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Abstract

We describe a fault-tolerant distributed storage system. Our system implements Persistent,
Associative, Shared Object (PASO) memory. A PASO memory stores a set of data objects
that can be accessed by associative search queries from all nodes in an ensemble of machines.
This approach to distributed memory has appeared in a number of systems, and provides a
convenient and useful mechanism for parallel and distributed applications. PASO memory is
very amenable to adaptive implementations that relocate data objects in response to changing
network configurations and access patterns, and so makes a good candidate as an efficient,
fault-tolerant storage system.
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1 Introduction

The goal of the Yale PASO project is to develop fault-tolerant, efficient distributed storage based
on a model called Persistent, Associative, Shared Object (PASO) memory. A PASO memory stores
a set of objects that can be accessed from all nodes in some ensemble of machines by associative
search queries rather than by means of a shared address space. We assume that the objects are
physically stored among the local memories private to each machine, and that memory operations
are implemented by exchanging information over the communication network connecting the en-
semble. The faults the memory is intended to tolerate are fail-stop processor crashes in which any
objects stored at the failing machine are permanently lost. The thesis of the project is that this
fault tolerance can be obtained efficiently through the use of state-of-the-art competitive on-line
algorithms to manage dynamic replication of data both in response to loss of processors and to
changing patterns of data access.

There are several compelling reasons to develop an efficient, fault-tolerant PASO memory. Sys-
tems based on the PASO model have had pragmatic success. PASO memory is a good basis for a
reliable and efficient parallel programming system. It provides a versatile communication system on
which a variety of distributed applications, groupware, distributed database and related software
systems can be built.

Our goal is to produce a theoretical design and analysis of efficient, reliable PASO memory, an
implementation of the theoretical design, and an empirical performance evaluation of the imple-
mentation.

1.1 Definition of PASO Memory

An object in a PASO is a tuple of values drawn from ground sets of basic data types. The mem-
ory contains a collection of objects, each of which has an arbitrary number of fields. Programs
manipulate the PASO memory through three atomic operations: insert, read, and read&del. A
PASO memory is associative in the sense that objects are accessed by pattern-matching. A read
takes an object template (search criterion) specifying acceptable values for each field, and returns
any one object matching that template. Both read and read&del are blocking, i.e., they cannot
return until they succeed in finding a matching object. There is no modify operation; modifying a
field is logically equivalent to destroying the old object and creating a new one. There is no loss of
generality, since a mutable distributed data structure can be built out of collections of immutable
atomic objects. The memory is “shared” in the sense that any object can be read or deleted by
any participating process. It is “persistent” in the sense that once an object is inserted into the
memory, it remains there until it is deleted, irrespective of whether its creating process is still alive. -

The network consists of n machines, each of which has local memory and supports a set of
processes. A process may be either a compute process or a memory server. A compute process
executes a user program that generates requests for access to the PASO memory by means of the
basic PASO operations. A memory server manages some collection of PASO objects stored in the
local memory of the machine. It is responsible for serving the PASO requests generated by compute
processes. The primary type of fault we consider is fail-stop errors, in which a machine crashes
and all processes on that machine are killed. We assume a communication system that handles
communication faults such as message loss and corruption; such communication systems have been
studied extensively in previous research.




1.2 The Advantages of PASO Memory

The PASO model is a hybrid of the message passing and the shared address space approaches to
inter-process communication. Like a shared address space, a PASO memory hides the physical
location of data. A programmer simply manipulates an abstract data space. A PASO memory also
preserves some of the efficiency of message passing, allowing the programmer to distinguish local
computations from potentially expensive communication/coordination actions. Shared memories
that qualify informally as PASOs have been used as coordination languages in a variety of parallel
programming systems, e.g., in the context of C [15], Scheme [26], Prolog [13], distributed object-
oriented systems [30], Modula-2 [12], program visualization systems [32], math libraries [19], and
as part of other coordination mechanisms [2, 29]. They have proven to be an effective basis for
parallel computations, distributed databases, groupware and related software systems[15, 16]. The
fact that informal PASO memories are a pragmatic success makes them good candidates for formal,
algorithmic, and theoretical research that aims at improving them.

As observed in [5], one can separate the problem of fault-tolerant computation into two issues.
The first is the design of parallel programs that are fault-tolerant given the assumption of a stable
storage. This area is well studied and there are many approaches based on checkpointing, message
logging, and rollback recovery (e.g., see [24]). The second issue is the design of the stable storage.
It is on this second issue that we focus. We take some predefined constant A < n and assume that
at any given time at most A machines can simultaneously fail. The PASO memory is reliable if
throughout any series of faults the abstract object space remains unchanged and all active processes
have a consistent view of the object memory.

Current PASO-like systems either provide no fault-tolerance or provide basic fault tolerance at
the cost of substantial overhead (see, e.g., [5, 15, 41]). One argument against fault-tolerance is that
the obvious benefits of preserving data in the face of failures are outweighed by the loss of efficiency
when errors are infrequent. Our thesis is that both goals of fault-tolerance and efficiency can be
achieved. The requirement of fault tolerance implies that data will need to be adaptively replicated
in response to machine failures. But since we are forced to relocate data, we may as well commit to
inherently adaptive data management schemes and take advantage of the potential optimizations
that adaptive schemes offer.

A PASO memory that is able to tolerate many rapidly occurring failures is especially useful
in designing parallel algorithms that adapt to changing availability of computational resources—
adaptive parallelism [23]. Today’s ubiquitous workstation networks are huge reservoirs of power and
wasted potential, reservoirs that can be tapped by adaptive parallel programs designed to gain or
lose processing units during the computation. Our fault-tolerant techniques will allow a distributed
memory to retire gracefully from workstations that are being reclaimed for personal use, and
expand onto nodes that become available. We believe that adaptive-parallel programs executing on
networked multiprocessors will be one of the most important arenas for high-performance computing
over the next decade.

1.3 The Proposed Solution

Our proposed solution derives from a synergy between the use of data replication for fault tolerance
and data replication for efficiency.

As stated above, our basic model assumes that the objects in the shared memory are physically
stored in the local memories of the machines. ‘nodes in a processor The primary fault we are
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concerned with is fail-stop processor errors in which the data stored at a node is irrecoverably lost.
For the object memory to survive, some measure of data replication is required.

Data redundancy can also improve efficiency. If many machines are reading the same object,
then by replicating copies of that object among several machines, the overhead per machine is
reduced as is the communication cost. There is a considerable literature on the use of static
replication schemes to improve efficiency. Recently the algorithms community has begun to study
adaptive, run-time algorithms for replication. Here the goal is to respond effectively to changing
access patterns. Changing configurations and changing access patterns are closely related. Our
thesis is that these theoretical techniques for adaptive replication can be used to efficiently manage
the redundant data needed for fault tolerance. Furthermore, as the required degree of fault-tolerance
is reduced, an implementation of PASO memory using data replication can actually become more
efficient than any that now exist.

2 Technical Definitions and Issues

2.1 Network Architecture

The target architecture for PASO sytems is a loosely-coupled network of independent machines,
typified by a local-area workstation cluster. The only storage available is the local storage controlled
by each machine. This private storage can be stable, as in a hard disk, but for efficiency the memory
objects will typically reside in volatile RAM memory. The network is modeled by a communication
graph where nodes represent machines and edges represent communication links. An edge or node
may be marked inactive, indicating that the corresponding communication link or processor has
failed. Two processes can communicate only when in the communication graph there is a path that
consists entirely of active edges and nodes between the nodes representing the machines where the
two processes reside.

We limit ourselves to network architectures whose communication graphs are complete, so we
exclude errors that partition the network. This model includes all bus-based networks, an important
and common family of architectures.

We will use two testbeds for our research. The first is the Yale Computer Science research
subnet, consisting of two servers and a number of Sun SparcStations connected by ethernet. The
second testbed is provided by the Yale Center for Parallel Supercomputing (YCPS), a joint venture
between Yale and IBM. The primary computing power of YCPS resides in a network of six IBM
RISC System /6000 servers and ten IBM RISC System/6000 workstations. All 16 computers are
connected by ethernet and a high speed (100 MB) IBM switch. In addition, the six servers are also
connected by a FDDI ring.

2.2 Pattern Matching and Searching

An object is read or deleted from the PASO memory by means of a read or a read&del operation
whose operand is the template to be matched. The range of templates allowed determines the degree
of associativity of the memory. One extreme example is allowing no wildcarding, that is, allowing
only templates that fully specify tuples. The degree of associativity obtained then is minimal. Less
extreme is insisting that a template consist of a set of fully specified key fields and fully wildcarded
data fields. This corresponds to many database applications. More general templates might be of




the form (1-10, 5, a*) which would match any object whose first field is an integer between 1
and 10, second field is 5, and third field is any string beginning with ‘a’.

Let us assume for the moment that there is only one copy of each object, thus ignoring the
issue of fault tolerance. The search problem of satisfying a read or read&del request can be broken
into two subproblems. The collection of objects is spread across many physical location. The first
problem is sending enough messages so that of all nodes containing an object that satisfies the
request, at least one such node receives a request message. The second problem is then pattern
matching within a node’s local storage for a desired object.

The problems of search strategy and optimal data replication are intimately related. For ex-
ample, one may have a class of objects that will always be accessed using by a template in which
the first field is a fully specified key. It may be useful to bundle this class of objects together in
a file, or several subfiles, and replicate the entire file over some set of nodes. On the other hand,
one may have a class of tuples that will be subjected to very general search. It may be best to
scatter these tuples all over the network. Previous work on PASO-like systems shows that the
objects generated by parallel programs can often be preassigned to various such classes, based on
information generated at compile and link time. For each class, a different technique for managing
replicated data may be used.

2.3 Correctness and Efficiency Measures
2.3.1 Correctness

In Section 4.2.1 we gave an informal definition of reliable PASO memory: throughout some series
of faults belonging to the fault model, the abstract object space remains unchanged and all active
processes have a consistent view of the object memory. The fault model limits us to A simultaneous
erTors.

The inherent concurrency of the PASO memory makes a formal definition of correctness some-
what intricate. We shall define a universal PASO implementation, which generates the set of legal
PASO traces—sets of sequences of operations performed on the memory and the results they return.
The universal PASO operates in the absence of faults. An implementation of a fault-tolerant PASO
memory is correct if each of its traces can be produced by the universal PASO.

2.3.2 Efficiency of a PASO implementation

There are several measures for the performance of a PASO implementation.

Total communication: the total cost of all messages processed by individual processors; Total
communication time is a measure of how much overhead the PASO system is placing on the
network.

Network contention: the maximum number of simultaneous messages sent through one path of
the communication network.

Processor contention: the maximum number of simultaneous messages one processor may re-
ceive.

Response time: the amount of time before a (non-blocking) create, read, or delete operation
completes; Response time depends on contention.




3 Previous and Related Research

3.1 PASO-like Systems

Network Linda [14] is a PASO-like system that allows limited pattern matching in read and
read&del operations. FEach object is stored at a single memory location and efficiency issues
are addressed by “partial evaluation” at compile and link time. Assuming a linked image of the
entire program is available, one has at linktime a complete list of every access in the program,
including the number and type of fields in the object. Using this information a good deal of “proto-
matching” can be done at linktime. Because an n-field search pattern with type signature ¢ can
only match an n-field, type-t object, the search at runtime can be restricted to exactly those data
structures inhabited by appropriately sized and typed objects. Consistently-used constant fields
can be pre-matched. When runtime matching is needed and, the compiler can determine whether
there is a search key. Special cases include singleton objects with constant fields that function as
distributed semaphores, and matrices that are are implemented as collections of objects, whose first
fields identify the matrix and indices: e.g. “(MatrixA, 4,5, (data ))”. The latter kind of objects can
be stored in a distributed hash table based on the search key.

In previous work on reliable Linda systems, Xu and Liskov [41] discuss the use of the virtual
partition algorithm to maintain the consistency of tuple replicas in the tuple space. This work
builds on capabilities that are native to the Argus distributed programming system, upon which
we cannot rely. Bakken and Schlichting [5, 6] assume a reliable tuple space, and propose a new
atomic tuple-swap operator that can be used to build reliable applications of a certain type (“bag
of task” applications, although the their swap operator would seem to be applicable to a broader
range of master-worker programs). Anderson and Shasha’s [4] work on Persistent Linda includes
support for transactions, but doesn’t focus on the problem of reliable distributed tuple spaces.
Closest to the work proposed here is Kambhatla and Walpole’s [27, 36]. They discuss reliable tuple
spaces, and the use of a reliable tuple space to build a reliable application (by means of a “log
space,” similar to a tuple space, in which information about the status of an ongoing computation
is stored). Kambhatla and Walpole make an interesting case for Linda as “a particularly suitable
mode] for fault-tolerant applications” [27], because of the “highly asynchronous” or “uncoupled”
nature of the tuple space model. (Because processes are mutually anonymous and never deal with
each other directly, it becomes relatively simple to substitute a new process for a failed one.) We
expect that many of Kambhatla and Walpole’s observations will be useful in the course of the
{(somewhat more general) work we plan to do.

3.2 Fault-tolerance in Distributed Database Systems

The failures in a distributed system can be roughly divided into communication errors and pro-
cessing errors. Communication errors which involve a loss, duplication, or reordering of messages
transmitted across a link can be overcome if they are appropriately restricted. See [1, 3, 25, 37] for
various solutions and impossibility results. Communication errors that involve corruption of data
in messages be solved by means of error-correcting codes, again under certain restrictions [35].

As to process failure, most of the research in the area is about the “Byzantine Generals” problem.
For a survey of research until 1985 see [21]. Following the terminology of Byzantine generals, we
use “fail-stop” or “crash” errors to refer to cases where processes simply stop. A Byzantine failure,
in contrast, allows the process to remain active but to send spurious messages of the worst possible




kind.

Many known fault-tolerant protocols for communication errors are incorporated into existing
software for distributed communication, such as the ISIS system [9]. Our initial system, described
below, actually uses ISIS to handle communication reliably.

Our primary concern is in dealing with fail-stop errors and consequent loss of data. Data
replication must be used to avoid loss, and this imposes various problems of maintaining consistency
throughout transactions. A number of standard protocols are available for maintaining consistency,
assuming reliable communication. Chapter 12 of [8] gives a broad discussion of the handling of
failures in distributed databases.

3.3 On-line Optimization and Competitive Analysis

The problem of optimizing the replication and distribution of shared data has been studied in
several contexts. The file allocation problem is to assign one or more copies of a database file
among a collection of nodes. By distributing multiple copies, the time for a node to read data can
be reduced, since the node may look at its local copy of the file and avoid an expensive network
communication. On the other hand, distributing copies increases the time to perform a write, since
all copies must be updated. In static file allocation, one computes a static allocation of data files
based on some model of read and write frequencies. Dowdy and Foster[20] give a survey of many
different models and algorithms.

There has been recently been considerable theoretical research into adaptive algorithms for
problems of this nature, as examples of on-line optimization. On-line optimization problems involve
making on-line decisions in response to changing patterns of memory accesses with the intention of
minimizing the ratio of the on-line cost to the best possible cost had the entire future been known.
This measure was codified as the competitive ratio [28, 34]. A c-competitive algorithm guarantees
worst-case behavior that is never more than a factor of ¢ away from optimal. Experience has shown
that algorithms with good worst-case behavior typically have good behavior in real-life applications.
Examples include algorithms for paging and searching linked lists [34].

Adaptive on-line algorithms respond to changing patterns of access by moving or replicating
data to where it can be used most effectively. In the page migration problem, pages of shared
memory can be migrated around a network of multiprocessors in response to changing locality of
reference. Variations of this problem, dependent on the nature of the communication network,
have been studied in [10, 11, 18, 33, 28, 31, 39]. In adaptive file allocation [40] both the number
and location of copies of the file are allowed to vary. For page migration [11, 38, 17] there are
relatively simple adaptive algorithms that guarantee competitive ratios of 3 or less on the total
communication incurred in servicing any sequence of read and writes. Adaptive algorithms for file
allocation have been presented in [7, 40]. Here the ratio is between 2 and 3 for simple networks such
as buses (ethernet) and trees, but can be as bad as O(log n) for complex point-to-point networks of
n nodes. This work does not explicitly address issues of contention nor response time. A bound on
total communication does imply a bound on response time, however. Furthermore, in a distributed
system allowing the movement of data files also adds the overhead of maintaining a system map
that allows nodes to find the nearest copy of the desired data file.

Some of this theoretical work is directly applicable to the restricted searching problems, de-
scribed in Subsection 3.1, where a collection of homogeneous tuples is to be searched via a fixed
key field. We plan to utilize these algorithms in our fault-tolerant PASO memory.




General associative queries, however, require a different model of data access than used in the
current theoretical literature. Each memory operation generates a branching collection of requests,
not just a single targeted request. There are many interesting open problems, and we hope that
our work will suggest useful models and problems for the theoreticians studying on-line algorithms.

4 Current Work

We defined semantics for PASO, a necessary step for specifying a “correct” fault-tolerant PASO
system. We also desinged some generic memory management strategies and outlined some algo-
rithms based for special cases of PASO systems. We are currently working on a prototype of a
PASO system built on top of ISIS. '

4.1 Semantics of PASO

The set of objects is denoted by O. Each object has a “life”. It is initially prenatal. If inserted, the
object becomes live. If read&deled, the object becomes dead. Search criteria, used as arguments
in read and read&del commands, are predicates over ). We also assume a set P of processes,
each executing some program. The programs are “standard” programs (e.g., C) augmented with
the special PASO primitives: insert, read, and read&del.

A global state of a PASO system consists of the local states of each of the processes and the
state of the object space. We assume some set ® of propositions and an evaluation function
that determines whether each proposition is true or false in each of the global states. Of special
importance to us are the propositions pre(o), live(o), and dead(o), for every o € O, denoting whether
o is prenatal, alive, or dead. With each global state we associate a partition of O into three sets,
PRE, LIVE, and DEAD according to the state of the objects in the global state. An initial state is
a global state where all objects are prenatal (i.e., PRE = O) and all processes are at their initial
local states. The value of the local variables of each process is as indicated by the program code.

All non-PASO commands are assumed to be atomic. Each PASO command is associated with
two atomic commands, its issuing, denoted by ¢, and its return, denoted by p. For read and
readfdel commands, we sometimes abuse notation and use two arguments for p, the first denoting
the terminating command, and the second denoting the result. For example, p(read&del(sc), o)
is the return of a read&del with search criterion sc, whose result is o.

A joint transition is defined by a set of (possibly null) atomic commands for each of the system’s
processes. Each joint transition defines a (global) state-to-(global) state successor function. For
the non-PASO commands in the joint transition, this successor function is the obvious one.

A run of a PASO system is a sequence r = sg, 7o, $1,. .. of alternating global states and joint
transitions, starting with a state, and, if finite, ending with a state, such that sy is an initial state
and every state s;4; is the successor of s; under the successor function of 7;.

Properties (A1)-(A3) below are some of the properties that should be satisfied by every run =
of a PASO system. Property Al describes the life cycle of an object in r. Property A2 describes
what in 7 determines an object’s life. Property A3 describes the processes in r.

A1l A prenatal object may remain so forever or become alive. A live object may live forever or
die. A dead object remains dead. An object may become alive at most once, and may die
at most once.




A2 An object o may become alive only after a transition includes ((insert(o)). It may later
die after, and only after, a transition which includes p(read&del(sc), o).

A3 Theindividual run of each process as determined by 7 is indeed plausible run of the process.
In particular, for every process p, if , denotes p’s run as determined by 7, then every p in
Tp is the immediate successor of the corresponding ¢ in 7,. Also, every ((insert) in 7, is
immediately followed by a corresponding p. Obviously, a PASO command of p blocks when
its ¢ is the last element in 7.

It remains to describe the rules of each of the PASO commands. We require that an object
becomes alive at some time after its insert is issued. The rules of read commands are somewhat
more complicated since they describe both the correctness of objects returned by read and the
conditions under which read commands may and may not block. We require that a read command
returns an object that satisfies the search criterion and is alive at some time in between the issue
and the return of the read. A read should not block if there is an object that satisfies the search
criterion and is alive from some time onward. It may block in all other cases. The rules of the
read&del command are similar to the rules of the read command. We do require, however, that
an object that is returned from a read&del eventually dies.

For a detailed discussion of the semantics see [42].

4.2 A Prototype PASO system
4.2.1 Basic Assumption

In the system outlined here, all communication occurs by means of a simple primitive, gcast.
A gcast broadcasts a message to all members of a specified group, a construct roughly analo-
gous to a mailing list. At any time, a given process may join or leave a group. The operation
gcast(name, msg, resp-type, resp) broadcasts a message msg to each process currently subscribing
to the group identified by name. The flag resp-type is either a or s. If it is a then control returns
to the issuing process only after all the group subscribers respond to the broadcast. If it is s then
control returns to the issuing process as soon as one group member responds. In this latter case,
while the process receives only one response, the response is sent only after all group members are
ready to send. Hence, response type s is used when the process needs only one copy of the response;
we use this form to to minimize contention as not all responses need to be sent. Responses are
stored in the local variable resp.

Let Names be the (finite) set of group names. For any point in every run, let group: Names — oM
be a mapping such that group(name) is the set of memory servers belonging to group name. The
communication subsystem that implements gcast is responsible for maintaining this mapping. The
use of group names thus provides a simplifying level of indirection for the compute and memory
servers.

The gcast primitive is assumed to be reliable. Namely, it eventually delivers the designated
message to all group members. Moreover, the messages are delivered to all group members in the
same order. Finally, all gcasts from the same process to the same group reach the group’s members
in the order they are sent. We assume that the groups are always in a stable state when receiving
a gcast—memory servers cannot join or leave a group during a gcast to the group. (The broadcast
primitives of ISIS provide for all of these properties.)




We expect our system to tolerate up to A simultaneous fail-stop crashes of machines where A < n
is some fixed constant. When a machine crashes, all its local memory is erased, and, consequently,
the memory server that is associated with it fails. Failed memory servers are assumed to leave the
system and never return. Similarly, memory servers that join the system are assumed to be new.

Once a faulty machine re-joins the system, the memory server performs an initialization phase.
During the initialization phase, the server obtains copies of the objects that it should store. Hence,
this phase is expected to be rather lengthy. We consider a machine in its initialization phase faulty,
since it cannot answer all queries correctly. We assume that at any time, there are at least n — A
non-faulty machines in the system.

4.2.2 Outline of Stragety

In order to determine where objects are stored and how they are searched for, we partition the
object space and the search criteria space into classes. Each class of objects is associated with
a write group—a set of servers each of which stores every live object that belongs to the class.
All requests to insert and remove particular objects are therefore made to the write group that
is responsible for the class that contains the object. Similarly, every class of search criteria is
associated with a read group—a set of servers that contains at least one server from every class that
may hold an object satisfying the search criteria in the class. Hence, search requests are directed
to the read classes, and update requests are directed to the write classes.

The set O is partitioned into a set of object classes C by a function obj-cls: O — C. We place
no restrictions on the number of object classes, nor on the function obj-cls. The function may or
may not be known to memory servers. It can be predetermined during compilation or generated
at run-time. It can be a dynamic function, changing over time. At each point in a run, the live
objects in every class C' € C are replicated across some group of memory servers that is said to
support C and is called the write group of C. The write group of C is denoted w-grp(C'). The write
group of a class is dynamic. ,

The set of search criteria, SC, is also partitioned into a set of search classes &, by a function
srch-cls: SC — S. Again this function may or may not be known in advance to memory servers, and
it may be modified at runtime. Like object classes, each search class is also supported by a group
of servers, called the called the read group for search class S, and denoted r-grp(5).

A given memory server may support multiple read and write groups. In addition, the member-
ship of read and write groups can change over time. Memory servers may fail and recover, joining
different write groups. In addition, it may be useful to reassign servers among write groups in
order to optimize communication. For example, if compute processes on a machine are frequently
accessing a given class C, it may be advantageous for the memory server on that machine to begin
supporting C. Then read requests can be handled locally, without using communication. Although
read and write groups can change, at all times they must satisfy the intersection condition:

For every search class § € S and object class C € C, if sc N C # () for some search
criterion sc € S, then r-grp(S) Nw-grp(C) # 0.

That is, if some o € C satisfies some sc € §, then there is at least one memory server that is in

both the write group of C' and the read group of S. In addition, the write groups must satisfy the
fault tolerance condition:
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Let X be the fault-tolerance parameter. In every run, in every point in the run, if there
are k < A memory servers that have failed, then for all C € C, |w-grp(C)| > A — k.

Lemma 1 In any implementation that correctly tolerates up to A simultaneous memory server
failures, the write groups must satisfy the fault tolerance condition

Proof The proof follows immediately from the observation that when & memory servers fail, at
most A — k additional memory servers can fail at the next point. Hence, when k servers fail, there
is at least one correct (non-failing) server in each write group. o

4.2.3 Possible Implementation of PASO operations

We describe macros that implement the PASO operations on a system of memory servers that can
tolerate up to A simultaneous faults. The algorithms described here are correct for any allocation
of the read and write groups. Their efficiency depends on the ratio of inserting and removing object
to the memory. Every memory server M is assumed to be able to perform four basic operations:
storey; takes an object and stores it in the memory. searchys takes a search criterion sc and
returns an object class identifier C' if there is an C-object in M that satisfies sc and fail otherwise.
If there is more than one C-object then searchys returns the oldest such object. mem-readys is
similar to searchys, only it returns an object satisfying sc instead of a class identifier. removeps
takes a search criterion sc and an object class C. It returns the oldest C-object in M satisfying sc
and removes it from M if such an object exists, and fail otherwise.

Figures 1 and Figure 2 describe the macro expansion for the basic PASO operations. Both read
and read&del macros use an auxliary macro, lookup, described in Figure 1.

% Macro expansion for insert(o) % Macro expansion for lookup(sc)
begin begin
gcast(w-grp(obj-cls(0)), “store(0)”,s) found := false
end while -found
begin

gcast(r-grp(sc), “search(sc)”, a, resp)
7 := {set of non-fail responses}
if r # 0 then found := true
end
{r is all classes containing some o € scr}
return(r)
end

Figure 1: The insert and lookup macro expansions
We can show:
Theorem 1 For any read and write groups that satisfy the intersection and the fault tolerant

conditions, the implementation described here satisfies the PASO semantics and can tolerate up to
A failures.
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% Macro expansion for read(sc)
begin
while true
begin
C := lookup(sc)
foreach C € C
begin
geast(w-grp(C),
“mem-read(sc,C)”, ss,r)
if r # fail then return(r)
{r is some existing o € sc}
end
end
end

% Macro expansion for read&del(sc)
begin
while true
begin
C := lookup(sc)
foreach C € C
begin
geast(w-grp(C),
“remove(sc,C)”,s,r)
if 7 # fail then return(r)
{r is some existing o € sc}
end
end
end

Figure 2: The read and read&del macro expansions

The basic framework of read and write groups is very flexible both in the number of groups
and the assignment of memory servers within them. The organization of the groups can be tailored
for specific kinds of application, so that the types of searches occurring in the application can be
performed efficiently.

Any implementation must provide

1. A description of the read and write classes.

2. An algorithm for assigning processors to read and write groups such the intersection condition
is satisfied and the fault tolerance condition is satisfied.

3. An algorithm to compute the mapping from objects to write groups and the mapping from
search criteria to read groups.

For more details on our prototype system and the issues involved, see [22].

5 Future Work

Future work can be separated into short-term and long-term projects.

5.1 Short-Term Work

o Complete the preliminary system of Section 4 and subject it to careful empirical evaluation.
Of primary interest is the overhead imposed on the system by fault tolerance, and how much
slower it is than a non-fault tolerant system.

o Study various startegies for determining the read and write groups. We expect different
assumptions about the ratio of insert/removal of objects to/from the systems, as well as
restrcited search patterns, to lead to different assignments of the read/write groups. Some of
these strategies may require on-line optimization.
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5.2 Long-Term Work

6

o Generalize the notion of read and write groups. A read group for processor p is the set of

processors that p queries when searching for an object. A write group is the set of processors
to which that p sends copies of a new object it creates. For general correctness of searching,
p requires that its read group intersect all write groups. If two write groups are having little
activity, then it may be beneficial to merge them, thereby reducing the size of everyone’s
read group. This increases fault tolerance. On the other hand, if two groups are experiencing
many creations and deletions of objects, then it may be beneficial to split the write group,
thereby reducing total communication and network contention. This reduces fault tolerance.
Re-allocation of read and write groups is done at run-time as patterns of access change.

Examine schemes for specialized classes of search objects. As discussed in Section 3.1, it is
possible that certain objects may always be searched for using a fixed set of search fields.
In that case, objects can be classified by search key into groups, using a hashing scheme,
for example. Each groups can be treated as a data file, and we may then apply some of
the algorithms for file allocation discussed in Section 3. Fault tolerance can be based upon
replication of groups. This allows finer control.

Evaluate the role of ISIS in the implementation. The capabilities of ISIS provide great
convenience, but if its overhead is substantial it may be desirable to investigate designs that
do not depend on ISIS.

Extension of theoretical models of distributed data to capture our problems. Current theoret-
ical models such as that in [7] are overly simple and abstract. Conversely, practical models as
discussed in [20] are quite complex and system-specific. Our goal is to develop an easy-to-use
model that still captures the essential nature of the problem.

Design an adaptive PASO implementation for loosely-coupled networks of shared-memory
multiprocessors. While previous-generation parallel supercomputers were often made of cus-
tom components, current machines tend to use commodity processors. A simple extrapolation
of current trends suggests that future high performance computing might well center on an
environment in which tightly-coupled multiprocessor nodes, consisting of standard commod-
ity processors and shared local memory, are tied together via a slower local area network.
With the growing availability of multiprocessor file servers and workstations, such networks
of multiprocessors will be commonplace in the near future. In such heterogeneous commu-
nication environment, identical processors may deal with each other via fast shared memory
or slower LANs and WANs. Defining orthogonal read and write sets in such an environment
poses a complex series of choices.

Summary: Efficient, Fault-tolerant PASO Memory

We plan to design an efficient and fault-tolerant PASO memory for distributed local area networks.
The system will use dynamic run-time data replication both to guarantee fault tolerance and to
give improved efficiency during associative search. The primary faults we are concerned with are
processor crashes, either hard or soft, which destroy that portion of the shared memory stored at
the processor. A soft crash for our purposes is the deliberate withdrawal of a processor, as in an
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adaptively parallel system. The system will take as a parameter a certain degree of fault tolerance,
expressed in terms of the number of processors that can be simultaneously unavailable while still
guaranteeing that the memory remains correct.

Our thesis is that through the mechanism of data replication we can not only provide fault
tolerance but efficiency improvements relative to current systems with neither fault tolerance nor
data replication. The PASO model lends itself well to embedding fault tolerance into the basic
structure of the memory system. We need not treat fault-tolerance as an issue independent of how
the database software functions. A synthesis of fault-tolerant systems and efficient competitive
replication algorithms has not been previously attempted, nor has a tunable parameterized degree
of fault tolerance.

We hope our work will also contribute a formalization of what it means to be fault tolerant
in PASO memory, new algorithms for managing replicated data, and new methods for measuring
workload and analyze the effectiveness of such algorithms.

Our project deals with the foundations of parallel and distributed computing. In addition, we
plan to achieve an implementation that can serve both as a test bed for new ideas and as a valuable
software system in its own right.

Acknowledgements: We would like to thank Nick Carriero and Eric Freeman for many discus-
sions and comments.
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