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1. Introduction

The problem we consider is the solution of the linear system
Az =b, (1.1)

where A € RV*V is symmetric positive definite but possibly nearly singular. We will denote the
eigenvalues of A by A\; < A2 £ ...,< Ay, and the corresponding orthonormal eigenvectors by
{wi,wy...,wy}. For simplicity, we will assume that the near-nullity of A is at most one, i.e.,
that no eigenvalue other than A; could be close to zero. The positive definiteness assumption of A
can be slightly relaxed, by replacing it with the less restrictive assumption that a few of the first
eigenvalues of A are negative.

The solution to (1.1) can be expressed in the form:

Ty
:1:=:1:d+————-uj\1 wi, (12)
1
where N
) wlb
Tqd = Z ——-/{;—w.'.
=2

In the above expression, we have separated the part of x in the direction of w; from the part z4
that is orthogonal to it. The vector x4 is called the deflated solution of (1.1) and (1.2) is called
the deflated decomposition of x. When ); is small but w{b is not small, then the last term in
(1.2) will dominate z4, and in finite precision arithmetic, it would be difficult to recover z4 from
z with close to full machine precision. Therefore, when A is nearly singular, it is often more
appropriate to compute the deflated decomposition of z rather .than.to compute z directly. This
requires computing z4,A; and wj.

The deflated decomposition is useful in many applications, such as when solving bordered
singular systems [5, 4, 1] that arise in continuation methods for solving nonlinear systems [3, 9]
and bifurcation computations [8, 15| and in constrained optimization problems[7].

Of course, one could compute the deflated decomposition by first computing the eigenvalue
decomposition of A, but this is often too expensive for large problems. In earlier work by Stewart
[20] and Chan [2], the deflated decomposition is computed by ¢mplicit algorithms in which only a
direct solver for A (such as an LU factorization method) is needed. In this paper, we look at how
iterative methods based on the Lanczos process can be used to-compute the deflated decomposition
in a numerically stable manner. The objective is to be able to compute the deflated decomposition
by only accessing A in the form of a matrix-vector product Av. Such a method has obvious
advantages for large problems. Basically, the Lanczos method produces a small tridiagonal-matrix-«
T approximately similar to A and the deflation techniques in [2, 20] can then be applied to T'. In
addition, we propose a new method based on the QL iteration for deflating the tridiagonal matrice
T.

Note that, as explained above, the naive method of applying a Lanczos type procedure, such
as the symmetric conjugate gradient method, to (1.1) directly will fail to compute z4 accurately
when A is nearly singular. If w; is known a priors, then a modified conjugate gradient algorithm,
in which the iterate at each iteration is orthogonalized with respect to w; [10], might be expected
to be effective. The algorithms to be presented in this paper do not require a prior: knowledge of
wy Or Aq.

In Section 2, we review the deflation techniques of [2, 20] and present the new QL algorithm
for tridiagonal matrices. In Section 3, we review the Lanczos process and then in Section 4, we
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explain how to combine the techniques of Sections 2 and 3 to compute the deflated decomposition
of (1.1). In Section 5, we discuss some implementation issues concerning the loss of orthogonality
of the Lanczos vectors and stopping criteria. In Section 6, we present a convergence analysis that
essentially shows that the deflated solution converges at the rate that would have been achieved if
we removed the eigenvalue A; from the spectrum of the original matrix A. Finally, we present some
numerical results in Section 7 and end in Section 6 with some concluding remarks. Throughout
this paper, upper case Latin letters denote matrices, lower case Latin letters denote vectors and
lower case Greek letters denote scalars. We will use the notation | - || to denote the 2-norm.

2. Deflated Decomposition for Tridiagonal Systems

In this section, we discuss techniques for computing the deflated decomposition of solutions to

the linear system :
Tz=f, (2.1)

where T is tridiagonal. First, we review the deflation techniques of [2, 20], which are based on
orthogonal projections. These techniques are designed for general linear systems but can be applied
to tridiagonal systems to produce an efficient deflation algorithm. Next we will present a new
deflation algorithm based on the QL iteration specifically designed for tridiagonal matrices.

2.1. Deflation by Orthogonal Projection
Let P=1-— ulu{ denote the orthogonal projector with respect to the eigenvector u; cor-
responding to the smallest eigenvalue A; of T. Then the deflated solution z4 of Tz = f can be
characterized as the unique solution to the following singular but consistent system with a con-
straint:
PTzqy= Pf
Pzg = z4.

Based on this characterization, Stewart [20] and Chan [2] propose the following implicit algorithm
for computing zg4.

Algorithm Deflate:

1. Compute Ay and u; of T by a few steps of inverse iteration.
2. Solve the system T2 = Pf for 2.
3. Compute z4 = P2.

It is shown in [2] that Algorithm Deflate computes z4 in a stable manner. For tridiagonal
matrices, the above algorithm can take full advantage of efficient tridiagonal solvers.

2.2. Deflation by the QL Method

Assume that we have computed the eigenpair (A1, u;) of the tridiagonal matrix T by inverse
iteration. The main idea behind the QL-deflation method is that if we apply one step of the QL
iteration [14] for computing the eigenvalues of T with the shift A;, then the resulting transformed
tridiagonal matrix decouples in a way which allows the deflated decomposition to be computed
easily and in a stable way.

Specifically, the QL transformation amounts to first computing the LQ-factorization of T— A1,

T - M\I=LQ, (2.2)

where L is lower triangular and @ is orthogonal, and performing the product in reverse order,

adding back the shift:
TW = QL+ M1 - (2.3)
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The transformation from T to T() is the well known QL-transformation with shift A; [14]. In

practical implementations the two operations (2.2) and (2.3) are performed in one single pass. It
can be shown that T(1) has the form shown below

7=

where T is tridiagonal. It is well known that T() is unitarily sirﬁilar to T since
TW = QL+ M\I=Q(T - MDQT + M\ I =QTQT.
The system Tz = f can now be transformed into one for T namely,
Ty = Qf =7, (24)

where y = Qz. If we partition y and f into (y1,42)T and (f1, f2)T to conform with the partition of
T(1), then the deflated solution yg of (2.4) is easily seen to be:

va = (0,T71f5)T.
The deflated solution z4 of (2.1) can then be obtained by
za=QTya.

Since T is nonsingular by the assumption that the nullity of A is at most one, this approach
requires only solutions of nonsingular tridiagonal systems.
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3. The Lanczos Algorithm for Solving Linear Systems.

In this section we put aside the issue of near singularity temporarily and describe the Lanczos
method for solving linear systems [13]. Consider the linear system:

Az =1b (3.1)

Suppose that a guess z(°) to the solution is available and let ry be its residual vector: ro = b— Az(9).
Then the Lanczos algorithm for solving (3.1) can be described as follows:

Algorithm: The Lanczos algorithm for solving linear systems

(1) Stage 1 : Generate the Lanczos Vectors
e Start: vy = ro/||ro||
e For y =1,2...m compute

aj = (Avj,v;) (3.2)

Vj41 = Avj — ajv; — Bjvj-1, (Bivo=0) (3.3)
Bi+1 = [|0j41]] (3.4)

Vi1 = 0541/ B (3.5)

(2) Stage 2 : Form the approzimate solution
2™ = 20 4+ V,, T=1(||r0||e1) (3.6)

where Vy, = [v1,v2,..vp] and Ty, is the tridiagonal matrix Tridiag|B;, o}, Bj+1].

In theory, the vectors v; computed from stage 1 of this process form an orthonormal basis of
the Krylov subspace Ky, = span{rg, Arg,..A™ 1rg}. It can be easily verified that

AV = VinTon + Bt 1Vmr1€0, (3.7)

and therefore that V,I AV,, = T}, which means that T}, is nothing but the matrix representation
of the section of A in the Krylov subpace K, with respect to the basis V;,. Furthermore, it is
easily seen that the Lanczos algorithm realizes a projection process, i.e., a Galerkin process, onto
the Krylov subspace K,, [13, 16]. In other words the approximate solution (™) can be found by
expressing that it belongs to the affine subspace #(® 4+ K,, and that its residual vector b — Az(™) is
orthogonal to K,,. Denoting by II,, the orthogonal projector onto K,,, this means that the Lanczos
method solves the approximate problem:

Find ™ € 20 + K,, such that:

I, (b — Az(™) =0 (3.8)

The approximation thus computed is identical with that provided by m steps of the conjugate
gradient (CG) method when A is positive definite [13]. When A is not positive definite this relation
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between the Lanczos algorithm and the CG method can be exploited to derive stable generalizations
of the CG algorithm to symmetric indefinite systems [12, 13, 6, 17]. In this paper we will show
another way of exploiting this relation to provide a method for treating nearly singular systems,
which can be viewed as a variation of the conjugate gradient method.

4. The Lanczos Deflation Algorithm

According to the previous section, when A is not nearly singular the approximate solution to
(1.1) can be obtained by a Lanczos - conjugate gradient method with the solution given by:

where z(¥) is a k-dimensional vector which satisfies the equation
Tiz(®) = ||ro|les. (4.1)

When A is nearly singular, a difficulty arises in the solution of the above tridiagonal system.
Indeed for large k it is well-known that the extreme eigenvalues of T will converge to the corre-
sponding extreme eigenvalues of A, see e.g. [14], and as a result the eigenvalues closest to zero of
the matrix T} for large enough k will be close to the eigenvalues closest to zero of A, i.e., it will be
just as nearly singular.

The obvious remedy is to solve (4.1) with either of the two deflation procedures of Section 2.

Let us assume that we compute the smallest eigenvalue )\( ) and the associated eigenvector ug ) of
the tridiagonal matrix T} by inverse iteration. If we apply the deflation techniques of Section 2 to
the tridiagonal system (4.1), we obtain the decomposition

(k)
20 = z,gk) + ;\l(k—)ugk) (4.2)

1

where /\( ) is the smallest eigenvalue of Tg, u ( ) is the eigenvector associated with A(lk), z&k) is the
deflated solutlon of (4.1) and
k
1) = rolle] ui”.

Multiplying both members of the above equation on the left by the matrix Vi and adding z(®) we
obtain ®

¥ = 20 4 v z(®) = 200 v, z(k) + —Uc—)-V u(k). (4.3)

Observe that in the above equation the vector Vku( k) is nothing but the Ritz vector associated
with the eigenvalue of A closest to zero, i.e., it is the approximate eigenvector of A computed by
the Lanczos process from the Krylov subspace K. We will denote it by wgk). Hence we obtain an
approximate deflated solution in the form

NONNOMN WEZ o, (4.4)

where
a:fik) =200 4 sz‘gk). (4.5)
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We point out the important fact that (4.4) is the orthogonal decomposition of the vector
z(*) — £(0) in the direction wgk) in the subspace Kj. This is true because, as may be readily shown,
sz((lk) is orthogonal to the Ritz vector w%k).

Note that we need to store the vectors v; as they are generated and retrieve them once when

forming the approximation z&k).

5. Practicalities

5.1. Loss of Orthogonality of the Lanczos Vectors

A troublesome behavior of the Lanczos algorithm is the loss of orthogonality of the vectors
v;,1 = 1,...m. Fortunately, this does not prevent the method from converging but often results
in a slow-down. Parlett, Scott and Simon [13, 18, 19] have proposed several different practical
reorthogonalization techniques. Loss of orthogonality is a phenomenon that cannot be avoided
without some form of reorthogonalization but can be delayed by replacing the trivial implementation:
(3.2) — (3.5) by the following one [14, 11, 18]

q := Av; — Bjvj_1

aj = (q,7;)

g = q — a;vj. |
Then 9;4; = ¢ and (3.4) and (3.5) deliver the next vector vj4;. This simply corresponds to
a modified Gram-Schimdt step, instead of the regular Gram-Schmidt method of (3.2) - (3.4).

Additional reorthogonalization can be added to further post-pone loss of orthogonality at little
extra cost, by appending the following reorthogonalization steps to the above.

8 :=(g,vj-1)
g:=q—0vj_1
6= (q,vj)
oj=a;+6
q:=q—0vj

Again define 9j41 := ¢ and apply (3.4) and (3.5) to get vj41.

So far we have not discussed the possible negative effects of the loss of orthogonality in the
Lanczos process mentioned earlier. An important factor of this phenomenon is the way in which
it appears. Basically, loss of orthogonality is a signal that one or a few approximate eigenvalues
of the matrix A have reappeared after they have already converged. As a result one can expect
that as soon as the eigenvalue /\gk) has converged to A; then a second copy of this eigenvalue will
appear in the following steps of Lanczos. The presence of this extra eigenvalue can be disastrous
if we solve the tridiagonal system without some extra precaution, because we are now facing a
tridiagonal system with multiple sigularity.

As will be seen in Section 6 the first eigenvector will likely converge at the same time as the
deflated solution converges, so this phenomenon will seldom hamper the progress of our procedure.
However, as is discussed in section 5.2 a reasonable computational code should foresee hard cases
that might occur such as when the smallest eigenvalue of A is so well separated from the others
that convergence of the eigenvalue is very fast. There are two possible remedies to the problem
of loss of orthogonality. The first one is to simply deflate more carefully in the tridiagonal system
solution, i.e., to deflate by as many eigenvectors as there are small eigenvalues.
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The second solution, which is well knowm in the context of the eigenvalue problem [14, 18] is
to perform a selective reorthogonalization (SO) in the Lanczos process. Here, in contrast with full
reorthogonalization, one only reorthogonalizes the current Lanczos vectors against the eigenvectors
that have converged. Moreover, a clever implementation allows one to orthogonalize only when
necessary. The idea of selective reorthogonalization is intuitively simple: since it is known that loss
of orthogonality appears mainly in the direction of the converged Ritz vectors, then a remedy is to
remove the corresponding components from the Lanczos vectors as soon as these start to reappear.
The important point is that there are ways of determining when these components are likely to
come back, for more details see [14, 19].

The above discussion suggests in fact that we may only have to reorthogonalize v; against the
converged Ritz vector that corresponds to the eigenvalue closest to zero.

5.2. Stopping Criteria

When implementing the algorithms presented in this paper into a software package, one must
design stopping criterion for the Lanczos iteration. There are two independent factors affecting the
stopping criterion. First, we must be sure that the eigenpair ()\gk), u(lk)) of T}, has already converged
to the eigenpair (A1, w1) of A, as it is only reasonable to compute the deflated solution of T} after

this has occurred. Secondly, we should stop iterating when ||zg — x&k)” is reasonably small.
A well-known result in the Lanczos algorithm is that it is not necessary to compute the Ritz
vector in order to check for convergence. This is because of the very useful relation [14]

| Aw,(k) = )\Sk)w,(-k) + ,Bk.l_le{u,(k), (5.1)
from which one derives the residual norm

14 = 2B D] = Bessleful)|. - (52)
(k)

In other words the residual norm of the Ritz pair Agk), w; "’ is equal to the absolute value of the last

component of the eigenvector u,(-k) of the tridiagonal matrix multiplied by Bi4+1. This provides an
inexpensive way of checking the convergence of the eigenpair since the error on the eigenvalue is of
the order of the square of the residual norm in (5.2) while the angle between the exact eigenvector
and the approximate one is of the same order as the residual norm [14].

A formula similar to (5.2) can be easily derived for the residual of the approximate solution
a:&k). In fact we must first define what might be a suitable analogue to the residual norm in the
context of nearly singular systems. Ideally, we would like to consider the residual norm for the
matrix PA = (I — wyw])A, i.e., we would wish to consider P(b— Azg), the deflated residual, as an
appropriate analogue of the usual residual vector. The reason why this is the correct-analogue:of:thes- -
residual norm in the non-sigular case is that, with respect to z4, we are in fact attempting to solve
the system PAzg = Pb in the subspace PR"™. Unfortunately, the exact projector P depends on the
exact eigenvector w; which is not known a priori. However, once the approximate eigenvector w{k)
has converged, we can use it in place of w; and therefore define the approximate projected residual
as

T
r&k) = P(")(b - Aa:fik)) = (I - wgk) [wgk)] ) - Aa:&k)), (5.3)

where P(¥) is the projector in the direction orthogonal to w{k). Substituting equation (4.5) in the
above equation we get

rf,k) = p(¥) (b -A [z(o) + sz(k)]) = pk) (’I'(O) - Aszgk)) .



Page 8
Using the relation (3.7) and recalling that vy = ro/||70||, we obtain

szk) = p® (ll”o”vl - Asz((;k)) = pW <||To||vl - Vkaz((, ) — Br+1€k z( )vk+1)

= Py, (“To”el - Tsz,")) - ﬂk+16£z§k)vk+1

Now observe that by (4.1) and (4.2) the term ||ro|le; — Tkz( ) is equal to a scalar multiple of u( ),
(k

and since Vkul ) = wgk) the first term in the above sum vanishes. Hence we have proved that the
residual norm is given by

I = Brralef 28], o (5.4)
which can be computed at little cost at each iteration.

Peculiar situations may arise in which the convergence of xflk), as measured by the-aboveresid=-

ual norm, occurs before the eigenpair of Tj has converged. Should this happen, the corresponding
solution xgk) must not be accepted. Accordingly, a general strategy might proceed as follows. We
(k)

iterate with the Lanczos process, without computing zq or xfl ), until the estimate (5.2) indicates

that the eigenpair (Ag ), {k)) has converged. The eigenvector ugk) that is used in (5.2) can be
computed every few iterations by inverse iteration. After this eigenpair has converged, we performs
selective orthogonalization with respect to this Ritz pair in order to prevent it from reappearing

in Tx. At the same time, we start computing a:fi ), either explicitly by one of the two deflation
algorithms outlined in Section 2, or by an updating procedure similar to one used in SYMMLQ

[12]. When the estimate (5.4) indicates that x&k) has converged, we stop the Lanczos iteration.

6. Theoretical error bounds

In this section we address the issue of convergence rates and will derive theoretical error

bounds on the approximate deflated solution x&k). For this purpose we need some additional
notation. Recall that II is the orthogonal projector onto the Krylov subspace Kx. We denote by
QW) = P®)I, the orthognal projector onto the subspace K of K, which is orthogonal to the

Ritz vector wgk) Thus, the rank of Il is k in general while the rank of Q®), i.e., the dimension of

the subspace K= Q(k)RN P® K, is k — 1 in general. Without loss of generality it is assumed
throughout this section that z(®) =0, i.e., 7(0) = b. We will establish our result with the help of a
few simple lemmas.

Lemma 6.1. The Ritz deflated solution xfik) is the (unique) solution of the Galerkin problem
QWb - Az) =0, z € QWRY, (6.1)

Proof. From the comments following (4.4), (4.5), it is clear that a:gk) belongs to the subspace
QRN We derive from the Lanczos relation (3.7) that

QW (b~ Azl) = QW (b - AVzY) = @) (“bﬂvl —ViT) - ﬂk+1vk+1e{z§k))

The term Q®) i1 vanishes because vg4+1 which is orthogonal to the subspace Kk, is also orthogonal
to the subspace QW®RYN of Kj. We are left with

QWb - A=) = @) QWb ~ ViTk={?)
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Noticing that Q(®¥)y; = v; — vfw{k)wgk) =Vi(er — e’{ugk)ugk)) we finally obtain

Q¥ (6 - 42{) = QWi (J1ll(er — T u{Pu?) - Ta)

By definition of the deflated solution z,(ik), the above vector is zero.
|
We now assume that A is positive definite and denote by ||.||4 the A-norm, i.., ||z]la =
(Az, z) 1/2, In classical Galerkin techniques, the right hand side b in (6.1) belongs to the subspace
of projection so that we approximately solve Az = b in that subspace. Here, however, the right

hand side is not in the subspace of projection. Observing that (6.1) also reads Q¥ (Q(¥)p— Az) = 0,
we can say that the Lanczos deflation method attempts to solve the linear system

Az = QWp (6.2)

by a Galerkin process onto the subspace K. Thus, for the approximation to be accurate, we must
show that the projected right hand side Q(¥)b is in some sense close to the deflated right hand
side Pb. This will be considered in detail later. We now apply a classical argument in Galerkin
methods.

In the following discussion we denote by #; the exact solution of the linear system (6.2). As

stated above, xf,k) is the Galerkin solution of the new linear system (6.2), i.e., it is a Galerkin
approximation to Zy from the subpsace Ki. A standard theorem relating the Galerkin method to
the Rayleigh-Ritz method yields the following result on the error x&k) — Zg.

Lemma 6.2. The approximate deflated solution a:((,k) minimizes:the function-
J(2) = ||z — 2]l

among all elements x of the subspace Ek = Q(k)RN.

We now wish to reformulate the above results in terms of polynomials. Clearly, a vector v is
in the Krylov subspace K if and only if it can be expressed as v = p(A)b where p is a polynomial
of degree < k — 1. The next lemma shows how the additional constraint that v belongs to QF)RY
translates for the polynomial p.

Lemma 6.3. A vector v of RY belongs to Q)RY if and only if it is of the form v = q(A)b where g
is a polynomial of degree < k — 1 such that q(/\(lk)) = 0.

Proof. Consider a vector of Ky of the form v = ¢(A)v;, where ¢ is of degree < k — 1. This vector
is in Ky if and only if (v,w{*)) =0, i.e., if and only if

(g(A)or,wiM) = 0. (6.3)

The section of the linear operator A in Kk, i.e., the rank k linear operator Ay = IlxA|x, ap-
proximates A in the subspace K in the Galerkin process: its matrix representation in the basis
Vi is VkaVkT. It is easy to show that A{cvl = Iy A/v; for any 5,5 < k and therefore we have
q(A)vy = Tgg(Ag)v1, which substituted in (6.3) yields

0 = (Meg(Ar)vi, ) = (v1, ¢(Ar) Tew?) = (v1,¢(4k) (). (6.4)
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Clearly, wgk) is an eigenvector of Aj associated with the eigenvalue ,\Y‘) and as a result the above
relation becomes

(v1, (A = g (0B (01, vy =0 .

Notice that the inner product (vi, wyc)) is the first component of the eigenvector ugk) of the tridiag-
onal matrix, associated with the eigenvalue )\gk). This component cannot be zero for a nonreducible

tridiagonal matrix, so we conclude that v belongs to K if and only if q()\gk)) =0.
|

Denoting by Py the space of all polynomials ¢ of degree < k, such that q()\gk)) = 0, we can
state an immediate corollary of the above lemmas.

Corollary 6.1. The approximation x&k) is such that
|28 = illa = min lg(4)b — A7'QWb|L.
gEPK

In the next proposition we use this equality to estimate the distance between the exact solution
Z, of (6.2) and its Galerkin approximation a:f,k).

Proposition 6.1. Assume that k is sufficiently large that Ay — Agk) > Ai. Then at the k-th step of
the deflated Lanczos procedure we have the inequality

A AH — 1 VAN L 1+ k2 (1+v
o0 = gella < 2 Aonulac+ (S B2 ) sind (o, uf) bl + S5
1 -

where Ty_, is the Chebyshev polynomial of degree k — 1 of the first kind,

(6.5)

AN+ Ag — Al
Y L
Cy/k converges to w—i—% in which v = lim vg, and ©(z,y) represents the acute angle between

the vectors x and y in RN,

Proof. Recall that P denotes the (eigen)-projector onto the subspace orthogonal to wy, i.e., P =

I—- wlw{ . For any polynomial ¢ in Py we have

128 = 2]l < llg(A)b — A72QWb||4 < [lg(A)b — A7 P4 + |47 (P — Q®))b|4
< la(A)b — A71Pb||4 + AT P(P — QW)b]l4 + [[A71(I - P)(P — QW)b||4

or,
a5 — &xlla < lla(A)b — A7 PB4+ A7 P(T - QWbla + |47 (I - P)QWbll4.  (6.6)

Consider first the last two terms of the right hand side. Since Q¥ = P*)p, by using elementary
properties of projectors, we get

1A= P(1 = QW)blls = A7 PP(I - PW)b]La < [|A™ P||all P(T ~ P®)b]|4
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It is easy to show that

- - 1
AT Plla = [PAT 4 = e (6.7)
Moreover, -
IP(1 = PO)bll4 < VAN|IP(I - POl < VAw]|IP(Z - PO)|l|le]],
and
|P(I = P®)|| = sin®(wy, wl®). (6.8)

The last term in the right hand side of (6.6) satisfies
1A7(I = P)QWb||4 = [|A7(I = P)(I = P)PWb|l4 < || A7 (I = P)||all(I = P)PWp 4,

with ||[A7Y(I = P)||la = 1/A1. The vector (I — P)Q™b , when expanded with respect to the
eigenvectors of A, has only one term corresponding to the first eigenvector. Hence, .

I( = P)PWb|l4 = VAT = P)PHb|| < /M|I(1 - P)PE 1],
and it is again possible to show that
(I = P)PWV|| = sin®(wy, w®). (6.9)

Using these upper bounds for the last two terms of (6.6) we arrive at

. _ 1 A .
o) = dalla < lla()s = 47 Pl + (= + G0 ) sino(un, el (610

We now seek a particular polynomial g in Py for which the first term in the above: expression
is as small as possible. Consider the particular polynomial of degree k defined by

1
P = 1 [ =) = (= AP,

where ¢()) is the polynomial of degree k — 1 defined by

Tk—l (Uk - ak)\)

t) = Tr—1(vx)

in which
Vk:AN+,\2—,\§’“) o LT _ 2 .
A = g+ AR AV Ay =+ AP
The polynomial £(A) is of degree k — 1 and its value at the origin is 1. In fact, it is chosen so as
to minimize the infinity norm in the interval [Ay — /\gk), An], over all such polynomials. We observe
that p()\gk)) = p(0) = 1 which means that p can be written as p(A) = 1 — Ag(A). Moreover, ¢ is of
degree k — 1 and we have q(/\gk)) = 0 so that the polynomial ¢ is in K.

Let us expand the vector A™1b in the eigenbasis of A as A71b = Eﬁl ~;w;. Noticing that
PA71b = A71b — yyw; we get

N
llg(A)b — A7 Pb|% = lla(4)AA™" = PAT'0|% = M[1 - p(A)]*of + ) dinfp(M)% (6.11)
i=2
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We start by focussing on the first term of the right hand side in the above equality. The factor
p(A1) — 1 satisfies the relations:

A =P
p(\1) - (k)t(/\l M) - —l—ﬁt(}‘l) -1

(
(k) Tl - A -1+ S A2 A () - 1),
Remembering that £(0) = 1 this can be rewritten as

p(r) =1 _ A =2 Teu = a) - ¢(0) N AE —x Tt(A) - £(0)
A1 ,\gk) A — NQ) )‘gk) A1

R Or’

where A; — A{®) < £ < 0,0 < & < M. The derivative /()) is given by

Up—2(Vk — ax)

t'(\) =—(k—1)og Ter (%)

(6.12)

where Ug_g is the Chebyshev polynomlal of degree k — 2 of the second kind. Since A1 — A(k)
converges to zero from the left, and since the function |Us_g(vk — ax))| decreases in the 1nterval

A1 — )\g ),)\1], we have |t/(&)] < |¢/(&1)] < |¢'(M = )\( )| = Ck . It is clear that at the limit Cj is
equivalent to
Uk Ug—2(vk)

|t,(0)| = (k - 1) o (Vk)

which in turn can be shown to be asymptotic with
kay,
\/VZ - 1'
Finally, going back to the first term in (6.11),

AW

2
— ALy
k ”b”A:l .
N

Using the inequality (a2 + 52)1/2 < |a| + |b| in (6.11) and the above bound we obtain

M- o)1 = A2 < L= 200 e < [wk

1/2
- AH —
la(A)p — A7 Pl < 20 ™ A Mg+ [Z Aol ] (6.13)
Consider now the second part of the right-hand-side in (6.13). We have

N (). — (K
p(h) = N [t“‘) e )]+t(A;—A§“) (614)
1




Page 13

By the mean-value theorem, the expression between brackets can be expressed as #'(§), the deriva-
tive of t()\) at some point & in the interval [A; — /\gk),)\;]. The point € belongs to the interval

[A2 — /\gk),)\N] and therefore its transformed value (vx — ax€)/vk belongs to the interval [—1,1].
From the expression (6.12) and the fact that |Uz—2(z)| < (k — 2) for 2 € [—1,1], it is clear that
t'(€) < k?ay/Tk—1(vk). Moreover, the second term of of the right-hand side of (6 14) is naturally
bounded by 1/Ty_;(vk). Therefore,

k2 1 L+ k2apdy 1+ k2(L+ )
M) SN + < = . 6.15
()] "Te-1(vk)  Th-1(vk) = Te-1(v) T-1(vk) (6.15)
Thus, the expression between brackets in (6.13) is bounded from above as follows
N /2
14+ K*(1 + k) 1+ k2(1+ vg)
N < A = . 6.16
> tatod ] LR s } PO, e
The result follows by combining (6.16), (6.13), and (6.10).
|

A few comments on the above proposition are in order The term sin ©(wy, gk)) converges

to zero like [14]
1

—_— 6.17

Ti(m) (6.17)
where v 4 A \
_ANtA A

m=" 2 (6.18)

Similarly, the relative error on the eigenvalue ()\(lk) - M)/ ,\§’°) converge to zero decreasingly as the
square of the quantity (6.17). Observe the similarity between the number~y; and the coefficient v

of the proposition. Since )\gk) is close to zero for large k, these two numbers will be close to each
other at the limit. The coefficient Cf in the proposition is not bounded but is of the order of O (k).

However, its product with ()\gk) — A1)/A(®) tends to zero rapidly. The same observation holds for
the term k? in the numerator of the last term of (6.5).

We now turn our attention to the actual error ey = x4 — a:f, ) We cannot use an A—norm to
measure this error because if A; is small this norm will dampen the component of the error in the
wy direction. As a result a possible large component in that direction can be unfairly hidden by
this norm. Therefore, we choose to use the usual Euclidean norm ||.||. Moreover, we separate the
above error in two distinct parts, namely the component (I — P)eg in the w; direction, and the
component Pey orthogonal to it. We show that both terms tend to zero quickly as k increases.

Proposition 6.2. The part of the error in the direction of the eigenvector wy satisfies the inequality:~
k
I(Z = P)(za = )]

® < sin e(wl,wgk)) (6.19)
llzg”

Proof. We have
(I = P)(za — 2| = 1T = P)aP)|| = (I - P)PBP|| < ||(1 - P)PD|||23P]

The result follows from (6.9).
]

The above result means that relatively to [[x o )|] the error in the direction of w; is bounded by
the sine of the angle between the exact eigenvector and the Ritz vector. As we mentioned above,
this angle is known to converge to zero as rapidly as the sequence (6.17) see [14].
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Proposition 6.3. The part of the error in the eigenspace orthogonal to w; satisfies the inequality:

€k

1
P(zg— 2| < —si @w,wk) bl + —= 6.20
1P(za — 2 )| < - sin O (w, wi) Bl s (6.20)
where €}, is the right hand side of the inequality (6.5).
Proof. By the triangle inequality,
1P(a = ) < 1P(aa = 20l + 1P - 201l
Since A"1P = PA~1 = PA™!P, the first term of the right hand side is such that
IP(za — )| = |P(A7*Pb — A7 PWb) || = || PAT (Pb — PW))|
- _ 1 .
= 471 PP(I ~ PO)| < [|47 PI[P(I = PRB)Ib] < 1-sin ©(wr,ui”)p].
For the second term, using the inequality
1Pyl < |Pylla,
| \/-—I Il
we get immediatly that
1 €
P — 20| <€ =[PP — #2)||a < — dlla < X
” ( d k)” = \//—\;” (xd xk)”A \/__”:17 xk”A = \//\—2
|

7. Numerical Experiments

We now present the results of some numerical experiments to verify the accuracy and stability
of the Lanczos-deflation algorithms. All computations were performed on a VAX-780 in single
precision, with a relative machine precision of about 1077,

In these experiments, we employ a simple stopping criterion. The convergence of the eigenpair

(Agk),ulk)) is checked every five Lanczos iterations. The tolerance in the stopping criterion is set
to 10~°. When this pair has converged, we stop the algorithm. No further test on the convergence

of a:(k) is made. In fact, in all of our tests the convergence of x( ) occurs almost 51mu1taneously.

In a first test we solve the linear system A;x = b where Al = diag (107 123 -y n)y.withe .
varying from 1 to 8; b7 = (1,---,1), and n = 100. The deflated solution to the above problem
is zg = (0,1/2,--,1/1,--,1/n). We computed the deflated solution using the Lanczos-Projection,
and Lanczos—-QL methods. For comparison, we also used a standard conjugate gradient method to
solve the test problem and then deflated the solution as follows :

zg=a— (zTu)uy, where uf =(1,0,---,0).

Figure 1 shows the relative error in x4 versus I for the three methods. Figure 3 illustrates the
simultaneous convergence of the approximate eigenpair and deflated solution
Our second test repeats the above experiments with the matrix Ay = ()\1 - cr)I where

T = Tridiag{—1,2,—1}, A1 is the smallest eigenvalue of T and ¢ = 10~ -1 w1th I again varying from
1to8and n = 20 Note that the smallest eigenvalue of Az is 0 when o is small. The solution is
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chosen such that z = x4+ w; where z4 is such (z4,w;) = 0. The right hand side b is then obtained
by forming Axg + Aw;. Figure 2 shows the relative error in 24 versus I for the three methods. In
Figure 3 we illustrate the simultaneous convergence of the eigenpair and of the deflated solution
for the first test matrix A; with ¢ = 10~%. The plot shows the residual norms of the eigenpair and
of the deflated solution as given by (5.2) and (5.4) respectively. Figure 4 is a similar illustration of
this simultaneous convergence for the matrix As.

The numerical results show that both Lanczos deflation methods compute the deflated solution
with accuracy close to machine precision independent of the singularity of the matrix A. On the
other hand, the conjugate gradient method without deflation becomes unstable as A becomes more
singular, especially in the second example. The accuracies displayed by the two deflation methods
are very similar.

8. Concluding Remarks

We have presented two different ways of extending the Lanczos algorithm+to"solving+nearly=~
singular systems. Both methods retain the advantages of the classical Lanczos-Conjugate gradient
procedure in that they access the matrix A only in the form of matrix by vector products. The
overhead of the algorithm over regular Lanczos is limited to deflating a tridiagonal matrix and
is negligible compared to the cost of the overall computation. There doesn’t seem to be much
difference in the performance of the two deflation techniques for tridiagonal matrices. While the
QL method is slightly more complicated than the orthogonal projection method, it should be more
robust and more easily extensible to higher dimensional nullity problems.

Although we have presented an algorithm which requires the storage of the Lanczos vectors, we
should emphasize that an updating version similar to SYMMLQ could easily be derived. Moreover,
the techniques developed here can in principle be extended to handle higher dimensional null spaces
and nonsymmetric problems.

Acknowledgement: The authors thank Mr. Herbert Beke for his assistance throughout this
work.
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Figure 1: Relative Error versus degree of singularity of three
methods: Regular CG (CGM), Lanczos-Projection (L-P) and
Lanczos-QL (L-QL).

10




|
W
I

LOG10(RELATIVE ERROR)
~
I

Figure 2: Relative Error versus degree of singularity of three
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