most recent to oldest and merge clusters whenever necessary according to the
rules stated above. Update the boundary points of the clusters resulting from
merges.

3. Update the boundary points of the window if necessary.

Query Answer: Report the distance between the boundary points of the window as
the window diameter.

from the oldest cluster, and this may require updating the boundary points of this cluster. The
whole process is summarized in algorithm “sliding-window diameter”.

Call the time during which an original point is within some sliding window the lifetime of that
point. Let’s trace a point p through its life time. For simplicity, in what follows, instead of
saying that the original point p is represented by some point in some cluster, we will just say
p is contained or included in that cluster. When clusters merge, instead of saying that the
representative point of p is rounded and p has a new representative point in the new cluster, we
will just say p is rounded (“translocated”) and has a new location now.

Let p0 be the original location of the point p and Ctr0 be the center of the first cluster that
includes the point p. When this cluster and some other cluster merge, p could be rounded to
a new location p1. Let Ctr1 be the center of the newly formed cluster. If we continue this
process, before p expires or is discarded, we will have a sequence of p’s locations p0, p1, . . . , pt

and corresponding sequence of centers Ctr0, Ctr1, . . . , Ctrt. We observe that Ctri and Ctri+1

will be on the same side of pi. Otherwise, we would have discarded the point p.

p
0

p
1

p
3

p
2

p
4 Ctr1

Ctr2Ctr3

Ctr4

Figure 4: Point may be translocated in each rounding but all the translocations are towards the
same direction.

Claim 4.2 If a point is rounded multiple times during its lifetime, all the translocations

because of rounding are in the same direction(Figure 4). In other words, for all the rounded

locations pi and all the corresponding centers Ctri, |p0Ctri| ≥ |piCtri|.
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Proof. Suppose that the first time p is rounded, it is rounded to the right. If now p is rounded
to the left for the first time on step i, then Ctri−1 lies to the right of p while Ctri lies to the
left. Further, p belonged to the cluster of Ctri−1 before the merge. Hence, by our rules it would
have been discarded, not rounded, because it lies between the two centers, and it belongs to the
older cluster.

We bound the error in the rounding process by showing that, for all i, |p0pi| is at most an ε
fraction of the diameter realized by p.

In an arbitrary rounding scheme, with multiple roundings, a point can be translocated arbitrarily.
The distance from the location after rounding to some new center will not promise a lower bound
for the diameter realized by the point. However, with our rounding scheme, claim 4.2 guarantees
the following invariant:

Invariant 4.3 If a point is rounded (even multiple times), the distance between
this point after rounding and any of its future cluster centers is at most the distance
of any diameter realized by this point.

Each time we round a point, we introduce some dislocation or error. Let erri+1 = |pipi+1| be
the dislocation introduced in the i + 1th merging. Also, let diamp be the diameter realized by
p in some window. We have the following lemma:

Lemma 4.4 The total rounding error of point p before it is discarded or expires is at most

ε̂ log n · diamp.

Proof. In each rounding, we maintain |piCtri+1| ≤ (1 + ε̂)|pi+1Ctri+1|. Thus erri+1 =
|pipi+1| ≤ ε̂|pi+1Ctri+1| ≤ ε̂|p0Ctri+1|. A point participates in at most log n merges. The total
amount of translocation is then at most

∑

i erri ≤ ε̂ log n ·maxi |p0Ctri|. Also our Invariant 4.3
states that diamp ≥ maxi |p0Ctri|.
To bound the error by 1

2ε, we make ε̂ ≤ ε
2 log n . The number of points in a cluster after rounding

will then be O(1
ε log n log D

d ). As mentioned above, for each cluster, d is bounded by ε̂ times
the minimum distance between the center of the cluster and any other original point whose
representative point is in the cluster. Denote by R the maximum, over all windows, of the
ratio of the diameter to the minimum non-zero distance between any two original points in that
window. Then log D

d ≤ log R + log 1
ε̂ = log R + log log n + log 1

ε . The number of points in a
cluster can then be bounded by O( 1

ε log n(log R + log log n + log 1
ε )).

Theorem 4.5 There is an ε-approximation algorithm for maintaining diameter in one di-

mension in a sliding window of size n, using O(1
ε log3 n(log R + log log n + log 1

ε )) bits of space,

where R is the maximum, over all windows, of the ratio of the diameter to the minimum

non-zero distance between any two points in that window. The algorithm answers the diam-

eter query in O(1) time. Each time the window slides forward, the algorithm needs a worst

case time of O(1
ε log2 n(log R + log log n + log 1

ε )) to process the incoming point. With a slight

modification, the algorithm can process incoming points with O(log n) amortized time using

O(1
ε log2 n(log n + log log R + log 1

ε )(log R + log log n + log 1
ε )) bits of space.

Proof. The correctness of our algorithm is clear given the chosen value of ε̂ and Lemma 4.4.
We now analyze the time and space requirement of our algorithm. For each cluster, we maintain
the following information:
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1. The exact location of the center and the exact location of the point closest to (but not
located at) the center.

2. The age of all the points.

3. The relative positions of all the points other than the center.

The relative positions of all the point in a cluster can be encoded by a bit vector. We may need
log n bits of space to record the age in the current window for each point. Thus, we need O(log n)
bits for each cluster point except the center. There are at most O(1

ε log n(log R+log log n+log 1
ε ))

points in each cluster. The space requirement for storing the information in items (2) and (3)
for the whole cluster is then O(1

ε log2 n(log R + log log n + log 1
ε )). Because we assumed that

this space is much larger than the space required to store two points, we can neglect the latter
(the space for information in item (1)). Given that there are O(log n) clusters, the total space
requirement will be O(1

ε log3 n(log R + log log n + log 1
ε )) to maintain the diameter.

In order to report the diameter at any time, we maintain the two boundary points for the window
while we maintain the clusters. For each cluster, we only need to look at its boundary points,
and thus the process of updating the sliding window’s boundary points will only cost O(log n)
time.

However, while updating the clusters, we may face a sequence of cascading merges. In the worst
case, we may need to merge O(log n) clusters with O(1

ε log n(log R + log log n+ log 1
ε )) points in

each. This requires time O(1
ε log2 n(log R + log log n + log 1

ε )).

If a bit vector is used to specify the relative locations of the points in a cluster, when we process
the cluster during merging we may need to go through the zero entries in the vector . This
could be a waste of time if the vector is sparse. We can directly specify the relative location of
a point instead. Because there are O(1

ε log n(log R + log log n + log 1
ε )) different locations, we

need an additional O(log 1
ε + log log n + log log R) bits, besides the O(log n) bits stated above,

for each point in a cluster. The space requirement for each point in a cluster will then be
O(log n + log log R + log 1

ε ). With this modification, when merging two clusters, we are free
of overhead other than processing the points in the clusters. During a point’s lifetime, it will
take part in at most log n merges, thus, a simple analysis can show that the amortized cost for
updating is now only O(log n).

To extend the algorithm to 2-d, we can apply the technique discussed at the beginning of the
previous section. We have a set of lines and project the points in the plane onto the lines.
We guarantee that, for any pair of points, they will project to a line with angle θ such that
1 − cos θ ≤ ε

2 . This will require O( 1√
ε
) lines. We then use our diameter-maintenance algorithm

on lines to maintain the diameter in the 2-d case.

Theorem 4.6 There is an ε-approximation algorithm for maintaining diameter in 2-d in a

sliding window of size n using O( 1
ε3/2 log3 n(log R + log log n + log 1

ε )) bits of space, where R is

the maximum, over all windows, of the ratio of the diameter to the minimum non-zero distance

between any two points in that window.
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Figure 5: Reduction from DISJ to Diameter

5 lower bounds

It is well-known that the set-disjointness problem has a linear communication complexity [14] and
thus a linear space lower bound in the streaming model. One can map the set elements to points
on a circle such that the diameter of the circle will be realized if and only if the corresponding
element is presented in both two sets. This reduction gives the following theorem.

Theorem 5.1 Any streaming algorithm that computes the exact diameter of n points, even if

each point can be encoded using at most O(log n) bits, requires Ω(n) bits of space.

Proof. We reduce the set-disjointness problem to a diameter problem. The set-disjointness
problem is defined as follows: Given a set U of size n and two subsets x ⊆ U and y ⊆ U , the
function disj(x, y) is defined to be “1” when x ∩ y = φ and “0” otherwise. The corresponding
language DISJ is the set {(x, y)|x ⊆ U, y ⊆ U, x ∩ y = φ}.
The set-disjointness problem has a linear communication complexity lower bound. Because a
streaming algorithm can be easily transferred into a one-round communication protocol, the lin-
ear communication complexity lower bound gives a linear space lower bound for set-disjointness
problem in the streaming model.

Consider points on a circle in the plane. For a given point pi, there is exactly one other point
on the circle such that the distance between it and pi is exactly equal to the diameter of the
circle. Denote this antipodal point p′i. The distance between pi and all other points on the
circle is smaller than the distance between pi and p′i. We map each element i ∈ U onto one
such antipodal pair. We further make the appearance of one point in the pair correspond to the
appearance of the element i in subset x and the appearance of the other point correspond to
the element i in y. We will have both points pi and p′i only if the element i is in both subsets x
and y.

Given an instance (x, y) of DISJ, we construct an instance of the diameter problem according
to the above principle. We give an example in Figure 5

The solid squares in the figure are the points we put into the diameter instance. The DISJ
instance in Figure 5 is x, y, where x = 1011 and y = 1100. The diameter instance contains
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p1, p3, p4, because x = 1011, and p′1, p′2, because y = 1100. The dashed circles in the figure
show the location for p2, p

′
3, p

′
4. Because x2 = 0 and y3 = y4 = 0, these points are not presented

in the stream.

In the example, element 1 is in both x and y. The diameter of the point set constructed is |p1p
′
1|

and is exactly the diameter of the circle. On the other hand, if x ∩ y = φ, the diameter of the
point set will be strictly smaller than the diameter of the circle. Thus, an exact algorithm for
the diameter problem could be used to solve the set-disjointness problem.

In the above construction, in order to distinguish the case in which x ∩ y = φ from the case in
which x ∩ y 6= φ, if the circle has diameter “1,” the algorithm must distinguish 1 from cos( π

2n).
Because 1−cos(x) ≥ 1

2x2− 1
24x4, for x = π

2n and large n, the difference of 1
4n2 must be detectable.

This means that the encoding of each point must have precision 1
4n2 , which can be achieved using

O(log n) bits.

In the sliding-window case, we have a similar bound even for points on a line. Obviously the
lower bound holds for higher dimensions as well.

Theorem 5.2 To maintain, in a sliding window of size n, the exact diameter of a set of

points on a line, even if each point in the set can be encoded using O(log n) bits, requires Ω(n)
bits of space

Proof. Consider a family
�

of point sequences of length 2n−2. Each sequence a1, a2, . . . , a2n−2 ∈
�

has the following properties:

1. For i = 1, 2, . . . , n, an+i−2 is located at coordinate zero. The coordinate for an−1 is n.

2. |a1an| ≥ |a2an+1| ≥ |a3an+2| ≥ . . . ,≥ |an−1a2n−2|

3. The coordinates of the points aj, for j = 1, 2, . . . , n − 2, have the form n · k for some
k ∈ 2, 3, . . . , n.

For a window that ends at point as, the diameter is exactly the distance |asas+n−1|. Any two
members of the family will have different diameters for a window that ends at as, for some
s ∈ 1, 2, . . . , n − 2, where the coordinates of as differ in the two sequences. Thus, an algorithm
that maintains the diameter exactly has to distinguish any two sequences in

�
.

By Property (3), the number of member sequences in
�

is
(n−2+n−1

n−1

)

≥ (1.5)n/2, for n sufficiently
large. (The number of member sequences in

�
is in one-to-one correspondence with sequences

of 0’s and 1’s containing n − 2 0’s and n − 1 1’s.) The algorithm thus needs log | � | = Ω(n)
space.

Note that, in this family
�

, the ratio R is just n. If we change the form of the coordinates of
aj for j = 1, 2, . . . , n − 2 to (1 + ε)3k while respecting the Property (2) above, a similar family
of points sequences can be constructed for ε-approximation algorithms. We have the following
lower bounds for approximation from this modified family of points sequences.

Theorem 5.3 Let R be the maximum, over all windows, of the ratio of the diameter to

the minimum non-zero distance between any two points in that window. To ε-approximately

maintain the diameter of points on a line in a sliding window of size n requires Ω(1
ε log R log n)
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bits of space if log R ≤ 3
2ε ·n1−δ, for some constant δ < 1. The approximation requires Ω(n) bits

of space if log R ≥ 3
2ε · n.

Proof. Once again consider the family of point sequences in the proof of Theorem 5.2. We
make the following change: Keep the points an, . . . , a2n−2 at coordinate zero, but move the
point an−1 to coordinate 1. The coordinates of the points aj for j = 1, 2, . . . , n − 2, have the
form (1 + ε)3k, for some k ∈ {1, 2, . . . , 1

3 log(1+ε) R = m}. These coordinates are chosen so as

to respect Property (2) in the proof of Theorem 5.2. Note that 2
3ε log R ≥ m ≥ 1

3ε log R, for ε
sufficiently small, because ε/2 ≤ log(1 + ε) ≤ ε. Depending on the value of log R, we consider
two cases:

1. log R ≤ 3
2ε · n1−δ for some constant δ < 1. By a similar argument to the one given in the

proof of Theorem 5.2, the space requirement will now be lower bounded by:

log

(

n + m − 1

m

)

≥ m log
n

m
≥ 1

3ε
log R(δ log n)

= Ω(
1

ε
log R log n)

2. log R ≥ 3
2ε · n. In this case, m ≥ n

2 . We can always choose n
2 distinct values for the

coordinates of points a1, . . . , an−2. The space requirement will be lower bounded by

log

(

n + n/2 − 1

n/2

)

≥ n

2
· log 2 = Ω(n)

6 Future Work

In this paper, we have initiated the study of computational-geometry problems in the streaming
and sliding-window models and have provided bounds for approximate and exact diameter com-
putation in these models. Massive streamed data sets for computational-geometry problems arise
naturally as problems in areas such as information retrieval and pattern recognition are modeled
as computational-geometry problems by means of an embedding into a metric space. Thus, we
believe that the study of stream algorithms for basic problems in computational-geometry is a
promising direction for future research.
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