Equivalence Queries and DNF Formulas

Dana Angluin*, Yale University

YALEU/DCS/RR-659
November 1988

*Supported by the National Science Foundation, IRI-8718975

Equivalence Queries and DNF Formulas

Dana Angluin *
Yale University

November 1988

Abstract

We show there is no polynomial time algorithm that exactly identifies DNF formulas
over n variables using only equivalence queries. This result holds even if the target
formula is known to be monotone and to contain n terms each with at most f(n)
literals for any unbounded function f(n). Dual results hold for CNF formulas. This
solves an open problem in [3] and complements similar results for dfa’s, nfa’s, and cfg’s
in [2].

1 The Idea

The idea of the proof is to exhibit a target class of DNF formulas and an adversary strategy
for answering equivalence queries concerning DNF formulas that “gives away” very little
information with each counterexample, so that polynomially many queries do not suffice
to narrow down the possible functions in the target class to just one. The key fact that
we use about DNF formulas is that every DNF formula is either satisfied by a truth value
assignment that assigns 1 to “very few” variables, or is falsified by an assignment that assigns
0 to “very few” variables. Using this fact, the adversary strategy answers an equivalence
query about a DNF formula with one of these two types assignments as the counterexample.
Then we show that less than a polynomial fraction of the target class of DNF formulas is
satisfied by a particular assignment with “very few” 1’s, and similarly, less than a polynomial
fraction are falsified by a particular assignment with “very few” 0’s. Hence, each query
eliminates less than a polynomial fraction of the target class, and more than a polynomial
number of queries are required.

2 Definitions

2.1 Formulas

To keep the combinatorial analysis simple, we choose a slightly redundant method of nam-
ing DNF formulas. Let n be a positive integer, and let V,, denote the set of variables
{z1,...,2n}. The negation of a variable z; is denoted —z;. A literal is a variable or the
negation of a variable.

*Supported by NSF grant IRI-8718975

A term is a finite sequence of literals, possibly with repetition. The size of the term is
the number of literals in the sequence. A term is monotone if it contains no negations of
variables. If L is a literal and 7 is a term, we write L € 7 if and only if L is in the sequence
of literals composing 7. A term is contradictory if and only if for some ¢ the term contains
both z; and -z;.

A DNF formula is a finite sequence of terms, possibly with repetition. The size of a
DNF formula is the sum of the sizes of the sequence of terms. A DNF formula is monotone
if it contains only monotone terms. If 7 is a term and ¢ is a DNF formula, we write 7 € ¢
if and only if 7 is in the sequence of terms that composes ¢. A DNF formula is reduced if
and only if it contains no contradictory tems.

We write terms as the concatenation of the literals they contain, and DNF formulas as
the sequence of terms they contain, separated by “+”. Thus, an example of a DNF formula
is:

T17Z2T1T4 + T2 T5T5 2127 + L1 T9T12y4.
The size of this formula is 13; note that it is not reduced, since it contains a contradictory
term.

An assignment a is a mapping of the variables V, to the set {0,1}. This is extended to
literals, terms, and DNF formulas in the usual way, that is, a(~z;) = 1 — a(z;), if 7 is a
term, a(7) = ALe,a(L), and if ¢ is a DNF formula, a(¢) = Vrepa(T).

Two DNF formulas ¢ and 9 over V, are logically equivalent, denoted ¢ = 4, if and only
if for all assignments a to V,,,

a(¢) = a(¥).

The DNF formula given as an example above is logically equivalent to the formula T1ToTy4
of size 3. Note that any DNF formula ¢ is logically equivalent to the reduced formula
obtained by dropping all the contradictory terms from ¢.

If n, t, and m are positive integers, let M(n,t,m) denote the set of all monotone DNF
formulas over the variables V;, that have ¢ terms, each consisting of a product of m positive
literals. Thus, one element of M(4,3,2) is

2121 + 2223 + T224.

Note that the size of any formula from M(n,t,m) is tm. The number of monotone
terms over V), of size m is n™, and the number of formulas in M (n,t,m) is n*™. In general
M(n,t,m) contains many logically equivalent formulas.

2.2 Learning algorithms and equivalence queries

A learning algorithm is given inputs n and s and an equivalence oracle for an unknown
DNF formula ¢, of size s over Va. The oracle will answer eguivalence queries, that is, given
an input consisting of any DNF formula ¢ over V,, the oracle answers yes if ¢ = ¢, and
no otherwise. If the answer is no, the oracle also supplies a counterezample, that is, an
assignment a to V, such that a(@) # a(¢.). For definiteness, assume that the assignment
is represented as a string of n bits, representing the values of a on z1, .. Zn. Ifa(g)=0
then a is positive counterexample; otherwise a is a negative counterexample. The oracle’s
choice of a counterexample is assumed to be arbitrary.

Let T'(n,s) be a function from pairs of integers to integers. We say that algorithm A
exactly identifies DNF formulas using only equivalence queries in time T(n, s) if and only
if for every positive integer n and for every DNF formula ¢, over V,,, when A is run with
inputs 7 and size(¢.) and an equivalence oracle for ¢,, A halts in at most T(n, size(¢.))
steps and outputs a DNF formula ¢ that is logically equivalent to ¢,.

Algorithm A is a polynomial-time algorithm that exactly identifies DNF formulas using
only equivalence queries if and only if there exists a two-variable polynomial p(n, s8) such
that A exactly identifies DNF formulas using only equivalence queries in time p(n, s).

3 The Main Result

Theorem 1 There is no polynomial-time algorithm that ezactly identifies DNF formulas
using only equivalence queries.

4 The Proof

The general idea is to show that given a polynomial p(n,s), there are constants T and
M such that for all sufficiently large 7, no learning algorithm running in time p(n, s) can
exactly identify all the elements of M(n,T, M) using only equivalence queries. We describe
an adversary strategy that answers equivalence queries in such a way that a very small
fraction of hypotheses in M(n,T, M) are eliminated by each counterexample, so that too
many queries are required to pin down one hypothesis in M(n, T, M).

4.1 A Kkey fact

The property of DNF formulas that we use in the proof is that every DNF formula is
satisfied by an assignment with “few” 1’s or is falsified by an assignment with “many” 1’s.
If a is an arbitrary assignment on V;,, let p(a) denote the number of variables assigned 1 by
a, that is,

p(a) = [{i: a(z:) = 1}.

Then the fact we use is the following.

Lemma 2 Let n > 4 be an integer, and let ¢ be any reduced DNF formula with ¢ > 1
terms over V;,. If ¢ contains some term with fewer than \/n positive occurrences of literals,
then there is an assignment ay such that p(a;) < /n and a;(¢) = 1. If every term of ¢
contains at least \/n positive occurrences of literals, then there is an assignment ag such
that p(ag) > n — 1 — (v/n — 1)log, ¢ and ao(¢) = 0.

This is a corollary of the following simple lemma.

Lemma 3 Let n be any positive integer. Let a be a real number such that 0 < a < 1.
Suppose ¢ is a DNF formula over V,, with ¢ > 1 terms such that each term contains at
least an distinct positive literals. Then there is a set V. C V, of at most 1 + |log; ¢]
variables such that every term of ¢ contains a positive occurrence of some element of V,
where b=1/(1 - o).

Proof. We construct V as follows. Let z; be a variable that maximizes the number of
terms of ¢ that contain a positive occurrence of z;. Add z; to V and remove from ¢ any
term that contains a positive occurrence of z;. Iterate this process until no terms are left
in ¢.

Since every term of ¢ contains at least an positive occurrences of variables, at least one
variable must occur positively in a fraction a of the terms remaining, so after r elements have
been added to V, there must be at most (1 — a)"q terms left in ¢. Hence, for b = 1/ (1-a),
when

r =1+ [log,q],

we have
(1-a)g<(1-a)sig=1.

Thus fewer than 1 term must be left in ¢, that is, ¢ must be empty. Q.E.D.

Proof of Lemma 2. Let n > 4 and let ¢ be any reduced DNF formula with qg>1
terms over V,. If some term T of ¢ has fewer than /n positive occurrences of literals, let
a1(z;) = 1if and only if z; occurs positively in 7. Since ¢ is reduced, T is non-contradictory,
and a;(7) = 1. Then p(a;) < v/n and a;(¢) = 1.

If every term of ¢ has at least v/ positive occurrences of literals, then we apply the
preceding lemma with a = 1/4/n to conclude that there is a set of variables V such that
every term of ¢ has a positive occurrence of some variable from V and V| < 1 + |log, q]
where b = 1/(1 — @). Take ao(z;) = 0 if and only if z; € V. Then ao(¢) = 0, and
p(ag) = n— [V|. For n > 4, log,q < (v/n —1)logy ¢, so p(ag) > n— 1 — (v/n — 1)log, g.
Q.E.D.

4.2 How to answer queries

We now can describe the adversary’s strategy for answering queries. Assume n > 4. Suppose
input to the query is a DNF formula ¢ over V, with ¢ terms. We may assume without loss
of generality that ¢ is reduced. There are three cases; in each case the reply is “no”, and
the counterexample a is as described.

1. If ¢ = 0, that is, ¢ contains no terms, then a(¢) = 0 for all assignments a to V.
In this case, the counterexample is the assignment a(z;) = 1 for all z; € V,. Since
a(#) = 0, a is a positive counterexample.

2. If there exists some term T that contains fewer than /n positive literals, let a be the
assignment a; guaranteed by Lemma 2 such that a;1(¢) = 1 and p(a;) < /7. Since
a(4) = 1, a is a negative counterexample.

3. If ¢ has at least one term and every term of ¢ contains at least \/n positive occurrences
of literals, let a be the assignment ag guaranteed by Lemma 2 such that ao(¢) = 0
and p(ag) > n—1— (v/n —1)log, g. Since a(4) = 0, a is a positive counterexample.

Now we need to analyze how many elements of the hypothesis space M(n,t,m) are
eliminated by each of answers above. A formula ¢ over V,, is eliminated by a counterexample
a if and only if a is positive and a(4) = 0 or a is negative and a(¢) = 1.

4

In case (1), the counterexample a is positive and a(¢) = 1 for every ¢ € M (n,t,m),
so no elements of M(n,t,m) are eliminated by a. In case (2), the counterexample a is
negative, so ¢ € M(n,t,m) is eliminated by a if and only if a(¢) = 1. In case (3), the
counterexample a is positive, so ¢ € M(n,t,m) is eliminated by a if and only if a(¢) = 0.
In the next subsection we determine how many elements of M(n,t,m) are assigned 0 by a
given assignment.

4.3 How many hypotheses are assigned 07
Lemma 4 If a is any assignment on V,,, the number of elements of M(n,t,m) such that

a() = 0 is (n™ - p(a)™)'.

Proof. If T is a monotone term over V, of size m, then a(r) = 1 if and only if each
variable in 7 is assigned 1 by a. Hence the number of monotone terms r over V,, of size m
such that a(7) = 1 is just the number of ways of choosing (with repetition) a sequence of
m variables out of the p(a) assigned 1 by a, that is, p(a)™. Thus the number of monotone
terms 7 over V,, of size m such that a(r) = 0 is n™ — p(a)™.

For each element ¢ € M(n,t,m), a(¢) = 0 if and only if a(r) = 0 for each term T in é.
Thus, the number of elements ¢ € M(n,t,m) such that a(¢) = 0 is the number of ways of
choosing (with repetition) a sequence of t terms from the set of monotone terms 7 over Vo
of size m such that a(r) = 0. That is, the number of ¢ € M(n,¢,m) such that a(¢) = 0 is
(n™ - p(a)™)t. Q.E.D.

If a is any assignment on V,,, let

Joln,t,m](a) = {¢ € M(n,t,m): a(¢) = 0}|/|M(n,t,m)|.

This is the fraction of elements of M(n,t,m) that are assigned 0 by a. Also, let

fl[n,t7m](a) =1- fo[n,t, m],

which is the fraction of elements of M(n,t,m) that are assigned 1 by a. Then, dividing the
expression in the preceding lemma by |M(n,t,m)| = n*™, we get the following.

Corollary 5
foln,t,m](a) = (1 - (p(a)/n)™)',

and

fln,t,ml(a) = 1 (1~ (p(a)/n)™).

4.4 Two lemmas

Lemma 6 Let n be any positive integer and = any real number such that 0 < z < 1/n.
Then (1 —z)™ > 1 —2nz.

This is not difficult to prove using the binomial theorem.

Lemma 7 For all positive integers n, t, m such that n > t and n > m, if S is any subset of
more than 1/2 of the elements of M(n,t,m), then S contains at least two logically distinct
formulas.

Proof. Let n, t, and m be positive integers such that n > ¢ and n > m. For each formula
¢ € M(n,t,m), let E(¢) be the set of all formulas ¢ € M(n,t,m) such that ¢ = ¢. It
suffices to show that for all ¢ € M(n,t,m), |E(8)| < (1/2)|M(n,t,m)|.

If w is any permutation of the set of integers from 1 to n and ¢ € M (n,t,m), let 7(¢)
be the formula obtained from ¢ by substituting Ty for z; forall i = 1,...,n. Thus 7
induces a permutation on M(n,t,m). Note that if ¢ = 9, then 7(¢) = (). Moreover,
r(E(4)) = E(n(¢)).

We now show that for any formula ¢ € M(n,t,m), there exists a permutation 7 such
that ¢ # m(¢). This will complete the proof, because for this x, E(¢) and E(n(¢)) are
disjoint subsets of M(n,t, m) of equal cardinality, and therefore |E(¢)| < (1/2)|M(n, 1, m)|.

Order the set of all assignments by a < o’ if and only if for each i = 1,...,n, a(z;) <
a’(z;). Let A be the set of minimal elements of the set of assignments satisfying ¢. Then
1 < |A] <t. Let a € A minimize p(a). Then 1 < p(a) < m. Also, at most ¢ assignments o’
satisfying ¢ have p(a’) = p(a).

Consider the image of a under all possible permutations of the variables; we must obtain
all possible assignments a’ with p(a’) = p(a). Since 1 < p(a) < n, there are at least n
different assignments o’ with p(a’) = p(a). However, there are at most ¢ assignments a’ that
satisfy ¢ and have p(a’) = p(a), so for at least one permutation 7, 7(¢) must be satisfied
by an assignment that does not satisfy ¢, that is, 7(¢) # ¢. Q.E.D.

4.5 How many hypotheses are eliminated?

Now we are ready to analyze the fraction of elements of M (n,t,m) that are eliminated in
cases (2) and (3) of the adversary strategy.

Case (2). In this case, p(a) < +/n, and the counterexample a is negative, so we need
to bound the fraction of hypotheses from M(n,t,m) that are assigned 1 by a, that is,
fi[n,t,m](a). By Corollary 5,

filn,t,ml(a) = 1 - (1 - (p(a)/n)™)".

Since p(a) < /7,
Aln,t,ml(e) 1= (1= (1/vm)™)".
Let
2 = (1/v/a)".

Provided that tz < 1, by Lemma 6,
(1-2)>1-2tz.

Hence,
fi[n,t,m](a) < 2tz,

and

fin,t,m](a) < 2¢(1/+/n)™.

6

- or

Case (3). In this case, p(a) > n — (1+ (v/n — 1) log,). Assuming that ¢ > 2,

p(a) 2 n— (v/n)log, q.

In case (3) the assignment a is a positive counterexample, so an element of M (n,t,m) is
eliminated by a if and only if it is assigned 0 by a. From Corollary 5,

Joln,t,m](a) = (1 - (p(a)/n)™)",

so

foln,t,m](a) < (1= ((n ~ (V/n)logy ¢)/n)™)",

fO[n’ t, m](a) < (1 - (1 - 10g2 Q/\/;"-)m)t'
Let z = log, ¢/+/n. Provided that mz < 1, by Lemma 6 we have

1-2)">1-2maz,

fo[n,t,m](a) < (1 - (1 - 2mz))?,

and
fo[n,t,m](a) < (2mlog, ¢/v/n)".

4.6 Proof of Theorem 1

To prove Theorem 1, we assume to the contrary that A is an algorithm that exactly identifies
DNF formulas in polynomial time using only equivalence queries. Let p(n, s) be a polynomial
bounding the running time of A. Without loss of generality we may assume that p(n,s)
is increasing in both arguments and positive for all pairs of positive integers n and s. Let
g(n) = p(n,n?). Choose Ny sufficiently large that for all n > Ny, q(n) > 2.

Choose M and N sufficiently large that for all n > Ny,

2n(1/v/m)M < 1/3q(n).

This is possible because the left side is O(1/n™/2-1). Now choose T and N sufficiently
large that for all n > N3,

(2M log, g(n)/v/n)" < 1/3¢(n).

This is possible because 2M log, g(n)//n is O(log, n/+/7).

Fix some n such that n > max{4, Ny, Ny, N3, M, T} and consider A with inputs n and
s =TM, and assume that the answers to equivalence queries of A are determined using the
strategy described in Section 4.2. Recall that the size of each hypothesis in M (n,T,M)is
TM.

We claim that for all r < ¢(n), after A has made r queries and been answered according
to the adversary strategy, there are at least

(1 —r/3¢(n))IM(n,T,M)| > (2/3)|M(n, T, M)]

7

hypotheses in M(n,T, M) that are consistent with all the answers given by the adversary
strategy to this point.

Certainly when r = 0, this is true, since no answers have been given, and all the
hypotheses in M(n,T, M) are consistent with the answers that have been given. Assuming
that at least (1 — r/3¢(n))|M(n,T, M)| hypotheses from M(n,T, M) are consistent with
the answers given to the first 7 < g(n) queries, then at least one hypothesis remains in
M(n,T, M) that is consistent with the answers, so at the next query A must propose a
DNF formula ¢ with ¢ < p(n,TM) < ¢(n) terms, since TM < n2.

If the counterexample a comes from case (1) of the strategy, then no further hypotheses
are eliminated from M(n,T, M) by this counterexample. If the counterexample a comes
from case (2), then the fraction of elements of M (n,T, M) that are inconsistent with the
counterexample is

filn, T, M(a) < 2T(1/y/AM < 2n(1/vRM < 1/3g(n).

If the counterexample a comes from case (3), then the fraction of elements of M (n,T, M)
that are inconsistent with the counterexample is

foln, T, M)(a) < (2M log, q(n)/v/n)T < 1/3¢(n).

In either of these two cases, a fraction of at most 1/ 3g(n) of the elements of M(n,T, M)
are eliminated by the counterexample, so at least

(1= (r+1)/3¢(n))|M(n, T, M)|

elements in M(n, T, M) are consistent with the first r + 1 counterexamples.

If A halts after making no more than g(n) equivalence queries then at least 2/3 of the
elements in M(n,T, M) are consistent with all the answers to the equivalence queries. Since
n > T and n > M, by Lemma 7 there are at least two logically inequivalent hypotheses
in M(n,T,M) that are consistent with all the counterexamples to this point, so A must
be incorrect for at least one of them. Since A runs in at most p(n,s) = p(n,TM) < q(n)
steps, it cannot make more than g(n) equivalence queries in identifying any element of
M(n,T, M). This contradiction shows that no such A exists. Q.E.D.

5 Comments

Dual results hold, of course, for CNF formulas. This result shows that a polynomial time
algorithm for CNF formulas using only equivalence queries can be correct for all k-CNF
formulas (CNF formulas with at most k literals per clause) for only a finite number of values
of k. This is the behavior achieved by the equivalence query algorithm for k-CNF formulas
in (3], adapted from the k-CNF algorithm given by Valiant [6].

Note that this result does not imply anything directly about whether DNF or CNF
formulas can be pac-identified in polynomial time, which is an open problem. Kearns and
Valiant [5] have shown that for general boolean formulas, a polynomial time prediction
algorithm that does slightly better than chance can be used to give random polynomial
time algorithms for various apparently hard cryptographic problems.

In [3] we describe a polynomial time algorithm that exactly identifies monotone DNF
formulas using equivalence queries and membership queries. The present result shows that
membership queries are essential to that result. The question of whether there is a polyno-
mial time algorithm that exactly identifies DNF or CNF formulas using equivalence queries
and membership queries is open, even if we consider only Horn form CNF formulas [1,4].

The proofs could be further tuned, possibly to get sharp bounds on the required size of
M as a function of the bounding polynomial p(n, s).

6 Acknowledgements

This research was funded by the National Science Foundation, under grant number IRI-
8718975.

References

[1] D. Angluin. Learning propositional Horn sentences with hints. Technical Report, Yale
University, YALEU/DCS/RR-590, 1987.

[2] D. Angluin. Negative results for equivalence queries. Technical Report, Yale University,
YALEU/DCS/RR-648, 1988.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1987. Prelim-
inary version appeared as YALEU/DCS/RR-479.

[4] D. Angluin. Requests for hints that return no hints. Technical Report, Yale University,
YALEU/DCS/RR-647, 1988.

[5] M. Kearns and L. Valiant. Learning boolean formulae or finite automata is as hard
as factoring. Technical Report, Harvard University Center for Research in Computing
Technology, TR-14-88, 1988.

[6] L. G. Valiant. A theory of the learnable. 'C. ACM, 27:1134-1142, 1984.

