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Preface

This is a selection of term projects from the courses on neural nets
and applications in the fall semester of both 95 and '96. Although this is
but a sample of possibilities, the scope of the effectiveness of neural nets in
application is certainly conveyed. We hope to add to this collection of reports
in the future, augmenting both the range and the depth of the work.

I am grateful to my teaching assistant, Hong Xiao for her help in
pulling this together.

W. Miranker
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Neural Network in Market Predictions

| : MingDeng . -
Department of Physics, Yale University, New Haven,CT 06520-8120 "

Qiang Li
Department of Statistics, Yale University, New Haven, CT 06511

ABSTRACT

Standard Back-Propagation neural networks are implemented to predict the
market prices of equities. Both industrial indices and historical data of the stock
are used as training information to train the neural network until it converges.
To minimize the delay in the response of the network, day to day changes are
also used as training data. The performance of the neural network is evaluated.

1. Introduction

The stocks and equity markets have long been known to be systems having random
walk behaviors. The question of making predictions of the market behavior has been a
fascinating, albeit impossible problem. Various statistical methods have been devised in
an effort to model the market behaviors. However, when the numerous factors in the real
life come in, it is hard for these models to adjust fast enough to follow market trends that
depend on the political and economical scene.

Multilayer perceptron neural networks have long been used successfully in pattern
recognition and memory simulation. If the neural network can be trained to memorize the
market behavior or its patterns, it may provide a powerful tool in understanding the market
trends. The adaptive behavior of the neural network makes this task very promising. -

2. Implementation and Results
2.1. Implementation of Back-Propagation Neural Network

Our implementation uses the multilayer perceptrons by training them using the
Back Propagation algorithm. The algorithm is a generalization of the more ubiquitous
least-mean-square (LMS) algorithm. The advantages of the multilayer perceptrons are
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its distinct characteristics of nonlinearity and high degree of connectivity. Such neural
networks have been used successfully in the problem of pattern recognition. The patterns
and features are extracted progressively by the internal neurons which have logistic function

as its activation function.

Standard back propagation neural networks are coded in C. To study the behavior of
the neural network and achieve fast convergence, the program is implemented to allow the
total number of layers and the number of neurons in each layer be adjusted. Although
previous studies in homework problems of CS477 have shown that the large number of
neurons does not necessarily lead to faster convergence or better performances.

Finally, a simple three layer perceptron is used since tests show that going to larger and
more sophisticated nets does not give that much improvements in performance. The input
and output layers consist of linear neurons, and the hidden layer uses nonlinear sigmoidal
neurons. The input layer and output layers typically have ~ 10 neurons. They are fully
connected, which makes the total number of connections in the neural network to be ~ 100

2.2. Training Data Set

The historical data of stocks and indices are obtained from Datastream in the Social
Science Library. The data encompasses the first 240 days of 1996. The indices used are
NYSE composite, Dow Joans composite, S&P 500, and NASDAQ. The stock data are those
of Intel, Microsoft, Oracle, Sun Microsystems, Hewlett-Packard, Netscape Communications,
Micron Electronics, Texas Instruments and Motorola. Most of these are high-tech companies
which have enjoyed significant growth during the past 1996 fiscal year. |

The training data are 150 days of historical data of a particular stock and the industrial
indices during that period of time. ‘At first, the inputs are specified to be the prices of
the stock in a consecutive period of 7 days and the industrial composites on 7th day, and
the output used in the training is the price on the Sth day. To allow equal influence of
different factors, all the indices and prices are normalized to have the same average. -Such
normalization is necessary because the sigmoidal function varies only in a small range near
zero.

The training data sets are selected randomly in order to minimize a tendency in
memorizing more recent effects. Each training set of data is run through the network in 100
epochs to make the network converge. To accelerate the convergence of the neural network,
a momentum term (Chapter 6.3, Simon Haykin) is included to increase the rate of learning,
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After the neural network is trained through these epochs, the converged weights.are ready
to be used to predict the stock behavior. The resulting neural network is then used to

. pred.lct stock pnces for all the 230 days of data we have downloaded.

2.3. Results

The program is run for each of the 9 stocks we have selected. And three of the typical

result graphs are shown in Figure 1-3. They are the stock prices of Microsoft, Micron
Electronics and Motorola.

The Microsoft stock prices shows a general trend of increase marked by a few little

~ oscillation in short time scales. As shown in the graph, the neural net followed the trend of

market very nicely. More over, it is not sensitive to the local fluctuations which tend to be
kind of like noise. However, detailed examination shows that the neural network shows a
delay to larger changes in the market. Basically, the neural network does not predict very
well large changes in the market in short time scales.

The Micron stock and Motorola prices show great variation during the past year. As
shown in the Figure 1-3, the neural network followed the market trend and the time delay
in predicting the market change seems to be much smaller than the Microsoft graph, which
means that the neural network did better in predicting upcoming changes of the market.
This might because they are more similar to random walk behaviors and statistically have
more extractable patterns in their behavior. '

To study the pattern of changes in the stock market, stock price changes on consecutive
7 day period are plotted in two groups in Figure 4. To show their distribution, histogram
are also made in Figure 5 and 6. The first group corresponds to the 7 day periods which is
followed by a growth of the stock price. The second group corresponds to the 7 day periods
which is followed by a drop in the stock price. In this way, the different historical pattern
tha.t leads to future changes can be studied.

The plots do show some interesting patterns. The group that is followed by growth has
daily changes lying between -10.0 and 3.0, most of which are in the range of -2.0 and 1.0.
Whereas the group that is followed by drop has daily changes lying between -8.0 and 3.0,
most of which are in the range of -1.0 and 2.0. The distributions also show drastic difference
for the two cases plotted in Fig 5 and 6. Therefore, the conclusion is that there may be
some patterns in historical data that can hopefully lead to predicting market changes.

If the market behavior can be modeled by a random walk, then the above result can be -
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explained. Since the probability of the market to rise and fall on the day by day basis are
roughly the same, it is unlikely to have consecutive increases and decreased for very long. A

long increase is more likely to be followed by a decrease in the market, and the same holds

reversely.”

In light of the above result, the program is modified to predict the market changes
rather than the market price itself. Both the inputs and outputs are changed to be the
day-to-day changes in the prices and indices. Equivalently, the derivatives of stocks and
indices to time in days are used. The results are plotted in Figure 7-9 for the same three

stock prices. The delay and difference between the market price and predicted price is
smaller, however, the delay still exists.

3. Conclusion

Neural networks are implemented in an attempt to predict stock market prices. The
network converges and seems to do very well in memorizing market behaviors on long
term time scales. However, the neural network does not do very well in predicting sharp
rises and falls of the market which may be due to random effects. Efforts has also been
made to identify possible historical patterns, the result shows some improvement once the °
day-to-day changes are used. Further research is needed to understand these patterns.

REFERENCES
David M. Skapura, Building Neural Networks, ACM Press Books

Simon Ha.ykir;, Neural Networks, Macmillan Publishing Books

This preprint was prepared with the AAS IATEX macros v4.0.
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Fig. 1.— The predicted vs. actual stock prices of Microsoft in 1996. The solid line is the
actual price; the dotted line is the predicted prices by the neural network.
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Fig. 9.— The predicted vs. actual stock pnces of M1cron in 1996 The solid hne is the actual

price; the dotted line is the predicted pnces by the neural network ’
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Fig. 3.— The predicted vs. actual stock prices of Motorola in 1996. The solid line is the
actual price; the dotted line is the predicted prices by the neural network.
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Fig. 7.— The predicted vs. actual stock prices of Microsoft in 1996. The method is based

on daily changes rather than prices. The solid line is the actual price; the dotted line is the
predicted prices by the neural network.
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Fig. 8.— The predicted vs. actual stock prices of Micron in 1996. The method is based on
daily changes rather than prices. The solid line is the actual price; the dotted line i is the
predicted prices by the neural network.
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- A Neural Network Model of Jazz Improvisation

© Todd J. Green S
Yale University, Dept. of Computer Science
New Haven, CT . 06520

Abstract

Jazz improvisation is learned mostly by example. The target-note technique is often used
as an explanation of this learning process. We outline here an implementation of this model
of improvisation by means of a neural network. We use a modified version of Hopfield’s
network, based on the research conducted by Petri Toiviainen at the University of
Jyviskyld, Finland but with an improved scheme for chord representation. We were

unable to produce meaningful results with our network. Instead we include reproductions
of Toiviainen’s results.

1. INTRODUCTION

1.1. The Target-Note Technique .

The target-note approach is a simple, commonly-used way of explaining the
microstructure of an improvised jazz melody (Mehegan 1959; Toiviainen 1995). By
“microstructure” we mean the structure of the melody taken one chord at a time, without
regard for the solo’s larger-scale structures (phrasing, dynamics, etc.).

The approach goes like this: to determine what notes to play in a given measure, the
improviser picks a “target” note from the next chord (either the root or one of the upper
tones) and applies a learned melodic pattern to play over the current measure, landing on
the target note. To play over the next chord, the improviser starts with this note, picks a
new target note from the next cliord, and appiies a pattern again; and so on.

1.2. Simplifying Assumptions » .
Several constraints can be imposed on the input without sacrificing too much of the
model’s generality. Firstly, we consider only compositions in common time (4/4). This is
not too limiting since the great majority of jazz composed and performed in the bebop era is
in 4/4 time (Mehegan 1962). | ‘ |
Second, we allow the half-note as the smallest harmonic unit, i.e., wé assume there are
no more than two chords per measure. This is also not too seﬁ_pﬁ_s a constraint, as it is
almost always the case in bebop music. P




Thirdly, the smallest melodic unit we allow is the eighth note. The justification here is
that in many cases shorter rhythmical units (16th, 32nd, etc.) can be viewed as simply
ornamenting an underlying eight-note melody (Toiviainen 1995).

Finally, we allow only monophonic melodies (one note at a time). This too is not a
severe restriction; the most significant solo 1nstruments in Jazz the trumpet and the
saxophone are monophomc instruments.. '

!

2. ARCHITECTURE OF THE MODEL

2.1. A Modified Hopfield Network

One successful application of a neural network to implement this model used a
modified Hopfield architecture. A 6-by-14 array of fully-interconnected neurons was used,
where the six columns represent the note preceding the current half-measure, the 4 notes of
the half-measure, and the note following the current half-measure, respectively. The
neurons are self-coupled as well. The rows of the array represent the 12 tones, a rest, and
a ligature (tie to previous note). When the network is stable, only one neuron per row is
active. _

Each neuron receives an additional, external activation from one of two other arrays,
one representing the chord of the current half-measure and one representing the chord of
the following half-measure (see 2.3).

2.2, Interconnections

The interconnections between neurons of the same column are inhibitory and fixed to
ensure that only one neuron per column is active when the network has stabilized.

The interconnections amongst neurons of different columns are excitatory and
dynamic; they are altered during the learning phase.

The interconnections from external chord neurons are also exc1tatory and dynarmc
modified during the learning phase.

2.3. Chord Representation
2.3.1. Localized Representation .

To represent chords in Toiviainen’s architecture, two additional arrays of neurons are
used, one for the chord of the current half-measure and one for the target chord. Each
neuron in these arrays corresponds to exactly one chord type e.g., maﬂ 134#11, etc., and
only one neuron per array is ever active. These chord matnces are fully connected to the
neurons in the melody matrix. o




2.3.2. Distributed Representation

In the bebop era, jazz musicians explored the use of chord substitutions to create added
interest and dissonance to their compositions and improvisations (Lawn 1993). A soloist
can spice up a solo by implying a substitute chord; i.e., playing notes that fit over a chord
other than that specified by the lead sheet, but treating the chord as functionally equivalent
to the original. The substitute harmony generally has at least two tones in common w1th the
original chord; it works because it sounds like the original.

In order to increase the generality of the mddel, we decided to represent chords by
their component notes. This way, chords that are similar (e.g., maj7 and maj6) have
similar representations, allowing the network to handle simple chord substitutions.

More complicated but still often-used substitutions involve chords with a different root
from the original. The most common example of this is the tritone substitution, which uses
a dominant chord with the root a tritone from the original. The two chords sound alike
because they have two notes in common; however, when they are transposed to the same
root, their differences in harmonic function are obscured. In order to get around this
limitation, we decided to represent all chords relative to the tonic. For instance, under the
old scheme, Emin7 | A7 1 Dmaj7, a ii-V-I progression in the key of D, would be fed into the
network as Cmin7 (target F7) | C7 (target Fmaj7) | Cmaj7; under the new representation,
the chords are fed in as Dmin7 (target G7) | G7 (target Cmaj7) | Cmaj7.

G7
AE; g o

figure 2: example of a tritone substitution, showing common tones
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2.4. Activation
The activation of a neuron j is defined by the functions:

a({j) = sgn({choxrd_a(j) + net_a(j))

where
chord_a(j) = (activation of chord tone i) * (weight j, i)
i
net_a(j) = a(i) * (weight j, 1)
i
2.5. Training

The learning phase is different in this implementation from a conventional Hopﬁeld
network. Learning does not take place all at once, but rather in epochs. To train on one
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half-measure, the appropriate entries within each chord activation matrix ére set“to
maximum, and the activations for the notes to be associated with each chord are set to
maximum.

The weights in the weight matrices are not computed all at once, as in the conventional
Hopﬁeld néetwork (Haykin 1994) Instead they are modified one at a time accordmg to the

following Hebbian rule:

w(j,i) += etald * a(j) * a(i) '

w_external(j,i) += etal * a(j) * a(i)
where w_external is the weight between neuron j and chord neuronii.

2.6. Relaxation

The network is updated one half-measure at a time.

The neurons are updated asynchronously until the network stabilizes. At this point,
one neuron in each column will be active, representing the note to be played on that beat.
Thelast two notes of the network (the target notes) are fed back as the first two notes of the
next half-measure, and the process is repeated.

4. EXPERIMENTS

We were unable to work all the bugs out of our network. Thus, we were unable to
conduct any experiments. However, it is worth reportmg the rather striking results of an
earlier study (Toiviainen 1995). In this study, the researcher found that the limited storage
capacity of his network made it impossible to train it on more than a few half-measures; too
much training resulted in “cross-talk” between the exemplars. His solution was to use a
cycle of 8 instances of the network, training the first on the first half-measure; the second
on the second half-measure, and so forth. Since j Jazz solos tend to display phrasing on the
scale of 4 bars (or 8 half-measures), this approach had the advantage of lending his results
a thematic coherence that make them sound more authennc, even if attained by a fairly
artificial means. Nevertheless, the network managed both to apply the patterns it was
taught correctly (see boxed sections of figure 3c) and to generate new and stylistically-
consistent patterns based upon those it was taught. The first two examples are from
trumpeter Clifford Brown’s solos on the standards “All the Things You Are” and
“Gertrude’s Bounce”. The third solo is the output of the network, g1ven the chord changes
of the standard “T’ve Got Rhythm” as input. .
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We believe that our distributed, relative-to-tonic chord representation represents one of
many refinements to be made in modeling the target-note technique with a neural network.
It would be straightforward to extend the model to incorporate, for example, a

representation of accent.
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figure 3a: training set #1: excerpt from Clifford Brown’s solo on “All the Things You
Are”
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figure 3.c: output of the network (chord changes from “I've Got Rhythm”); rectangular
boxes denote patterns quoted verbatim from training set (“G” indicates “Gertrude’s
Bounce” and “A” indicates “All the Things You Are”).
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Character Recognition with BPN

Benyuan Liu
Yale University, Physics Department

- New Haven , CT06511

Abstract '

Artificial neural network can be trained with given exemplars to recall stochastic associations
correctly. Among many algorithms, back-propagation net (BPN) is a general-purpose and
commonly-used paradigm in neural networks. We describe application of the BPN .to
Chinese character recognition. The details of the input, output pattern, the BPN algorithm, and
the net's performance are discussed.

1. Introduction

With the great increase of computcr application in China, Chinese character recognition
becomes a hot project,. Since the input of Chinese characters is very complicated and requires
people to remember many rules. It's very inconvenient for people to write Chinese on computer
sincethe speed is limited by tedious input methods. So, the implementation of Chinese character
recognition will have a large effect on both people and the computer industry.

Unlike western characters, there are several thousand of Chinese characters, many of them being
very complicated , and some of them may have very little difference in form. In this project I
chosed ten simple characters [Figl], used BPN to construct the neural net, and investigated the
correctness of the net's recognition capacity. ‘ '

2. Input Pattern Definition

The input pattern should represent the information of the characteristic of input object. In this
case , the characters' structure and shape. It should be convenient to be entered into"_ thc

computer. Perhaps the most commonly used method is to divide the character into a two-

dimension video pixel matrix [Fig 2]. There are two possible states for each pixel, occupied or

PR S



not. A logic "1" means the pixel is filled, logic "0" means it is empty. For character recognition,
binary information is enough , we need not gray scale representation .

Due to the complexity of Chinese characters, we may need alarge video pixel matrix to represent
them , but in our application , we only choose a moderate resolution , say, 16 x 24. For a real
product a high resolution will be necessary, because extra plxel information will give the neural
net more information that can be used to distinguish’different characters.

We collected the hand-writing of four people for each of the ten characters. A scanner is used to
scan the characters in as a black-and white picture. Then we use a graph software(xv) to pixelize
each character and scale the size to a 16x24 matrix.

Then we concatenate the 24 row vectors into a one dimensional 384(16x24) elements vector
[Fig 2}, which can be input into computer easily.

3 Output Pattern Definition

Since our exemplar only consists of 10 characters, the most straightforward solution is to set up
aone - to - one mapping from input space to output space [Fig 3] . Then we only need ten output
neurons. Given one input pattern, one, and only one output neuron will become active, the others
remaining inactive. The position of the active neuron specifies the input character. The
advantage of this approach is obvious, as stated in Building Neural Networks [refrence 1], "It is
relatively easybto construct a layer of processing elements in a neural network that will produce a
one-and-only-one output across the layer. It is also very easy for the external application to

 interpret the output from the network: It need only determine whlch output unit is active, and

then use the character associated with the active unit. "

There is an obvious disadvantage in this approach. As we have mentioned, there are thousands
of Chinese characters. If we use the one-to-one mapping in a real product , there would be
several thousand output units in the net. That means we need a huge weight matrix and the
training will take an extremely long time. More 1mportant1y, if we want to add a new character
to input space, the output space must be extended to contain a new unit correspondmg to the
newly added character, and the training must be repeated once again. In fact , there are several
kinds of code methods for Chinese characters. For a real application , it's very important to



select a proper code for the input character. For different choice, the performance can be very
different. We won't discuss this point any further, we will focus on the simple application of ten
characters, in which it makes sense to choose ten one-to-one output units.

4. Back-Propagation Algorithm
In BPN, each hidden and output neuron is designed to perform the following functions.

1. Compute the internal activation and the output of the neuron. This is the forward direction.
2. Compute the difference between the real and desired output, use it to adjust the relative
weights. This is the backward direction. ‘

The algorithm can be described in following data flow chart [Fig 4].

5. Network Specification

We use three layers for this application. First, the input layer , has 384 units. It contains the
characters' pattern (shape) information, and acts as a fan out layer. We have only one hidden
layer. It is basically a feature identification layer. The third is a ten unit output layer. It's just a
binary indicator of the input characters. After the proper training, we expect that for each input,
a corresponding output unit will fire, the others remaining inactive. Each of the input nodes is
connected to all the hidden nodes, and each of the hidden nodes is connected to all the output
nodes.

Since the input and output patterns are basically binary signals, we employ a sigmoidal non-
linear function as the activation function for both hidden and output layers. We use the non-
linearity of the sigmoidal function in hidden layer to train the net to be able to differentiate non-
linear input pattefns. ' |

We set the neuron number in the hidden layer to be a fraction of the number of the input
neurons. Then , according to the quality of the performance , we adjust the number up or down.
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6. Network Performance

Use the four sets of exemplars [Fig 1] to train the net. After 500 training epochs, we
1nvest1gate the net's ability to recall. the training character patterns correctly[table 1], Ideally,
given a specific input pattern , the output should have one active unit, the others should all be
inactive. From the following table, we can see there is only one large output whose value is
great than 0.9, the others' value is at the order of 0.01[Fig5]. The result is very impressive.

We use another test character [Figl] set not included in the training set, and list the results in
the following[table 2]. We can see from the table that all ten characters are recognized correctly.
However, the performance is not as good as for the training set. The amplitude of the active
neurons becomes smaller, but still remains the dominating one[Fig 6]. At the same time, the
amplitude of the some inactive neurons get larger , especially those units corresponding to a
similar character. For example, the character 1 is similar to character 5 in structure, in the output
pattern of character 5, we find a large increase of neuron 1, which is corresponding to character
1[Fig 7].

In order to get a high ratio of recognition in real application, one may need to collect enough
sets of handwriting, so the net can be trained to store more information that can be used to
identify many different features of a character.

This project is for course CS477. Thanks for the help and encouragement from Professor
Miranker. My thanks also to TA Hong Xiao for the helpful discussions. Lastly thanks to those
people who generously provide their hand-writings.
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Fig2 This diagram illustrate the two dimension video pixel matrix of a character(16x24).
And how we concatenate the matrix rows to form a one dimensional array.
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Fig3. This diagram shows the output classification scheme. There are ten output units, each one
corresponds to one input character, aftef the net has been trained properly,.

only the unit which
is associated with the input character will be fired
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l

Backward compute the errors
and adjust the weight matrix
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Fig 4. Data flow chart of the back-propagation learning algorithm.

( End -training )
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Fig 5. Chart of the output units of Exemplar 35(the fifth character), we can see the fifth neuron
of the output layer is active(near 1), the others is very small.

"

Fig 6. Output neurons of test5, the amplitude of the active unit becomes smaller, but still remain
dominating. '



Output 0 - 1 2 3 4 5 6 7 8 9
Ex1 1096 10.02 |0.01 0.00 10.01 {0.00 ]0.00 [0.02 |0.02 0.00
0.03 094 1002 10.00 [0.00 [0.05 10.01 0.00 [0.00 ]0.02
000 10.03 1095 1000 Jo.01 |0.03 [0.00 |0.601 |0.00 [0.00
0.00 [0.00 1000 1095 ]0.01 ]0.00 [0.05 10.05 |0.00 {0.02
000 10.00 003 002 |0.96 [0.00 [0.00 [0.00 |0.03 0.01
0.00 ]0.05 10.01 0.00 10.00 096 [0.04 TJ0.00 10.00 [0.03 |
000 ]0.01 10.00 1004 (000 [0.03 [0.96 [0.00 [0.00 [0.01

004 1000 1000 003 J0.00 [0.00 [0.00 ]0.94 1{0.03 0.03
005 10.00 1002 000 J0.02 [0.00 [0.00 ]0.03 [0.95 0.02
0.01 0.01 10.00 [0.00 }0.02 000 [0.00 ]0.02 [0.03 0.95
096 |0.01 [0.01 000 1002 [0.00 ]0.00 [0.03 10.03 0.01
0.01 094 1002 10.00 [0.01 (0.04 ]0.01 0.00 10.00 [0.03
0.01 0.03 10.96 (0.00 (002 [002 ]0.00 |0.00 [0.00 [0.00
0.00 1000 1000 095 J0.01 ]0.00 [0.04 [0.02 ]0.00 |0.01

0.01 0.04 10.03 (0.04 (094 1000 j0.00 [0.00 [0.00 [0.02
0.00 1002 002 0.00 ]0.00 J0.96 [0.03 10.00 [0.00 [0.01

0.00 1003 1000 1002 ]0.00 ]0.03 097 10.00 [0.00 [0.01

0.02 (0.00 ]0.01 003 10.01 000 [0.00 ]0.95 {0.01 0.02

0.01 0.00 {0.01 000 1002 1000 [0.00 }0.01 0.96 10.04

0.01 002 1000 000 [0.03 000 [0.00 }0.03 10.02 0.94

0.95 002 10.00 000 ]0.01 ]0.00 [0.00 ]0.04 10.01 0.01

0.02 093 10.03 1000 ]0.01 1}0.04 [0.01 0.00 10.00 ]0.01

002 1003 1094 1000 |0.03 |6.02 ]0.00 000 10.01 0.00

0.00 ]0.00 000 f0.93 ]0.05 ]0.00 [0.04 [0.02 ]0.00 ]0.01

0.00 [0.00 ]0.01 002 (095 10.00 [0.00 ]0.00 {0.02 0.02

0.00 10.03 {004 J0.00 |[0.00 J0.95 }0.02 [0.00 ]0.00 [0.00

0.00 1003 1000 J0.05 {000 ]0.01 J0.95 000 10.00 10.01

0.04 1000 1000 J0.04 (000 J0.00 [0.00 ]0.93 1]0.03 0.01

0.01 0.00 10.02 {0.00 (001 {0.00 (0.00 ]0.05 096 [0.00

000 1001 1000 j0.00 |o0.01 Jo0.01 ]0.00 }0.01 ]0.01 0.95

093 1003 001 10.00 000 (0.00 (0.00 [0.04 ]0.02 10.01

004 1095 1004 000 |0.01 J0.03 |000 |0.00 [0.00 ]0.03

0.00 10.03 1094 |[0.00 {0.04 ]0.02 ]0.00 [0.01 ]0.02 0.00

0.00 10.00 1000 096 0.03 0.00 {0.02 004 [0.00 [0.01

0.01 001 10.04 10.03 095 [0.00 0.00 [0.00 ]0.01 0.03

0.00 1005 1004 1000 000 094 j0.01 [0.00 ]0.00 10.02

000 1001 1000 10.02 000 |0.02 096 [0.00 }0.00 10.01

003 {000 1001 002 J0.00 |0.00 {000 092 10.04 10.07

0.01 0.00 10.01 0.00 }0.01 10.00 [0.00 [0.04 [096 [0.02

wlw B B DO DO B DO B DO 1|t | ot et |t | ot} ped } ] ot ]| ot
3%333&%’3%»—O\%Q\)mmhwwwoxoooch\m.pum.-.o\omﬂc\u-bww

002 1003 000 ]0.00 (002 ]0.00 [0.00 |0.05 0.0l 0.92

Table 1. The output of the 40 training patterns, we can see the result is very good. The active
unit is over 0.90, and the inactive unit is at the order of 0.01. The contrast is quite obvious, the
application can easy tell what's the input character by the output indicator.



Output{ 0 1 2 3 4 S5 6 7 8 9

testl] 10.69 10.01 [0.01 000 001 J0.00 [0.00 |004 |0.07 |005
2 0.01 087 1005 ]0.00 {0.00 [0.07 {000 (000 (000 |002

0.00 |0.10- {0.73 000 f0.01 f0.13 {0.00 ]0.00 |0.00 O.O(Y)A

0.00 [0.00 |0.00 ]085 |0.01 ]o0.00 005 1006 |0.00 ]0.03

0.02 (0.02 }0.01 003 1079 {0.00 ]0.00 000 |0.00 ]0.05

0.00 1026 |0.01 000 0.00 [072 0.03 |0.00 |000 |0.04

000 [0.01 000 |0.03 |0.00 J0.08 088 |[000 ]oo0o lo.o1

0.03 000 |0.00 1001 f0.00 [000 |000 |058 007 lo1s

O [0 |2 |ON b | W

005 [0.00 |0.03 000 |0.03 000 [000 |009 lo76 |o0.02

10 0.01 001 ]0.00 j0.01 [0.01 (000 [000 020 |003 lo81

f
‘

Table2. The output units of the test character set,. The amplitude of the active neuron becomes
smaller, but inactive neurons remain at the order of 0.01.
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Fig7. Output of character 5, which is similar to character 1 in feature. We see the output unit
corresponding to characterl get larger.
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Hybrid Networks
: Josh Mahowald o
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P.O.Box 202545 New Haven, CT 06520

Abstract
Two powerful, commonly used neural nets, the Hopfield network, and the bi-
directional associative memory (BAM) are excellent models to study theories of memory.

Hopfield networks clear up “fuzzy” memories, while associative memory networks relate

one “picture” to another. This project attempts to combine both Hopfield networks with

BAM networks to determine whether the two networks can be mutually beneficial, and

expand each others capabilities.

Introduction

There were actually two goals for this project. The first was to create an
environment which was conducive to testing both Hopfield and BAM networks, allowing
the user to manipulate the data sets used at ease, as well as to observe graphical outpute of
both networks. The second goal was to conduct preliminary experiments that investigated
the possible benefits of using BAM and Hopfield networks in conjunction with one
another.

The Hopfield network is an excellent tool for clearing up “noisy” patterns, while
the BAM is good at remembering relationships between patterns. The BAM, however,
does not have within it a method to correct errors without supervision. There_foref_oy

using a Hopfield network as a preprocessor and/or postproeessor for a BAM network, we )




can improve the BAM network’s ability to correctly retrieve patterns given a “noisy”
input.

It is also p0331ble that a BAM network can 1ncrease the performance of a Hopfield
network. If the BAM network remembers a relatlonshlp between x and y, and the
network is given x’ such that x’ is closer to the pattem x than any other input vector
pattern, the network will produce a vector y’ that is closer to y than any of the other
output memories the BAM network was trained on. If, by sending the output vector y’
back through the BAM network to the Hopfield network, some of the noise was to be
cleared up, we can exploit the fact that the BAM network can use massive parallel
processing for its computation, updating all neurons in a constant number of steps, while
the Hopfield network, which relies on asynchronous updating, requires time that is

proportional to the number of neurons in the system.

Implementation
The data vectors used in this project were 120-dimensional. Users create an input
pattern by drawing on a 10 x 12 pixel palette. Output patterns are also displayed on the
same palette. Each pixel represents a neuron, where a value of +1 indicates a filled in
pixel, and -1 indicating a blank pixel. | |
There are actually two user-interface based programsl that were created for this

project.. One, called HopTrain, is used to set the fundamental memories of the two

! The code for the palette that allows the user to draw on it was grac1ous1y donated by K.lshnan
Nedungadi. .

Both programs can be retrieved from
http:llpoWered.cs.yale.edu:8000/~mahowa1d/HopBam/Project.htm1



Hopfield networks, and to create the BAM network that creates mappings between the -
pairs of fundamental memories for the Hopfield networks. The other, called HopBam,
tes’ts, the three networks, and a.ll_qws the user to yiew the fundamental membries and to
randomly distort them. |

To create the Hopfield networks used, the algorithm in Haykin (8.9) was used.
Asynchronous updating was used to guarantee convergence of the network to stable
states. For each iteration, the network picks a neuron at random, and updates its state
according to the algorithm outlined in Hayken, 8.4-8.6. This is repeated for all the
neurons. Once all neurons have fired, the network checks to see if the state of the
network has changed. If so, the iterations continue, if not, they stop.

The BAM network is based on the associative memory network described in ]
Haykin 3.3. The memory matrix is calculated as the sum of the outer pfoducts of the
correlated memories. Recall is then simply the application of a memory state to the-
memory matrix. Because of the graphical nature of our example, there is hardlimiting that
is applied during recall. Specifically, since our neurons are only in the state of being 01; or
off, and never any gradients, the output state of the BAM is correspondingly transformed.

It should be noted that in both cases, because of the graphical nature of the

application, the network state is not a vector of neurons, but rather a matrix of rieurons.l

This therefore makes the corresponding weight matrices into 4 dimensional arrays.

Experiments

The results experiments that were conducted were positive, indicating that there

were benefits to be gained from using the two types of networks in conjunction with one _



another. The use of both post and pre-processor Hopfield networks on the BAM network

greatly increased the production of correct output patterns for the data-set that was used.

- Also using the BAM network as a preprocessor to a Hopfield network showeda

possibility for increasing fhe efficiency of é Hopfield nétwork. The data sét consisted of
eight pairs of fundamental memories, eight fundar'nental memories taken from Haykin 8.4
and the other eight generated by the author?.

is:efore continuing with a description of the experiments run, a couple of clarifying
are in order. Patterns will be referred to by the index of the pair that they are in (1-8), and
by either L or R, to denote a fundamental memory of the left Hopfield network or the
right Hopfield network. The measurement of error for the BAM network will be given by
the number of neurons in incorrect states compared to the desired output. For the
Hopfield network, we have four, more sﬁbjective measurements. For these measurements
we define two patterns to be “close” if they differ by no more than 12 pixels, 10%. Error
type one is when the Hopfield network ends up in a spurioiss state that is close to the
desired output. Error type two is when the Hopfield network ends up in a different
pattern than the desired one, but that pattern is still a legiﬁmate fundamental memory.
Error type three occurs wheﬁ the output pattern is close to a legitimate fundamental
memory that is not.the desire one. The fourth type of erfor is when the Hopfield network
eﬁds ﬁp as a spurious sfate that is not close to one of the fundamental memories.

The first experiment tested the ability of the BAM network to correctly retrieve an

output pattern given a clean input pattern. In 10 of the 16 possible mappings the BAM

2 The patterns can be seen by a browser at the URL:
http://powered.cs.yale.edu:8000/~mahowald/HopBam/Patterns.html
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performed perfectly. In the 6 remaining mappings, all but one of the incorrect patterns

were corrected once put through a Hopfield network as a postprocessor. The number of

incorrgct'ne'uron étates for the remaining 6 mé.ppings is below. The..ar_rg')ws; below indicate -

the direction of the inépping frorh the input to tﬁé §ﬁtput pat.tern |
Table 1

1L<-1R 3L->3R 4L->4R SL->5R* 6L->6R 8L->8R

#Incorrect 5 9 6 5 6 3

The starred mapping indicates that the Hopfield network there reached a spurious state
that was 2 pixels off the desired state—still better than the BAM alone.

The next experiment tested the Hopfield networks ability to correct noisy patterns,
to determine its use as a preprbcessor for a BAM network. For each of the 16 patterns
10 trials of noisy patterns were run’. The fundamental memories were distorted by
changing each pixel in the pattern with a 25% probability. The numbers of occurrences of
each type of error was recorded, in addition to the average number of neurons that ﬁreci
until a stable state was reached. For errors of typé 1, the average number of incorrect
neurons is given after the total number of errors. For errors of type 2, the p;oduced

fundamental memory is listed.

3 The results for the individual expenments canbeseenat
http://powered.cs.yale.edu: 8000/~mahowaldeopBam/Ex2Results html



Table 2

IR 2L 2R | 3L |3R| 4 |4R|SL|SR|6]6rR|TL|7R] 5| R
El T T Tl 15 52 129 (46| 38
E2 1.6 16 '

E3
E4| 1 1| 1 2

The Hopfield networks achieved the desired state, or a close spurious state in 153
out of 160 trials, for a respectable 95%. In all of these cases the output of the BAM
network, being deterministic, was identical to the output of the BAM network given
perfectly clean input patterns can be found above in Table 1. All other cases used a BAM
network with ‘a postprocessor Hopﬁe_ld netWofk to produce the final output. In the five
cases when a spuﬁous state that did not resemble one of the desired output patterns the
pattern after processing by the Hopfield network was not close to the desired output. In
the two cases that resulted in a legitimate, but different fundamental memory than what
was expected, the BAM network succeeded in exactly replicating the produced patterns
corresponding image. With thé exception of 5R patterns and one other exception, the
resultant patterns of Type 1 errors were the desired output once passed through t};e BAM
network and a postprocessor. Using a BAM nétwork énd Hopfield ;;bstprocessor oﬂ
preprocessed patterns of 5R that resulted in a Type 1 error caused the final state to be 3
pixels off of the desired state. There was one case in which a failure to correctly

preprocess a pattern of type 7L sent into a BAM network followed by a Hopfield

postprocessor resulted in a spurious state that was th Aclqsé to the 'dcsired final state. A
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The next experiment removes the preprocessor, and compares the ability of the
BAM network to resolve noisy input patterns on its own, and when it is coupled with a
postprocessor Hopfield network. Once again 10 trials were ran for each mapping, with
the noise being produced oy randomizing a .fundamental rnemory pattem.with a25%
probability*. In approximately 25% of the trials t'he BAM network successfully cleared
up noisy patterns to produce the correct output pattern. In 11.25% of the trials the
Hopfield postprocessor either failed to improve on the performance of the BAM netWork
or made it worse. In all but one of those cases, however, over 10% of the neurons were in
the wrong state after the noisy pattern was transformed by the BAM network. In
approximately 4% of the trials the processing by the Hopfield nefwork improved on the
performance of the BAM network without producing the desired output pattern exactly.
And in the remaining 35% of the cases, the Hopfield postprocesson cleered up ;11 -the
noise that the BAM network failed to clear.

The next experiment compared the efficiency of using solely a Hopfield network to
retrieve a memory to using a Hopfield network in conjunction with a BAM net_work.

Because the BAM network can do all of its processing in parallel the time it takes to

compute the output pattern given an input pattern is constant with the number of neurons.

A Hopﬁeld network, however, needs time proportional to the number of neurons because

of its asynchronous updatlng By feedmg a noisy pattern into a BAM, and then feeding
the BAM’s response back into itself and giving that output to the Hopfield network, the

hope is that the number of neurons fired by the Hopfield network to correctly retrieve the-

4 The results for the individual experiments can be seen at -
http /Ipowered.cs.yale.edu: 8000/~mahowa1leopBam/Ex3Results html
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pattern decreases without increasing the number of incorrect neuron states. Once again

10 trials were used, with noise in a pattern being created at arate of 25%°. In the table
below #f1 represents the average number of 1terat10ns requ1red by the Hopﬁeld network to
correctly retneve the des1red output, and #f2 the average number required when a BAM
network is used as a preprocessor to the Hopﬁeld network. The experiment also found
that there was a decrease in errors when the BAM network preprocessed signals for the

Hopfield network.

Table 3

IL I IR | 2L { 2R | 3L | 3R | 4 | 4r | 5L SR 6L |6R|7L]|7R]| 8L | 8R

#11 255 | 235 { 129 | 156 | 134 [ 283 | 144 | 175 143 1126 1 137 | 164 | 194 | 154 | 120 | 223

#2| 98 | 110 | 15 | 29 | 42 | 218 | 56 9 {75 | 8 | 62 [{134]|.65 | 60 4 | 183

Conclusion and Analysis of Results

The ability of a BAM network to perfectly retrieve an output pattem from a noisy
input pattern jumps from 25% by itself, to 60% with a postprocessor Hopfield network,
and 95% with both a pre and postprocessor Hopﬁeld network with the data set exarmned
This large jump is indicative of positive gams that may be gained by usmg Hopﬁeld

networks in conjunction with BAM networks, and could be applied to any area in which |

" BAM’s are currently used such as image databases. There also was positive evidence in

% The results for the individual experiments can be seen at -
http://powered.cs.yale.edu: 8000/~mahowa1d/HopBam/Ex4Results html ..
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the use of BAM’s to process noise as well, at least for small, relatively orthogonal data
sets.

A caveat empor is due at this time. The data set examined was relatively small,
and pickéd to get maﬁimum fesults out of bofh networks. Tﬁe set of patterns used waS
highly orthonormal, and similar results should noi be expected from sets that are non-
orthonormal. As mentioned ih the introduction, however, one of the goals of this project
was to create an environment that would easily allow experiments, and the author believes
that he has been at least partially successful in this regard. As rnentiohed in the footnotes,
the programé used as well as the data sets can be retrieved from and instructions for usage
can be found at:
http://powered.cs.yale.edu:8000/~mahowald/HopBam/project.html
Hopefully, with a minimal amount of time, users can easily create their .own data sets to
refute or support the findings of this paper.

One final note, this project would not have been successful without the generous
help of Kishnan Nedungadi, who made the graphical user interface part of the program

possible.

—
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Character Recognition Using Neural Networks

Kishnan Nedungadi
. Yale University
Dept. Of Computer Science

1. INTRODUCTION

With the growth in size and speed of the Internet, almost any information can be found on the World Wide
Web. The importance of digitally storing information has tremendously increased in the recent years.
However there are several documents that only exist on paper and need to be transformed into digital
medium. Retyping this information would be extremely tedious, expensive and probably impossible, and
this is where character recognition comes into play. Today there are several character recognition
application that solve just this problem.

This paper describes a character recognizer application that I created using Neural Networks. This
application recogmzes a subset of characters in the English Alphabet. Specifically, I have trained the
network to recognize all the capital letters from A to Z. The primary purpose of this application is to
understand how Neural Networks can be used to récognize characters. This application can easily be
extended to include more letters, and numbers. Inorder to make this application a more practical and useful
tool, I created a graphical user interface that allows the user to graphically input characters, and view the

results.

2. INPUT PATTERN DEFINITION

Among the first problems I tackled was how the user should define an input pattern. Several character- -
recognizers have successfully managed to capture the input in the form of a bitmap of 0’s and 1’s, and I
have followed the same path in this application. The input pattern in this character recognizer application is
represented by a series of bits. Specifically, there are 143 bits in the input pattern. These bits represent a
11 x 13 grid in which the input characters are represented. For instance, the letter ‘I’ could be inputted by
the following bit pattern,

Represents
—_—

CO0O00O0QOOOO0000O
cocococoo0o00O0O0O00OO
—_~ 00000000000~
—_O0000000O0OO0OO~
—-O0000O00O00OO0O~
[ e e e R
—~O00000OO0O00O =
—~ 00000000000
I~ 00000000000~
CO00O00O00O00O0O0O
e X=R=R=R=R=R=R=k=E=E=-X=-X=]

Figure 1: Input character Definition

Ifound this resolution of 11 by 13 to be sufficient to represent the characters that I wanted to train thc -
network with. ' -



3. OUTPUT PATTERN DEFINITION

Now that the input pattern definition is defined, I needed a method to define what the output of the network
should be, and how it should be interpreted. The output should of course be a representation of the letter
that is recognized. Since there are 26 characters that are recognized by the application, there should be 26
unique output representations. I have represented the output pattern using the classification scheme in
which one, and only one output element is active for any given input pattern. The position of the active -
output element will determine the corresponding character. The output pattern is represented by a series of
26 bits each representing a unique character. An example of an output pattern is as follows:

14

- The letter ‘I’ is represented in the output pattern by:
00000000100000000000000000

" Bitrepresenting I

Figure 2: Output pattern Definition

4. NETWORK SPECIFICATION

In selecting the type of network that I should use for this application, I realized that I should use network
that can recognize the features of the input that tend to correctly classify image patterns. This pattern
matching characteristic must be an essential part of the type of neural network that is chosen. Literature -
tells us that the Back Propagation Network does an excellent job of doing just this. This is why I have
selected the BPN as the type of network to use in this application. :

Given the Input and the Output pattern definitions, my neural network will have 143 nodes as inputs, and 26
nodes as outputs. I estimated that about 1/3 number of hidden neurons should be sufficient to map the
input characters the their corresponding output values. Therefore I have used 50 hidden neurons in my
Character Recognizer.

The structure of the Back Propagation Network that I have used in the Character Recognizer is shown
below:

@ @ oe o @ °o e @ <— 26 Output Nodes

271 NN

Figure 3: Structure of Neural Network

@ “— 143 Input Nodes

T'have not represented all the connections between nodes so that the figure remains clean. Inreality, every . oy
input node is connected to every hidden node, and every hidden node is connected to every output node.” . s -




Since the output units in the above network are binary, I used a sigmoidal activation function on the hidden,
and the output layers. The sigmoidal function that I used in the network is:

f(net;) =

1+ e-(neti)

5. TRAINING

My training data consisted of characters that I generated myself. I started the learning process by training -
the application only one of each of the characters, and gradually increased the number of exemplars based
on what characters weren’t recognized accurately. In my final training data set, I had generated about 4 to 5
representations of each of the characters that I wanted the network to learn.

I created a tool to generate the input characters during training. This tool allows the user to graphically
input the character using a computer mouse, and tell the program what character is bemg represented. The
following is an example of the input for the letter ‘I’ during training.

Figure 4: Training Graphical Interface

Each time the user clicks on the [Save] button, the character representation and its value isstoredina
training file. Subsequent characters may be added by clicking on the [Clear] button to clear the input grid,
and then enter the next character.

1 used between 4 and 5 representations of each of the characters in my training set. Usmg 5 representanons
significantly improved the accuracy of the resulting character recognizer.



6. TESTING

I created a graphical user interface to test the Character Reco gnizer. Using this interface, the user can input
a character using a mouse pad or any mouse device. The user can graphically see the letter they have input,
and the letter that is recognized by the neural network. This graphical viewing of the results of the
Character Recognizer made is very easy for me to test the application, and realize why unexpected
characters were being recognized. Once I introduced 4 to 5 exemplars for each of the characters, the = -
percentage of the characters that were being accurately recognized was over 90% even for some ‘noisy’ test’
cases. I tested the application with 5 person’s handwriting, and the results were similar in all cases,

The following is an example of testing the result for the input character ‘A’,

Figure 5: Testing Graphical User Interface

I'ran a group of tests using the Character Recognizer inorder to see how well it performed among different .
amounts of noise in the input data. I carried out the tests by inputting each character about 20 to 30 times
into the character recognizer, and tabulating the % of the time that the character recognized was what I
actually meant. Iinputted different amounts of noise by switching 10% and then 30% of the bits in the



1. INTRODUCTION
The search for a trading strategy which produces excess returns® (i.e., arbitrage as later
defined herein) is the search for the modern equivalent of the “Philosopher’s Stone™ of the Middle
Ages. Claims about the ability to outperform a market portfolio -- without accepting risk in excess
of normal market risk -- should be treated with extensive scrutiny and a sense of disbelief.
This paper presents:

1. A quick review of the development of the prevailing hypotheses regarding the efficiency of
capital markets, '

2. A brief description of several journal articles which suggest possible exceptions to market
efficiency,

3. The formation of a hypothesis regarding one possible trading model, in one market,

4. A sampling of the literature on neural network trading systems, and

o

“The traihing of a series of neural networks according to the proposed hypothesis.

2. THE EFFICIENT MARKET HYPOTHESIS

In 1900, the French mathematician Bachelier delivered his doctoral dissertation on the
random movement of certain physical and financial events, such as the prices of financial assets.
The paper was promptly forgotten, and his work was reinvented approximately 50 years later.

Von Neumann and Morgenstern (1 944) published their work on game theory which was
derived from a series of articles Von Neumann first published in the 1920's. The first part of their
book, and its appendix, give an axiomatic treatment of individual utility. A key point of their

“analysis was that for measuring individual responsiveness, it is only necessary to achieve an

ordinal (but not cardinal) ranking of final outcomes. In other words, we prefer A to B, but for many
analytical purposes we do not need to know the units of measurement of this preference.

Markowitz (1959) developed the idea of the mean variance model of asset choice. This
model assumes an individual preference for higher expected returns with lower mean variance,
which flows from the assumptions about individual utility. In simple terms, we all seek to make the
most money with the least risk.

Sharpe (1964) completes this picture of efficient markets with the Capital Asset Pricing
Model which suggests that asset returns are correlated with asset risk. The model assumes that
asset volatility (as expressed by Beta) is a good proxy for relative risk. Utility leads to portfolio
diversification, which in tum leads to certain assumptions about how asset retums are related.



Some Notes on the Use of Neural Networks in the Financial Markets
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Abstract

The forecasting of financial markets has a long and distinguished history of failure. Certain
individuals may have the ability to invest in such a way as to outperform the market (on a risk-
adjusted basis). It is conjectured, however, that the fees they charge will almost certainly extract

~ most of the excess returns (this hypothesis has been attributed to Paul Samuelson). The use of

neural networks in the financial markets has recently received considerable attention. Most of the

~ applications have focused on the larger Capital Markets (equities, options, futures) and seem not

to have been integrated into any particular financial paradigm. The approach of this paper is to
formulate an economic theory as to why an arbitrage should exist, and to utilize the neural network
to test this tentative hypothesis. This paper differs from the existing literature on neural networks
in finance by providing a more extensive financial hypothesis to justify the use of the proposed
neural network. This paper also focuses on an application in a financial market (tax-exempt
municipal bonds) which has not previously been explored using neural networks.
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In the purchase of consumer goods, utility can be very hard to measure and the rationality-
assumptions above can be difficult to insure. In financial markets, however, utility and rationality
are less tenuous assumptions. Most of us prefer $1,000,000 to $1,000, and would prefer a 50%
chance of $200,000 to a 5% chance of $400,000. '

The very universality of these propositions contains the seeds of the efficient market
hypothesis. Assuming all market participants have: o

e approximately the same ordinal utility ranking® |

e the same access to information (no insider trading),
« sufficient capital and other resources --

e Then markets should be efficient.

An inefficient market would be one where a participant could borrow at one rate and invest
at higher expected rates (without assuming additional risk) -- also known as an arbitrage situation.
Given the assumptions above, if such an arbitrage opportunity existed, it would be bid out of
existence. Assuming this reasoning is correct, all available information is accurately reflected in
the price of financial assets. And if all information is accurately reflected in the price of an asset, it
is not profitable to predict a future price. '

This was the basis for the work done in the 1960's by Sharpe et al., and the various
empirical studies which have been published. A similar line of reasoning stands behind Black
Scholes’ work on option pricing.

3. THE NON-EFFICIENT MARKET VIEW -

A substantial financial money management industry exists, and why it exists is a bit of a
mystery. According to the Reuters financial database, approximately 100 mutual funds (out of a
universe of in excess of 6,000) were able to produce returns in excess of the S&P 500 at three,
five and ten year intervals. Empirically this supports the efficient market hypothesis,” but also
leads one to question some of our underlying assumptions regarding investor rationality.

Some academic studies have found evidence that markets are not as efficient as was
originally postulated. In particular, Ross (1986) found evidence that industrial indices contain
significant predictive power for stock price movements; Fama (1987) found that the Forward Yield
Curve could explain approximately half of the future movement in short term interest rates; and
Broughton and Chance (1993) found evidence that the Value Line Stock Rating service contains
predictive power.’ , : ’

3. Working Hypothesls

The working hypothesis of this paper is a weak form of market efficiency (i.e., that markets
are efficient over time). Exceptions will occur in certain markets because of supply and demand
factors, information lags, differential transaction costs, and technical limitations on the ability of
market participants to utilize arbitrage opportunities. The markets most likely to be vulnerable to
these problems should be relatively illiquid and hard to arbitrage (in the mechanical sense of
executing the arbitrage transactions). '

The United States tax-exempt bond market may meet these criteria. As the name implies, -
the yield on a tax-exempt bond is free from federal income tax. The yield on such a bond should
be, and is, substantially lower than the yield on a comparable tax instrument. T



Two key arbitrage techniques (short sales, and the traditional cash and carry) used by
market participants to clear conventional markets are not available. Municipal securities cannot be
borrowed and shorted.® Additionally, interest charges on funds borrowed to purchase tax-exempt
securities are not deductible.’ As a consequence the tax-exempt market may not have conditions
for stable equilibrium’s, and profitable future price predictions may be possible.

The yield on tax-exempt instmments should be influenced by:
* Interest rates on long term taxable securities such as the yield 6n'30 Year Treasdry Bonds.
» Short term taxable interest rates such as 3 Month,US Dollar LIBOR.

* Supply and demand for tax-exempt securities, where the proxy is new issue volume in the tax-
exempt market.

* Current long term tax-eXempt yields where the proxy will the Bond Buyer Revenue Bond Index
(BBRBI), a commonly quoted index of long term tax-exempt securities.

¢ Income Tax Rates.
e The month of the year (if seasonal factors are important).
Regarding perceptions of future tax rates, | have no proxy measure for this variable. The

absence of a measure for this variable is a significant flaw for the ability to make long term
(beyond six months) predictions of market relationships.

3.2. Some Statistical Results

I have suggested some reasons for believing the tax-exempt bond market may be inefficient.
Prior to training the neural network the factors listed above were tested (in a rudimentary manner)
for signs of some statistical relationship. !

Figure 1 Matrix of Correlation & Covariance Coefficients

Correlation

Delta Libor Delta T30 Delta BB40
Delta Libor 1
Delta T30 0.246967913 1
Delta BB40 0.26966818 0.619065806 1
Covariance

Delta Libor Delta T30 Delta BB40
Delta Libor 0.004200086 .
Delta T30 ‘ 0.000838329 0.002451242
Delta BB40 0.000488533 0.000902043 0.000848487

The correlation’s and covariance’s were computed by calculating the daily change (e.g., the
delta) in yield for a 1,500 day trading period for each of the indices. The correlation coefficient
among the 30 Year US Treasury security yield and the long-term municipal bond yield (the BB40)
suggest some validity to the theory that these interest rates are related. In addition, an Inspection
of the following chart suggests that these markets move in tandem. g T






input stream from 1 to 0 and then from O to 1. Surprisingly, even after adding 30% noise to the input
character, the application still recognized most characters more than 80% of the time.

Test Results for Character Recognizer

Figure 6: Test Results for Character Recognizer

7. CONCLUSIONS

The application described in this paper shows an application in character recognition of neural networks
using the backpropagation algorithm. The performance of the application is extremely accurate and
reliable, recognizing evenly significantly noisy characters. The tools written for this application need not be
used only for recognizing the letters of the English alphabet. Infact it can be used to recognize characters in-
any language as long as the inputs and outputs can be represented in a similar manner. : -

Characters are input into the neural network in this application via the mouse movements.. This method of -
inputting characters can be improved by actually scanning written text to train the network.

Finally I would like to say that the results that I received after training the network were really interesting
and exciting to me, since I only told the neural network what the correct solutions were during training, and
not how it should learn what was correct. This learning mechanism in the backpropagation network really
fascinates me, and I feel there are still several unexplored problems in the world that can be solved using
neural networks. :
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Figure 2 Interest Rate Histories

Interest Rate History
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We now have an economic theory as to why a relationship should exist between taxable and
tax-exempt interest rates, together with some statistical observations which support the existence
of this relationship. This brings us to a discussion of what the neural network will be trained to do.

Instead of training the network to predict the direction of interest rate movement, the
network will be trained to predict the relationship between tax-exempt and taxable interest rates.

The network will attempt to predict the future ratio of tax-exempt to taxable interest rates at 7, 30,
60 and 90 days.

Mechanically, we have no guarantee that market participants will be able to take
advantage of the signals the network provides (for the reasons mentioned above), assuming the
predictions are accurate. As a theoretical matter, the ability of the network to produce accurate

relative value predictions (regardless of the real economic value) may have implications for future
research. :

4. NEURAL NETWORKS IN FINANCE

A number of authors have reported positive results using neural networks; among the
most interesting (from my perspective) are:

e Malliaris and Salchenberger (in 'Trippi & Turban, 1996) who report good results using a neural .
network to predict options volatility, -~ : ’ :

e Trippi and DeSieno (in Trippi & Turban, 1996) who repdrt good results using a neural network
to track Index Futures. _ T

Having reviewed a small portion of the literature, 1 believe that Refenes (1995) makes a
highly significant point with his premise that neural networks are most effective when the creators
have a correct economic theory. The network is used (under these circumstances) to solve for the
details of the relationship. Refenes goes on to state:

“Approaches developed in statistical modeling should always be given serious consideratibn
prior to training neural networks.” Which is what was accomplished, in simple terms, in the prior
section. : ' '



5. THE NEURAL NETWORK

The model is currently implemented using a Back Propagation Network (“BPN") in Thinks
Pro, a commerecially available Neural Network package. '

BPN's are very commonly used for financial applications because of their generality. The
BPN is consid_ere_d to be highly generalized since it uses a gradient descent algorithm. :

The gradient descent approach has the virtue of producihg a closed form éoluﬁon whiéh

minimizes the error between the input and output in the test data. The problem with this technique
is that a BPN is “lazy” and the closed form solution may be of such a type that it is non-general

[}

and has no predictive value. For this reason, the input/output data is broken into a training set and
atest set. The BPN is “taught” with the training set and tested with the second set.

A simple BPN é!gorithm, as described by Skapura (1996), is:

1. Select the first training vector pair from the set of training vector pairs.

2. Use the input vector as the output from the input layer of processing elements.
3. Compute the activation to each unit on the subsequent layer. -

4. Apply the appropriate activation function.

5. F{epeét steps 8 and 4 for each layer in the network.

6. Compute the error term across the output layer.

7.. Compute the errdl; for the hidden layer.

8. Update the connection-weight values to the hidden layer.

9. Update the connection-weight values to the output layer.

10. Repeat steps 2 through 9 for all vector pairs in the training set. Call this one
training epoch. '

11. Repeat steps 1 through 10 for as many epochs as it takes to reduce the sum- squared
error to a minimal value. .

This is the basic approach used by the neural network software. The activation function
selected was the classic sigmoid function, no experiments were performed using other activation
functions. A momentum term was used to speed the learning process.

Approximately 1,500 days of trading data were available. The data was divided into a training
set and a testing set, each with approximately 750 days. The data set started on 8/30/96 and
ended on 10/3/96, holidays and weekends were excluded.



For each day of training data the exemplar format was:

Figure 3 Sample Exemplar

“Month” is the month of the year, so for example “8" represents August. It has been
speculated that the tax-exempt/taxable yield ratio exhibits seasonal fluctuations due to borrowing
patterns and withdrawals of funds from the tax-exempt market to make quarterly income tax-
payments.

The next three items are the yield to maturity of the appropriate index, on a given date.
The visible supply captures the impact of changing supply conditions. It is the expected tax-
exempt bond issuance for the next seven day period (in billions of US dollars), presumably
unusually large supply should lead to lower bond prices (e.g. higher yields).

The last column is what the network will be trained to predict. This is the ratio of long term
tax-exempt to long term taxable interest rates, as measured by the ratio of the index of the BBRBI .
to the U.S. Treasury 30 Year bond yield. : :

6. RESULTS OF NEURAL NETWORK ANALYSIS
In training the network the impact of the following dimensions were explored;
«Networks were trained to predict the tax-exempt/taxable ratio 7, 30, 60, and 90 days fonNé;rd.
«The number of neurons in the hidden layer was varied from as few as 10 to as many as 200.

«Different network convergence algorithms were tested.

Approximately nine scenarios were analyzed in some depth'’, summary results for the
scenarios with a seven day forward prediction are shown below:



Figure 4 Summary of Trained Neural Networks - Seven Day Forward Predictions on Test
Data

o

= Nodes in B Exemplar
Hidden Layer § . Wwith

"Maximum

Error

150 § 617

175 739

200 { 659

None of the scenarios involving making market predictions beyond seven days forward
seemed promising. Upon reflections this also seems logical, as the value of technical information
should be subject to rapid time decay.

The trained neural networks did not develop stable long term predictive power. In other words
it was not possible to train the network, and allow it to continue making predictions, without
retraining.

The networks seemed to develop an ability to make short term trend predictions, that may
(with further refinement) have some economic value. In other words the network could predict
(with some level of accuracy) the market ratio seven days forward, but this power diminished.

Upon reflection this result is also not unexpected. Traders are constantly re-evaluating the
value of information, and relationships in the market. In other words the human trader's biological
network is retrained each day, so we should probably expect the same for the computer
equivalent.
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President Lehman Brothers, for comments and encouragement. The errors are, of course, my
own. ' :

2 The standard unit of measure for financial calculations of this type is relative volatility to a market
standard. As an example, the S&P 500 is considered to have a volatility level (Beta) of 1.0. The
market portfolio should produce a return equal to the risk free rate plus the market premium. A
portiolio that is twice as risky as the market should produce twice the return, but with much higher -
volatility. In other words in a market decline the high beta portfolio should decline faster than the
market. . S C :

3 The alchemist's vehicle for changing lead into gold. _

4 Actually even this is not as simple as it seems. A substantial body of work suggests people make
“irrational” choices at extreme conditions. See Kahneman and Tversky (1979) for examples of
choices people make when probabilities are low and payoffs are large. Another classic example is
that the expected value of a lottery ticket is by definition negative, but the tickets are purchased on
a large scale.

® This is a trickier assumption than would appear on the surface. The larger an agent's monetary
base, the smaller the marginal utility of a loss or a gain, and the closer the participant to being
classically risk neutral. In a financial market with one large and many small participants, the large
participant may experience super-normal profits for a substantial period of time because of this
difference in marginal utilities.

¢ An entire academic industry revolves around papers confirming the efficient market hypothesis.
This small example is provided as an anecdote - not as a serious contribution to that branch of the
literature.

” The Value Line enigma has been studied, and confirmed, a number of times. Oddly enough the
mutual funds managed by Value Line have not been outstanding performers.

® In general, when a security is borrowed and shorted the original owner receives a coupon, and
the ultimate purchaser of the short sale receives a coupon payment.. This cannot happen with a
municipal bond because the result would be the creation of additional tax-exempt interest.

°If interest could be deducted, it would be the ultimate arbitrage. A purchaser could purchase a
tax-exempt bond, deduct the interest, collect the tax-exempt coupon, and be guaranteed a profit.
 As a side point each scenario took between 3 - 6 hours to be trained on a Pentium - 100.
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Figure 5 Predicted vs. Actual Results for 100 Trading Days

100 Days of 7 Day Predictions
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The results shown above are for one of the networks, trained on 744 days of data, and tested
on the sequentially following 750 days of data. Note that the network has some gross predictive
ability for approximately the first two weeks, but this ability declines rapidly. This result was
apparent in other scenarios, as well. :

7. CONCLUSIONS

| am not particularly discouraged by these results. Indeed, | would have been surprised if |
had easily found an exploitable arbitrage, given the number of full-time professionals looking for
these types of relationships. The power of Neural Networks to fine-tune known relationships is an
under-exploited resource with substantial business applications. Applications of neural networks
to learn about customer buying habits and to suggest ways of optimizing marketing programs

- seem to be worth further investigation. The areas of predicting financial market results appear to

be well-covered, and | continue to have theoretical reasons for doubting long-term claims to
success in the more liquid capital markets. At the same time | believe these types of models may
have substantial possibilities in less liquid markets, and as automated clearing house systems in
place of floor brokers/traders.
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Appendix A: Profit Opportunities

The output of this network predicts neither future interest rates nor the expected price of a
particular security, but rather the ratio of the yield between two markets. The purpose of this
appendix is to present a simple explanation of how this information could profitably be put to use.
Please note this explanation is not intended to provide detailed trading advice, but simply an
outline of the approach for the non-financial reader.

As a starting point, assume in time period 0, tax-exempt bonds are trading at a yield to
maturity of 8.50% (for some maturity). U.S. Treasuries are trading at a yield of 10.00% to the
same maturity. The yield ratio is 85%. Also, assume that the neural network model is predicting
that this ratio will reach 50% in time period 1. The ratio can change by an increase in tax-exempt
yields or a decrease in taxable yields, or some combination of both.

If our hypothetical investor purchases $850,000 in tax-exempt bonds, and shorts (sells
securities that are borrowed) $1,000,000 in U.S. Treasury bonds, she will profit so long as the
predicted ratio is achieved, no matter which path is taken. For example, if the 50% ratio is
achieved because tax-exempt interest rates remain unchanged, and taxable rates increase to
17%, the result will still be a profit. : o '

The profit (in this case) will result from closing out the short sale. The increase in taxable
interest rates means that the Treasury bonds that were sold in time period 0, can now be
repurchased at a substantially reduced price. This sale and repurchase (in this scenario)
produces the profit. ’

! This paper was prepared as part of course CS577a (Neural Networks in Co'm;;uting) for Piof;_ W
Miranker, at Yale University. | would like to thank Prof. Miranker and Robert Taylor, Senior Vice
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Abstract !

We present a hybrid neural network model to solve a place recognition problem.
The front end is a self-organizing net equivalent to a principal component analyzer;
the back end is a feed-forward net with backpropagation, i.e. supervised learning.

A confidence level greater than 0.9 was reported as the net correctly recognized a
repertoire of pictures it had not seen before.

1. INTRODUCTION

At the Yale Vision and Robotics Lab there is a Nomad robot that roams around
the building taking pictures. It is desirable that the Nomad can recognize where it
is by comparing a new scene with previously taken pictures. Formally, suppose we
have images of M distinctive scenes. (We will use the terms “picture” and “scene” as
synonyms for “image” throughout.) We seek an algorithm that will take a new image
as input and determine which one of the M scenes the new image most resembles.

Here, we propose a neural network solution which combines stages of unsuper-
vised learning and supervised learning. The network is composed of two independent
subnetworks. The first subnet, which we call the “Principal Component Analyzer”
(PCA) is self-organizing. It receives an image (the “input image,”possibly prepro-
cessed) and outputs a set of real numbers. The latter express the most “important
components” in the image. These “components” are the longest axes of the ellipse
which bounds all of the images considered as data points in an appropriate, high-
dimensional space. The second subnet, which undergoes supervised learning, is a
feed-forward backpropagation network. It takes as input the output coefficients from
the first subnet. It outputs, in its M output nodes, a confidence measure ([0,1]) indi-
cating the extent to which the input image corresponds to each of the M distinctive
scenes.

In Section 2 we discuss the PCA net, 1ts theory and the a.lgonthm behind it.
Section 3 deals with the backpropagation net. We conclude in Section 4 with some
observations and comments on future directions that this work suggests.

2. PCA NET -

The PCA net is a single layered network of n inpnte X = [z1,22,...,2,)7 and m
outputs Y= [yla Yiye-ey ym]T (See Figu.re L )
Each input z; corresponds to an image p1xel Here, A

n = (# of image rows)(# of image columns)

iResearch Staff Member Emeritus, IBM T.J. Watson Research Center, Yorktown Helghts, NY



Figure 1: Diagram of the PCA Net. The nodes on the left, z;, receive the gray-
level values of the input image pixels. They are connected to output nodes, y; by
weights w;;. The output nodes yield coefficients of the principal components for the
given input image.

In our experiment (64x48)-pixel images are used, s0 that n = 3072. We can view the
input “vector” by “stacking” columns of an image to form a 3072-component column
vector. Since our camera and framegrabber return integral gray-level values between
0 and 255, those are the minimum and maximum values for each z;. _ A

The strength of the connection between the input z; and the output y; is given
by a weight wj;. In particular, we have ' o

Yj =D wjizi.
i

We use the “Generalized Hebbian Algorithm” (GHA) as the training algorithm.
The dynamics specifies the weight of a connection after update (written w}): (Sanger,
1989) '

w;';- = wi; +v(viz; — y; Zwkjy_l;)-
kT

Setting W = (w;;), we express this in nia.tﬁx form as:
| AW =4(YXT ~ LT[YYT]W),

where LT[-] sets all elements above the diagonal of -its matrix argument to Zero,
thereby making it lower triangular. The learning parameter, 7, specifies the rate of
learning and influences how quickly the weights converge and if they converge at all.
We first state, without proof, a convergence theorem. (See Haykin, 1994, Ap-
pendix B for a proof.) In the following sections, we .explain the related concepts.

Theorem Let the components of W be assigned random values at time zero. Then,

with probability 1, W will converge to the matrix whose rows are the first m eigenvec-

tors of the input correlation matrix Q = E [x XT 1, piic_}ge_rpd by decreasing eigenvalue.

S e E

(Note that Q is a symmetric matrix.) -
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2.1 Principal Component Analysis

The motivation behind the GHA algorithm is to compress data and to preserve as
much of the information in the input as possible. For example, in our implementa-
tion we reduce a 3072-pixel (i.e., 3072-dimension) image into a 4-dimensional vector.
Principal Component Analysis allows us to find the four dimensional vector which
captures the most variance (whlch we may view as a measure of 1nformat10n) in the
original data. ' _
Let X be a random variable each component of which has zero mean. (A cha.nge
of variables ensures this in the general case.) Consider the collection of all possible
images as the sample space of the random variable. The a.utocorrela.tlon matrix @ of
the input signal distribution is defined by :

Q= BXXT],

where E is the expectation operator. Let u; and \; (2 =1,2,.. ,n) be the orthonormal
eigenvectors and the corresponding eigenvalues of @), respectively, the latter taken in
decreasing order. Define the corresponding matrices . -

U = [ul,ug,....,.u.n]
and .
M
Az

An

Eigenvectors u; of @ are called “principal components in signal processing (hence
the name of the net). If the eigenvalues are dlstmct
Q=UAUT.

By using u; as basis vectors, a given image, X, can be expressed as hnea.r combinations
of those basis vectors, as follows. -

Z UilYi =

=1 IETRS

So that, for the coefficient vector, we have
Y =UTX.

Since U is unitary, U~ = UZ. The coefficient y; is thus the ma,gnit'ude of component
u; contained in X.

Put another way, typically there is much redunda.nt 1nforma.t10n in a raw 1ma.ge
Except for rare cases (e.g., the noise of a “snowy” television channel), the pixels in -
the image vector, X = [21,%3,...,2x]" are “correlated”. By this we mean informally
that the g;ra.y-level values at some pomts ina plcture are pred1cta.b1e from these vahies "

at other points in the same picture - all of the plxels in"a full moon, for example, * - -




Figure 2: Principal Components. The principal compoﬁeﬁi_ﬂs are the semiaxes, u
and v, of an ellipse which contains the data points. '

will be close to white. To obtain a mnore compact representation of the informa-
tion in the image, we seek the above transformation UZ. The latter ensures that
Y = [y1,92,...,yn])T has uncorrelated components. By a theorem of Karhunen and
Loeve (Rosenfeld & Kak, 1981) the transform mattix UT consists of the eigenvec-
tors of the autocorrelation matrix Q. The weights of the PCA net converge to these
eigenvectors, so that the net’s output is uncorrelated. Since the redundancies in the
inputs are removed, the output variance will be maximized. The outputs represent
the largest possible amount of information which a fixed, small number of dimensjons
(four, in our case) can convey. It might be easier to understand the geometry of
principal components through Figure 2. :

In the figure zy-space is a n-dimensional vector space. Each point in zy space
represents an image (that is, represents the n-dimensional vector which corresponds to
the gray-level values of the pixels in an image). The basis for Ty-space is orthogonal,
but might not represent the information contained in the images as efficiently as
possible. As we noted, the projection of each image-as-a-vector onto those basis
vectors will be correlated (with redundant information), We seek a new set of basis

~vectors that are mutually orthogonal and which better represent the variance of the

data vectors. We proceed as follows: We find a best-fit n-dimensional ellipse (or
ellipsoid) around the vectors. The largest axis of the ellipsoid is the first principal
component, the second largest is the second principal component, and so on until
the nth largest axis is the nth principal component.” We can'see that the new basis
vectors, as semiaxes of an ellipse, are indeed ortliogoha._l't'd each other. As it turns
out, the new basis vectors are the principal components of the images, which are the
same thing as the eigenvectors of the correlation matrix, (Rosenfeld & Kak, 1981)

2.2 Advantages and Disadvantages _ ST -
From these considerations we see the significance of the GHA algorithm. The dy-

namics defining AW define the principal component vectors in question. Moreover, ...
‘the vectors need not be computed, as the net itself instantiates the dynamics and the -



Figure 3: Training Images. We chose five different views of each of five parts of
the Vision Lab at Yale. The four most important principal components are extracted
and the backpropagation net is trained on the coefficients of those components.

appropriate subsequent pixel processing. For n = 3000 input nodes, @ = E[XXT]
has 9 million components. If the number of outputs is much smaller than the number
of inputs, as in our case, GHA finds the most important eigenvectors - that is, the
eigenvectors with largest eigenvalues without having to decompose the huge matrix
Q. In addition, GHA is a neural net algorithm with the potential for high-speed,
special-purpose hardware.

A disadvantage is that GHA provides only an approximation to the eigenvectors.
Furthermore, as in all such numerical methods, errors in the first few eigenvectors
will magnify the errors in the subsequent eigenvectors, so that the algorithm has poor
numerical accuracy for all but the first few eigenvectors. For our images, the number of
samples, N, is very small compared with n, the dimensionality of the space where the
samples are drawn. Therefore, we require only the first few eigenvectors (the principal
components). Note, too, that the algorithm only involves local operations. Hence, it

is possible to implement GHA on a parallel machine, though the communication of

data will require an overhead of time.

2.3 Experiment e
The PCA net is trained with N = 25 images, five each of five distinctive scenes from
Yale’s Vision Lab. (See Figure 3). Each image is input to the net 60 times.

GHA is used as the learning rule to adjust the weights of the network. Although
normalization of input does not affect the output of the net, it does influence the
choice of learning rate 4. (Experiments with power spectra of images as input, for
instance, will require a different learning rate.) We take an experimental approach
to specifying a good value of 4. Too large a 4 will drive the net to saturation, where
the values of the connections are outside of the representable range of the computer,
and too small a 4 will make the net take too long to converge. For our net with 256-



Figure 4: Test Images. These are four different views, one of the five views above
is omitted. We provided these as inputs to.the system after it had been trained on
the images in Figure 3. - S L '

Prlnclpé! CO_mponer_lts

2000
0-
-2000 -] )
g ~O—1st
K ——
S -4000 - 2nd
'{i —a—3rd
8 ~—o—4th
-6000
" <8000
-10000 T T —— T
0 5 10 15 . 20 25

plcture #

Figure 5: Coefficients of the Principal Components. The values of the coeffi-
cients of the principal components obtained from the PCA net on the twenty training
images. They are grouped in fives: 1-5, 6-10, 11-15, 16-20, and 21-25. Each such
group contains five slightly different images of the same scene. :

level gray-scale images as input, 7 was set to 1075, Several observations were made
while tuning this learning rate. First, 4 should decrease with time. Second, different
output nodes should use different 7 values, since each coefficient (node) converges

with slightly different rates. We employed a purely empirical approach to this tuning
of the 7 values. o '

Once the net converges, we have found - to some accuracy - the principal com-
ponent vectors for our data set. Those vectors are stored as the weights of our net.
Next, we freeze the weights and input the training set again. For each such input we
obtain the coefficients of those principal components; one coefficient at each output
node. The coefficients from our images are plotted in Figure 5. These coefficients are
the values of the projection of the N vectors (images) '611’1';0‘ the first' M (in our case M
= 4) principal components (the basis in uv-space), - - _

In Figure 5 the first five picture numbers (labeled on the horizontal axis) corre-
spond to the same scene, as do the following five, the third set of five, and the last
five. The flatness of each of the five curves shows that images of the same scene
have similar coefficients. We represent, then,"a location by the coefficients which are
characteristic of images taken of .that location. Suppose that ‘an arbitrary set of co- -



efficients is specified. We need to decide how much that set of coefficients resembles
the sets which have been stored. If the coefficients of a new scene are sufficiently
close to one of the stored sets, we will conclude that the new scene is the same as
the one in our database. In this way we are able to decide whether or not we are
at a previously-seen location, as well as which such location. We decided that, in

principle, any such decision requlres a teacher. We chose to teach a feedforward net .

the classifications we wanted; in a sense, the training of that feedforward net W111 -

“provide the idea of “sameness’ ' that we intuitively feel.

3. BACKPROP NET

We did not apply backpropagation directly to tra.m the feedforwa.rd net to identify
scenes — the most salient reason being that backprop is slow to converge. With a net
of 3072 input nodes there would be

3072(number of hidden nodes) + (hidden nodes)(number of output nodes)

free parameters to tune, and we have no clear heuristic to guide the tuning.

In addition, human scene recognition involves considerable preprocessing — edge
detection, noise reduction, feature extraction, etc. It is therefore not surprising that a
stand-alone backprop net converges slowly, since the complexity of that preprocessing
must be expressed in the net’s weights. Hence, it is desirable that we separate some
preprocessing into a separate system and reduce:the number of the free parameters

* in the backprop net. Biological results have shown that the equivalent of a principal

component analyzer exists in receptive fields. (Rubner & Schulten, 1990)

We take it that a place recognition system can not rely solely on the unsupervised
learning of the PCA net. Consider, for example, a Hopﬁeld Net acting as a memory,
and which does not require supervision or other outside judgment of its performance.
In Figure 6, we show that a trained Hopfield net when stimulated by a slight variant
of one of its training samples, does not give a correct recall. Rather, it outputs an
image that doesn’t resemble any of the training samples, a so-called spurious state. It
may be that the problem of spurious states does not stem from the architecture of a
Hopfield net, but rather from a fundamental lack of information. The ability to recall
a “noiseless” version of a “noisy” stimulus is attributed to a Hopfield net. Just what
is a “noisy” stimulus? How can it be distinguished from a new “noiseless” stimulus
or - even worse - from a new, but different, “noisy” stimulus? The “spurious” state is
actually a correct recall, in so far as the Hopfield net is' concerned. These questions
motivated the conclusion that wholly unsupervised learning is not appropriate for
place recognition. We want machines to perform a classification similar to the ones
we, as sentient agents, agree on. Some sentient intervention is thus required. We must
somehow impart the assumptions which we internalize to any system which we want
to act as we do. Simply put, we found it’ effectlve to mtroduce superV1sed learning in
the place recognition problem.

3.1 Exp eriment

The “art” of creating a backpropagation net hes in choosmg how many free parameters
we pernnt the system to learn. If we have too few free para.meters (by having too

Al




Figure 6: Hopfield Net. The middle columns are the training set. All are low-
resolution photographs. The left column is a noisy version of the lower right training
sample. The right column is the erroneous recall, i.e., a spurious state.
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Figure 7: Backprop Net Schematic. The left column of neurons receive the inputs
from the PCA net. The middle column comprise the hidden nodes. The right column
is the five output nodes, one per location. o ‘

few hidden nodes) then we will not be able to capture the complexity of the classes.
The XOR problem, as a fundamental example, is-not solvable by a backprop net
without hidden nodes. If we have too many free parameters, the learning will require
longer to converge. Worse yet, the net will “overfit” the sample data it receives in its
epochs of input. While it will learn the exact input-output mapping we teach it, that
mapping will not generalize well to other, unseen inputs. Empirically, we found that
a backprop net with 6 hidden nodes sandwiched between 4 inputs (one for each of the
four principal component coeflicients) and 5 outputs (one for each of the five places)
worked well for our problem of recognizing lab scenes and, in addition, converged
quickly. o ‘

The net was initialized with small, random values for weights between layers. The
transfer function is the sigmoidal o - ’

1 . v A

Yi =



vj =) Wity
where y; is the output of neuron j and u; is both the output of neuron ¢ and the
input to neuron j. wj; is the weight connecting the #th input to neuron j itself. The
activation level of neuron j is v;, which is the'weighted sum of the inputs to that
neuron.

The inputs are presented to the network in epochs, in ea.ch of which all N inputs-
(N = 25 in our case) are processed. The five output nodes’in each case yield values
in the interval (0,1). The “correct” value, i.e., the one we want the network to yield
is a five-tuple with a 0 in each of the components which corresponds to an incorrect
location and a 1 in the component which corresponds to the correct location. Of
course “correct” and “incorrect” are determined by human observers. Note that the
network can not output the precise expected value, since the range of the sigmoidal
transfer function does not contain 0 or 1. Thus, the weights will diverge toward
infinity, as they drive the sigmoidal function toward its limiting values. We do not
use a step function, since we desire the continuum of output values. The range (0,1)
provides a value for interpretation as “confidence” in the recognition. Our network
consisted of four inputs, taken from the four outputs of the PCA net. It also contained
six nodes in its middle layer and five outputs, one for each of the five scenes the system
was meant to recognize. We stopped the training after 20,000 epochs, which required
approximately 30 seconds on a Sun Sparc IPX.

When the net outputs a vector, that outpitt is compared to the desired result,
and the weights are adjusted in the direction of the local gradient throughout the
network — the standard backpropagation a.lgonthm The learning rate and momentum
parameter can be adjusted to speed the convergence of the net and avoid sending the
coeficients off to infinity. (We found that a learning rate, 7 = 0.1 and a momentum
parameter, a = 0.3 performed well through expenmenta.tlon) The weights w;; are
frozen after training to store the classifications the net has just learned. Finally, the
unseen test images are input to the net, and the outputs are compared to the desued
outputs. The following table yields the results of the ﬁve input test images.

No. || Output 1 Output 2 | Output 8 | Output 4 - | Output 5 |
1 .939 412%107% | 1.10%1072 | 2.82%10~* | 7.18 x 10~
2 6.96 % 1075 | .946 1.91 %1072 | 6.67%10"2 | 1.38 102
3 |[3.19%1072[3.65%1072|.979 - |2.09%107%|1.20%107°
4 1.99%10% | 5.81 %1072 | 5.31 *10~2 | .921 - 5.34 % 102

3. OBSERVATIONS AND CONCLUSIONS

It is well-known that the human vision system- ha.s a la.yered structure. There have -
been attempts (Leen et al, 1992, Dumont & Yang, 1991, Metcalfe & Cottrell, 1991)
to decompose the deﬁcult problem of recognition into subproblems and to use dif-
ferent neural networks to solve each subproblem Our PCA net and backprop net
work in a similar fashion, i.e., the PCA net is a preprocessor: (Principal Component .
Analyzer) for the backprop net which is the cla.ss1ﬁer . We could also extend this a
few more stages. For example, we could have preprocessors t0 extract features, such_
as edges. Then, instead of using raw images as 1nput the PCA net could work on an B}



‘l

_ The training of the network is a repetitive process of giving the net
an input, and then letting it run to settle down on its weights, and then
giving it the next input. If the net converges after processing all the training
samples, its weights should be stable, and: the information is considered to
be stored in it. _

The recall process is similar with the training process, which has
strong analogy to the biological systems, except that in practice, the weights
are often frozen before recalling process for simplicity. After the testing
input, the network should settle down on some output. It could either be
a previous seen pattern of which the input is a noisy version, in which case
the input is considered to be correctly recalled, or it could produce a wrong
answer by retrieving a different previous seen pattern. A third possibility is
the returning of a spurious pattern. For correct recalls, feasible memory is a
necessary condition.

2  Program Design Issue

2.1 Hebb Constants

There are four constants in the Hebbian formula used in the system: HEY =

ao*’zy + a,*"z + a;®"y + az*'. The association rules for excitatory and in-
hibitory connections are different.

For excitatory connections, the weights should be increased when
there is positive correlation between the two activities, and should decrease
when the two synaptic signals are anti-associated or non-associated. There-
fore we chose the criteria for ao,ay,az and a3 to be:

ao+a1+a2+a3>0

a1+a3<0_
d2+a3<0
a3 <0 -

The last rule is not required by the Hebbian dynamics. We required
it since it worked better when we maintain a3 < 0 during our experiments.
This is probably due to punishment of non-associative signals.



_ For the inhibitory weights, things are bit less clear. The base line is
that an outgoing inhibitory weight from a neuron whose output is 1-should
increase, since in the next round a stronger signal should be sent to its
neighbors to inhibit them. But for the nodes whose output are zero, we could
either decrease the outgoing weights, or leave them alone. Since we generally
prefer to balance our weights adjustments to consist of both increasing and
decreasing movements, we prefer to decrease a outgoing weight for a no-active
neuron. This consideration is summarized by the following formula:

bo+bi+b2+b3<0

b1+b3<0
bo+b3>0
b3 <0

Note these rules are not symmetric for x and y. This is because
HY = ag"™zy + a1™"z + a""y + a3*” is the change of weight for the synapse
from neuron n¥; to n%;." '

2.2 Initial Values

The rest of the initial parameters are set to random values. v’, the output are
randomly set either 0 or 1, and «’, the input takes a small random variable
from zero and one. The thresholds are chosen to be positive but less than
one too. Originally we set w, and w; to be 1.9999 and 0.0001.

2.3 Stopping Criteria

We do not wait until convergence of the weights to stop. In fact, at each
training input, the program runs a certain number of epochs, and goes for
the next input. After training on a certain number of samples, we perform
the recall. When we find a reasonable recall; we examine the weight changes
of the network to see whether a convergence has arrived. ‘Most of the time
for the two nodes per layer case, when we get the correct output, the net is
actually converged. But for larger nets ( with 3 or more neurons per layer),
the convergence is very rare, as we will discuss later.
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3 Experiment Results

3.1 Training Protocols

We started from the simplest case of the n'etwork: two nodes in each layer.
We are able to successfully train our net when there are only two nodes on
each layer. We achieved this by adjusting the parameters for the Hebb rules
progressively. ‘
First, we noticed that there is a trivial solution for the net when the
net will produce the exact input as the output. This is when all of the weights
are zero. Since we are observing the output from the Oth layer, when the
weights are zero, any internal presynaptic and postsynaptic signal will not
influence the output at all. Only the input signals will affect the output of
that Oth layer. This is probably because our thresholds are less than one, all
the inputs are either 0 or 1, and the step function ( our activation function)

will filter out all information which is not big enough.

However, the trivial solution is not what we want. We strengthened
the Hebbian rewards for positive correlations while at the same time gives
more positive examples (here I mean using training samples which have more
bits “on” since those “on” bits are the positive information to be processed
by the net). And we carefully adjusted other parameters. The memory starts
to give us correct results.

In one experiment, we first train the four nodes net only by inputting
[1, 1]. After it gives the “correct” recalls for every possible input ( by re-
sponding output [1, 1] ) and the weights converge fairly well to some non-zero
points, we give it another input say [0, 0]. After a few training epochs, the
net can correctly recall [0, 0] and [1, 1], and also classify [0, 1] and (1, 0] as
a noisy cue of [0, 0] and [1, 1] without giving any spurious results. »

In the third step, we train the net with all four possible inputs. After
adjusting the training parameters, we can successfully obtain all four correct
recalls. We examined weight changes, and it seems that the network settles
down very well. Figure 1 and figure 2 show the changes of two of the weights.

Although we were able to determine successful parameter settings for
all of these different cases, we were not able to find a, single set of parameters
which gives good results in all cases. We think this is because it is much
easier to find a special net for a particular training task. To find a general
net is much harder, especially when the Hebb rules that we used are linear
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3.2 Net With More Than TWQ Nodes Per Layer

For the nets which have 3 or 4 nodes per layer, the results were not as clear
cut as what we have talked about. Using an exhaustive search method, we did
find some parameters which can train to net to give correct recalls. However,
when we examined the weight changes. It seems that the weights are still
oscillating when we stopped training. We suspect that the correct output
is only a coincidence of weights. However, it might be one of the feasible
memories of the net that we have found, but we simply don’t know whether
it will conserve feasibility property or not.

This difficulty is anticipated, since the weight searching space ETOWS
quadratically as the number of nodes increases. Therefore finding the route
from a random point to a feasible memory is more difficult and the process
should encounter more attractors, even though there might be more than one
feasible memories.

3.3 Learning Rate

We tested different learning rate’s influence on the training of the net. Smaller
learning rate helps in getting give better convergence since it will reduce the
magnitude of the oscillations, and help the weights to settle on a set of values.

But with learning rate smaller, we need to give it more epochs per training

sample, since the weights will take more steps to complete a transition.

4 Self-organization with Maximum
Eigenfilter Formula and PCA

In our previous training of the net, a very frequently encountered
problem is the inappropriate parameters will make the weights to go against
lower and upper limit. Therefore we have to truncate the weights to at the
upper or lower bound. Doing 50, we lose some information. One remedy
is to introduce some global information and change the §w’s calculation. A
good candidate is the maximum eigenfilter model. We modified our weight
updating formula to be

w(n + 1) = w(n) + ny(z — yw)



f

for our éw. : _

The nyz pa.rt represents the usual Hebb rule, a.nd nyyw isa dlss1pa,t1ve
correction term for stabilicy. The same formula ha.s been used in one layer
self-organized principal components analysis. One hope of ours is in our
architecture this formula will lead to similar results.

This modification indeed helped the convergence of weights.- We
plotted the net’s weight changes during any training period, and find that
the wildly oscillating disappears. ( Please see attached plot.) However, we
haven’t shown the relationship of the eigenvectors of the covariance matrix
of the input images and the weight matrix.

5 Conclusion

Our implementation of the cortical memory dynamics produces posi-
tive results which support the analytical results of the net. In the four nodes
(two per layer) case, by adjusting the Hebb constants, we were able to find
the convergent state of the net which produces correct responses for input
cues. We also tested alternative dynamics which have better convergence

properties. However, the training process is difficult. Currently, we can only
train a small net reliably.
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