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ABSTRACT

Carrier Arrays: An Extension to APL
Paul Geoffrey Lowney

Yale University, 1983

The idiomaﬁic APL programming style is limited by the constraints of the rectangular
array as a data structure. Non-scalar data is difficult to represent and manipulate, and
the non-scalar APL functions have no uniform extension to higher rank arrays. The
carrier array is an extension to APL that addresses these limitations while preserving the
economical APL style. A carrier array is a ragged array with an associated partition that
allows functions to be applied to subarrays in parallel. The primitive functions are given
base definitions on scalars, vectors, and matrices, and they are uniformly extended to
higher rank arrays by the function application mechanism. The associated partition also
allows the last dimensions of an array to be treated as a single item; the primitive
functions are given extended definitions on arrays of these non-scalar items.

This thesis defines the carrier array and gives the accompanying changes to the
definitions of the APL primitive functions. Examples of programming with carrier arrays
are presented, and the carrier array is compared with other proposed extensions to APL.
Methods for implementing the carrier array extension are discussed, and a prototype

interpreter presented.
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Chapter 1

INTRODUCTION

Carrier arrays are an extension to APL designed to increase the power of the APL
programming style. Carrier arrays extend APL in two directions. They enable more
functions to be applied in parallel to the elements of an array. And they introduce non-
scalar data into the language, permitting a function to be applied to an array of non-

scalar data items.

A carrier array is a ragged array with an associated partition. When a function is
applied to a ragged array, the array is partitioned into a three level carrier array: a
collection of subarrays of non-scalar items. The function is then applied independently to
each subarray. The results are assembled in a new carrier array, and the partitioning is

removed.

The carrier array extension requires two major changes in current APL. The basic
APL data structure is changed from a rectangular, homogeneous array to a ragged,
heterogeneous array. And the function application mechanism is standardized for all

primitive and defined functions, and modified to include carrier partitioning.

1



The carrier array and its effect on the APL language are presented in detail in the

thesis. To begin, we examine APL programming and the APL programming style.

1.1 APL programming style

A strength of APL is that functions can be applied in parallel to the elexhents of an
array. This is most true of the scalar functions. The scalar functions in APL are defined
for pairs of scalars and extended to higher rank arrays componentwise. Plus is a scalar
function, and for two equally shaped arrays A and B, (A+B)[I] is equivalent to

AlN+B[1, for all valid indices I.

To perform A+B, we pair elements in corresponding locations in A and B, and apply
plus to each pair. All the additions are performed independently. Thus we could pair the
elements from A and B in a variety of ways. APL provides a means of doing this by
supplying higher order functions which are called operators. The APL operators are

reduction, scan, outer product, inner product, and axis.

In a strict sense, operators are functions which take a primitive function as an
argument and produce a derived function as a result [21, 28, 29]. However, it is also
fruitful to look at operators as a means of applying a function to the elements of an
array. To evaluate the outer product Ae.+B, we form a full cartesian product of the
elements in the two arrays, and apply plus to each pair. The operator, outer product,
interacts with the array structure of A and B to determine how plus is applied to the

elements in the two arrays.

The interaction of operator and array structure produces a data driven flow of

function application. In the plus reduction +/A, there is no need for explicit control



structure; the reduction operator and the array structure of A completely determine the
pattern of function application. Functions, operators, and data structures combine to
give APL a concise, powerful programming style. We illustrate this style in two examples

below.

Consider the problem of finding the depth of parenthesis nesting of each element in
an arithmetic expression. More concretely, if V is a character vector representing an
 arithmetic expression, we want to determine how many pairs of parenthesis enclose each
element of V. The answer is a vector of length equal to V; each element gives the depth

of nesting of the corresponding element in V.

An APL solution is +\—/Veo.='()'. Figure 1-1 presents a sample evaluation. We first
~ apply equal with outer product (Vo.="'()") to identify the parenthesis in V; the result is a
two column boolean matrix. We then apply minus with reduction (—/) to take the
difference between the two columns, and apply plus with scan (+\) to the resulting vector,
obtaining a running count of the level of nesting in V.
v — {{(+=B)xC)
Vo,="'()! - 10
10
00
00
01
00
00
01
=/Ve.=*()! - 1100-100"1
+\=/Ve.='()! — 12221110
Figure 1-1: Parenthesis nesting.

Note the pattern of function application in the program. We build a large array with

outer product, and repeatedly apply scalar functions to it with the reduction and scan.



There is no explicit control structure; operators guide the application of functions.

As a second example, consider an expression to calculate the third-order determinant
of a matrix. An APL solution is —/+/x/[2](0 1 2,[.5]10 2 1)dM,[.5]1M. Figure

1-2 presents a sample evaluation.

To calculate the determinant, we first combine two copies of the matrix to form a
three dimensional array (M,[.5]M). We then construct a matrix of rotators
(012,[.5]0 2 1) and rotate () the rows of the two matrices. The rotation aligns the
columns of the upper and lower matrices to contain the multiplicands that form the
positive and neg#tive terms in the summation of the determinant. We then reduce each
column with multiplication {x/[2]), producing a vector of positive terms and a vector of
negative terms. We sum both vectors (+/) and take the difference of the two sums (—/)
to obtain the determinant.

Again note the pattern of function application. We build a big array, and then
repeatedly apply functions to subarrays. We rotate planes, reduce columns, sum rows,
and reduce a vector. The array structure is a frame, a “carrier”, for the application of
functions to the data in the array. There is no explicit control structure; the control of
function application is driven by operators and the organization of data.

The interaction of array structure and operators gives APL its distinctive
programming style. The first lesson to be learned from APL programming is that an
appropriate pairing of data structures and operators permit simple, concise solutions to a
variety of problems.

In examining APL programs, we notice that certain combinations of primitives occur

frequently. For example, a lamination and rotation followed by a series of reductions



M ' - 2 0 3
10 1 17
712 74
0~ M,[.5]1M - 2 0 3 2 0 3

10 1 17 10 1 17
712 74 712 4

T1+~012,[.5]1021 - 012

021
T1$T0 - 2 0 3 2 0 3

117 10 17 10 1
4 7 12 12 "4 7

x/[21T10T0 - "8 0 360
408 0 21

+/x/[2]1T1$T0 - 352 429

=/+/x/[21T10T0 - =77

Figure 1-2: Determinant of a matrix.
calculates the determinant of a matrix, but Perlis and Rugaber have noted that the same
combination of functions and operators also occurs in programs to determine whether a
pair of line segments intersect, to determine whether a polygon is convex, and to
determine if a point is inside a convex polygon [83, 84]. This combination of primitives is
an example of an idiom. An tdiom is a combination of primitives that occurs repeatedly
in varying contexts. Idioms are the building blocks of APL programs and an important

component of the APL style.



1.2 The Constraints of Rectangularity

As the examples above illustrate, simple APL solutions can be written for problems
that fit the APL data structure and primitive functions. However, many problems can
not be solved simply in the APL style. Their one-line solutions are complicated,
unintuitive combinations of primitives. These “one-liners” have given APL its reputation
for obscure, hard to read programs.

These problems can also be solved by explicitly iterating over over the elements of an
array. However, compared with FORTRAN or PASCAL, APL does not have a rich set of
control structure primitives, and there is a consensus in the APL community that they
should not be added to the language [74]. Rather the operators, functions, and data
structures of the language should be enhanced so that more problems can be solved
simply in the APL data-driven style.

It is often the constraints of the rectangular array as a data structure which limit the
applicability of the APL programming style. In particular, it is difficult to apply non-

scalar functions and to represent non-scalar data with rectangular arrays.

1.2.1 Applying non-scalar functions.

The non-scalar, or mized, functions are array manipulating functions; they test,
rearrange, and select the elements of an array. They include membership (€), rotate (9),
take (1), and drop (!). The mixed functions cannot be defined independently for pairs of
scalars and extended to higher rank arrays componentwise, for their definitions depend on

the array structure of their arguments.

A serious restriction to APL programming is that the non-scalar functions do not

extend uniformly to higher rank arrays. We demonstrate this with an example. Let V be



a vector and M be a matrix with two rows. 31V takes the first three elements from the
vector V. By analogy to the scalar functions, we might assume 2 3tM takes two elements
from the first row of M, and three elements from the second. Of course, this results in a
ragged matrix, and thus cannot be a valid extension of the function. Rather 2 31 M takes

a two by three matrix from the upper left-hand corner of M.

We have encountered a constraint of rectangularity: The application of any APL
function to an array must result in a rectangular array. An array cannot be decomposed
into a collection of subarrays, a non-scalar function applied independently to each
subarray, and the results assembled in a new array, for the resulting array may not be
rectangular. There is no uniform algorithm for extending non-scalar functions to higher
rank arrays, as there is for the scalar APL functions. Rather, each non-scalar function is

extended to higher rank arrays in an idiosyncratic manner.

The idiosyncratic extension of the non-scalar functions has two unfortunate
consequences. The first is that the non-scalar functions cannot be applied with the
operators, for there is no uniform way of applying non-scalar functions to selected
elements of an array. The second, and more important, is that the non-scalar functions
often halt the parallel flow of function application in an expression. If an expression
contains two non-scalar functions, each of them extends to higher rank arrays in a
different, idiosyncratic manner and their composition probably does not extend to higher

rank arrays at all, or at least not in the manner expected by the programmer.



1.2.2 Representing Ragged Structures

A more obvious constraint of rectangularity is that ragged structures and collections
of non-scalar data cannot be represented easily. Non-scalar objects can be simulated by
embedding data in a rectangular array. For example, we can represent a word list as a
rectangular matrix, one word per row, padding out with blanks to a common length. But
the primitive functions lose their expressive power when applied to these embedded
objects. The functions cannot manipulate the matrix as a vector of words; rather the
functions are applied to a matrix of characters. An APL programmer must always be

conscious of how his data is encoded in the array structure.!

1.3 Nested Arrays

The APL community has been aware of the constraints of rectangular arrays for a
long time. As a solution, they have proposed the nested array as a new APL data
structure [14, 24, 47, 26, 10, 68, 69, 17, 15, 85].2 A nested array is a recursive data
structure where the elements of an array may be arrays themselves. Non-scalar data can
be represented trivially with nested arrays, and new operators are defined to allow the
parallel application of all primitive and defined functions.

Nested arrays in APL encourage their own programming style. Parallel function

application is no longer as natural; with a nested data structure the programmer moves

toward the LISP paradigm of recursive movement down and up the tree. In sample

1Robert Dewar notes that in this regard programming in APL is very similar to programming in assembly
language [20}.

2Gull and Jenkins [26] present an extensive bibliography on nested arrays.



programs [42, 26, 31], the level of nesting of data replaces the dimensions of the array as
a means of structuring data. Nested arrays introduce new idioms into APL, and current

idioms do not generalize naturally to a recursive data structure.

1.4 Carrier Arrays

The carrier array is an extension to APL developed with the APL programming style
in mind. A carrier array is a ragged array with an associated partition; the partition
permits an array to be viewed as a collection of non-scalar items. This addresses the two
weaknesses of APL we outlined above. Non-scalar data can be naturally represented; the
last dimensions of an array can be implicitly enclosed and treated as a single datum. And
non-scalar functions can be applied in parallel; an array can be partitioned into a

collection of subarrays, and the function applied independently to each subarray.

In extending an idiom-rich language such as APL, an important goal is conserving its
idioms. We call this the principle of sdiomatie similitude. The development of the
carrier array has been driven by an attempt to generalize existing APL idioms. For
example, (ViV)=1pV)/V is an idiom to remove duplicates from a vector V. How can APL
be extended to allow ((ViV)=1pV)/V to remove duplicates from many vectors in parallel?
And what extensions would enable the idiom to remove duplicate words from a word list?
The carrier array is an abstraction which permits both generalizations. An examination
of many APL programs has shown carrier arrays preserve APL idioms and the economical

APL style while greatly increasing the power of the language.
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1.5 Outline

In the next chapter, we illustrate the limitations of current APL by attempting to
generalize an idiom. We show how nested arrays address these limitations, and then use
the idiom to motivate the carrier array and the accompanying changes to APL. Chapter
3 describes carrier APL in detail, giving definitions of the data structures, the functions,
and the application forms. In chapter 4 we present several annotated carrier APL
programs, and in chapter 5 we discuss the issues in implementing carrier APL. We close

with a brief conclusion in chapter 6.



Chapter 2

REMOVE DUPLICATES: AN EXPOSITORY EXAMPLE

As an informal introduction to carrier arrays and the problems they address, we
consider the remove duplicates idiom ((ViV)=1p¥)/V in more detail. As mentioned in
Chapter 1, we would like to extend the idiom in two directions: to operate on non-scalar
data and to remove duplicates from many vectors in parallel. In this chapter, we use the
problem of extending the idiom to evaluate extemsions to APL. We first examine the
limitations of éurrent APL which make these extensions difficult. We then see how the
problem is addressed with nested arrays, and analyze the effect of the nested extension on
the APL programming style. We conclude by introducing the carrier array, and

presenting the carrier APL solution.

11
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2.1 Current APL

(VaV)=1pV})/V removes duplicates from a vector. Figure 2-1 presents a sample
evaluation. ViV maps each element of V to the index of its first occurrence in V. tpV’
gives the index of each element of V. Comparing these two values, we can identify the

first occurrence of each element of V and select them all with compression (/).

v — ABACBF
(Vav) — 121426
1pV - ‘ 1234586
(ViV)=1pV —-— 110101
(ViV)=1pWV)/V —— ABCF

Figure 2-1: Sample evaluation of remove duplicates idiom.

2.1.1 Non-scalar Data

The remove duplicates idiom does not extend to a vector of non-scalar data.
Consider removing duplicate entries from a list of words. We first represent the word list
as a rectangular APL array; this is most easily done by padding the shorter words with
blanks, and storing each word as a row of a matrix. {Note this is not an adequate
solution for storing a list of arbitrary text strings, for the padding character must not
occur in the string.) We now adapt the functions in ouf idiom to this new data structure.
We can use the inner product operator to derive the A.= functiom, which tests for
equality between vectors. However we cannot derive a variant of dyadic iota (1) that uses
A.= as its test for equality. Thus we must discard our current idiom and develop a new
combination of primitives to identify the first occurrence of each row of the matrix.

A new solution is given in figure 2-2. Note it has the same design as the original
idiom. 1 19<\MA.=QM creates a mask which identifies the first occurrence of each row
in M, and we use compression {/) to select the first occurrence of each row. But there is

no simple transformation from the first idiom to the new expression. To accommodate a
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simple change to the data structure, the idiom must be completely rewritten.

R+~ (118<\MA.=QM)/[11M

M +—— APL R ~— APL
BASIC BASIC
APL COBOL
COBOL FORTRAN
BASIC
FORTRAN

pM —— 67 PR —— 47

Figure 2-2: Remove duplicates from a word list.

2.1.2 Parallel Application

It is more difficult to rewrite the idiom to remove duplicates from many vectors in
parallel. We represent the vectors as rows of a matrix, padding the shorter vectors
appropriately. To apply the idiom to the matrix, the primitives functions in the idiom
must extend “row-wise”, operating on each row of the matrix independently. However, of
the primitives functions used in the idiom, only the scalar function equal (=) extends to a
matrix row by row, testing equality between the elements of corresponding rows. The
other functions extend to a matrix in various ways. Compression (/) and dyadic iota (1)
apply a vector left argument to each row of a matrix right argument. A matrix left
argument is not permitted. Shape (p) is not a decomposable function; it gives the shape
of the matrix, not of the rows which compose it. Monadic iota (¢) is only defined for

scalars; it does not extend to higher rank arrays.
To extend our idiom to apply to the rows of a matrix, we must rewrite it with a new
collection of primitives. The new solution is given in figure 2-3. Again, the algorithm is

the same. The first line creates a mask which identifies for every row the first occurrence
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of each element in the row. The next three lines use this mask to select the corresponding
elements from M. But even to an experienced APL programmer, it is not obvious we are

removing duplicates from the rows of a matrix.

Note this program can be extended to non-scalar data by using the A.= inner product

in line one, and restructuring the ravel of M on line four.

MO~ 1229<\12130Me.=M
L ~ +/M0

M1 < Lo.>4[/L

R+~ (pMD)p(, MIN(, MO)/ , M

M +~— ABACBF R  ~— ABCF
FFAC FAC
ABBAC ABC

pM —— 386 PR +~— 34

Figure 2-3: Remove duplicates from multiple vectors.

2.1.3 Analysis

The two extensions of the remove-duplicates idiom demonstrate the limitations of the
language mentioned in Chapter 1. It is difficult to represent non-scalar data. Ragged
structures, such as a word list, can be embedded in rectangular arrays, but the primitive
functions then lose their expressive power. And non-scalar functions cannot be applied in
parallel. Each ‘non-scalar function extends to higher rank arrays in a idiosyncratic
manner, and expressions containing non-scalar functions cannot be applied independently

to subarrays collected in a higher rank array.

These problems are largely a consequence of the limitations of a rectangular array as
a data structure. Non-scalar data cannot be directly represented in a rectangular array,
and thus the primitive functions cannot manipulate it easily. Similarly, many non-scalar

functions applied independently to the rows of a matrix would produce non-rectangular



15

results.

A historical note is of interest here. In his first published definition of APL [30],
Iverson allowed a boolean matrix to compress another conformably shaped matrix; each
row of the boolean matrix compressed a corresponding row in the right argument. The
compressed rows could have varying length, for there was no restriction on the boolean
matrix; they could not be stored as rows of a rectangular array. Therefore the result rows
were catenated into one vector. This catenation, however, stops subsequent paraliel
function application, for the row structure which guides the application is lost. This
extended compression was eliminated in later definitions of the language; it is essentially

incompatible with rectangular arrays.

2.2 Nested Arrays

Nested arrays are part of a larger set of extensions to APL which have been proposed
over the past decade. Many variations of the nested arrays system have been proposed,
and three different systems have been implemented [10, 17, 85].> The APL community
has not yet reached a consensus as to the best proposal {4]. We present a modest nested
array extension below, with features common to all three systems,? and briefly summarize
the differences between the nested systems. We then return to the examination of the
remove duplicates idiom. We present extensions ‘to the idiom using nested arrays and

evaluate how the weaknesses of APL we have observed are addressed, and how the APL

3Gull and Jenkins [26] summarize the various proposals. Orth [58] compares the STSC [17] and
LP.Sharp [10] implementations.

4The notation used is from the STSC NARS system [17].
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programming style is affected.

2.2.1 Overview

A nested array is a recursive data structure in which any element in an array can be
an array itself. The nesting can continue to an arbitrary depth. An element in an array
is called an ttem. A simple array contains no nested items; simple hoﬁ:ogeneous arrays

are the arrays of current APL.

Nested arrays require new functions to create the nested structure and a mapping
operator to apply functions to the items of an array. Enclose (<) and disclose (>} are
functions to create and remove layers of nesting. Enclose converts an array into a scalar,
and disclose is the inverse operation which recovers the original array, i.e. DCA ~— A
for all arrays A. The new mapping operator is called called each (). If a function G is
applied with each to an array A, each element of A is in turn selected and disclosed, the
function G applied to the disclosed element, and the result enclosed and stored in a new
array. No order for the selection of elements of A is specified. More formally, if R~G" A,

then R{I] ~= cGDAII] for all valid indices I.

Some existing APL functions are extended to nested arrays. Functions that
manipulate array structure (e.g., catenate (,), reshape (p), transpose (§)) are extended in
a straightforward manner. An equivalence function is introduced to test for equality
between nested arrays, and it is used to extend dyadic iota () and membership (€) to
arrays of nested items. No consensus has been reached on the appropriate extension of

the remaining primitive functions, and we do not discuss them here.

The major difference between the proposals for nested arrays is in their definition of

a nested array. The differences are manifested in the application of enclose to simple
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scalars, that is, the scalars of current APL. The proposals fall into two groups. In
“Axiom System 0" enclose and disclose are permissive, that is, the enclose of a scalar is
equivalent to the scalar, and the disclose of a scalar is equivalent to the scalar. In
“Axiom System 1" enclose is strict but disclose is permissive, that is, the enclose of a
scalar is a nested item not equivalent to the original scalar, but the disclose of a scalar is
equivalent to the original scalar. The application of enclose to arrays other than simple

scalars is identical in both systems.

The apparently minor distinction between the two definitions has ramifications
throughout the nested array extension. For example, a permissive enclose introduces
heterogeneous arrays into APL if we allow the catenation of enclosed arrays [26]. Because
of the “telescoping scalar” effect, (C1),C'A' is equivalent to 1,'A' with permissive
enclose; with strict enclose, the values of the two expressions are distinct. Moreover, the
mapping operator each is defined in terms of enclose and disclose, and the distinction

between the definitions affects derived functions produced with the operator. If ID is an

identity function such as (pA)p,A, then the derived function ID” is also an identity
function with permissive enclose, but it is not an identity for a system using strict enclose,
for with strict enclose ID” maps simple items to nested items.

From the point of view of carrier arrays, the distinctions between the various
proposals are not important. Both introduce a recursive data structure into APL, along
with functions to manipulate the structure. Both have an equally profound effect on the
APL programming style.

A common feature of the nested array proposals is that they are supersets of current

5The classification is due to Gull and Jenkins [26].
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APL. No current APL programs are effected by the changes. Thus the remove duplicate
idiom is unchanged; (ViV)=1pV)/V removes duplicates from a simple vector in the nested

array system.

2.2.2 Non-scalar Data

To remove duplicates from a word list with nested arrays, we first create a vector V
of enclosed character vectors. Each element of V represents a word in the word list. The
definition of dyadic iota is extended to enclosed arrays with a recursive equivalence
function: Two nested items are equivalent if their discloses have equal shape and
equivalent items in corresponding locations; simple items are compared with scalar
equality. The other primitives in the idiom are indifferent to the type of the elements of
V. Thus using nested arrays, the idiom extends to non-scalar data with no changes.

Figure 2-4 presents a sample evaluation.

| —— (APL) (BASIC) (APL) (COBOL) (BASIC) (FORTRAN)
Vav) — 121426
1pV —— 123458
(ViVi=1pV — 110101

{(ViVi=epW)/V - (APL) (BASIC) (COBOL) (FORTRAN)

Figure 2-4: Removing duplicates from a word list with nested arrays.

2.2.3 Parallel Application

To remove duplicates from several vectors in parallel, we enclose each vector and
assemble them in a new vector V. We then apply every function in the idiom to the items
of V with the mapping operator each (”). Figure 2-5 presents the solution and a sample
evaluation.

Note this solution will also remove duplicates from multiple word lists in parallel. V'

must be constructed with two levels of nesting: each item is a vector of enclosed
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v - (ABACBRP) (FFAC) (ABBAC)
2% - (121426) (1134) (12215)
PV — 8) (4) (5)

1pV - (123456) (1234 (12345
WV"V="1"p"V — (110101) 1011) 11001)
(V"V="t"p" V'V - (ABCH (FAC) (ABC)

Figure 2-5: Remove duplicates from maultiple vectors with nested arrays.
character vectors. The mapping operator each applies each function to the items of V'

independently, removing duplicates as before.

2.2.4 Analysis

Nested arrays address the limitations of APL outlined in Chapter 1. Ragged
structures are represented as arrays of nested items, and primitive functions are defined to
manipulate nested arrays. The mapping operator each provides a mechanism for paralle]

function application.

In the extensions above, the nested array serves two purposes. In the extemsion to
non-scalar data, it is a data structure for representing a collection of character strings. In
the extension to parallel application, it is a frame for the application of functions with a
mapping operator. Note it is not used to create a recursive structure; the deepest nesting
is the three level structure used to represent multiple word lists in the combination of the -

two extensions.

A three level structure is a natural one for parallel function application. The lowest
level holds the data, the words. The middle level contains the structures being
manipulated, the word lists. The top level provides the structure to permit parallel
application; it is an array of word lists. A more deeply nested structure should rarely be

needed to apply functions in parallel.

Moreover, a recursive nested structure may draw unnecessary attention to levels of
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nesting which are not logically required by the problem. Consider removing duplicates
from several collections of vectors in parallel. We represent the collections with an array
of doubly nested items; each item is a vector of enclosed vectors. To apply the remove
duplicates idiom to this representation, each function in the idiom must be applied with
the mapping operator twice. The first each operator selects each item of the array in
turn; the second maps the function along the vectors in the item as before. Figure

2-6 presents the solution.

R=(Ve™V=""4"p" W™V

V «~— ((ABACBPF) (FFAC) (ABBAC)) (DDACFF) (APLA))

R ~— ((ABCF) (FAC) (ABC)) ((DACF) (APL))

Figure 2-8: Remove duplicates from multiple collections of vectors with nested arrays.

In this example, there are only two layers of nesting, but more complicated examples
require more. Whenever we have a ragged structure, we introduce a layer of nesting to
represent it. Whenever we need to apply a non-scalar function to a set of arguments, we
introduce a layer of nesting as a frame for the each operator. Theée two usages can
interact to produce arbitrarily deep nesting structures. To apply a function to the leaves

of the structure requires a corresponding number of mapping operators.

Notice in our example that when the each operator is used it is applied to every
function in the idiom. A question arises as to why the operator cannot be incorporated
into the function application mechanism, as it is for the scalar functions in current APL.
With a nested structure it clearly cannot, for the each operator serves two purposes. It
applies functions to frames of arguments, but it also picks through nested layers to
determine the level of function application. With a nested structure, a mapping operator

is required. But with a more conservative extension to the APL data structure, perhaps
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the each operator could be implicitly incorporated into the application of the primitives.

2.3 Carrier Arrays

The carrier array is an extension to APL which permits non-scalar funciions to be
applied in parallel to selected elements of an array without the introduction of a mapping
operator. A carrier array is a ragged array with an associated partition; the partition
permits the parallel application of functions and the representation of non-scalar data. A
preliminary definition is given in [39]. In this section we present the carrier concept,
which allows functions to be applied in parallel, and the notion of datum rank, which
allows functions to be applied to arrays of non-scalar data. To illustrate these ideas, we
examine how the remove duplicates idiom can be extended with carrier arrays. In chapter
3 we present the carrier array and the accompanying changes to the APL language in

more detail.

2.3.1 The Carrier Concept

Carrier arrays are modeled on the relationship between scalar functions and arrays of
scalars in current APL. The APL scalar functions are defined on scalars and extended to
higher rank arrays componentwise. This extension is natural, for the elements of an APL
array coincide with the domain and range of the scalar functions. In carrier APL we
extend this identity to non-scalar functions by viewing an array as a “carrier” of
argumengs to a function, an array of subarrays.

In current APL, a number of non-scalar functions are defined for arrays of fixed rank,

and are extended uniformly to higher rank arrays. Iverson groups these functions with

the scalar functions and labels them uniform functions [27, 28, 29, 10]. For example,
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reversal () is defined to reverse vectors, and is extended to reverse the rows of a higher
rank array. Consider the application of reversal to a rank 3 array A, ie, dA. In
Iverson's terminology, the first two dimensions of A are a two-dimensional frame holding
one-dimensional cells. When the function is applied, the cells are independently reversed
and assembled in the corresponding locations of a new frame of the same shape. The
rank and shape of the argument(s) to a uniform function determine the rank and shape of
the result. Thus we know the results of the application of a uniform function to a

collection of cells can be assembled in a rectangular array.

However, we cannot apply non-uniform functions such as compression in a similar
manner. Compression has a natural definition for pairs of vectors; a boolean left vector
identifies elements to select from an equal length right vector. Consider extending
compression to two equally shaped matrices. Each row of the boolean left argument is
paired with the corresponding row of the right argument, and compressior is applied to
each pair. The results of each compression may be of varying length; they cannot be
stored as the rows of a rectangular matrix. Iverson originally proposed that they be
catenated into a single vector [30], but this destroys the rank structure which guides the
fuﬁction application. Rather, the left argument of compression is restricted to a vector.
It is paired with each row in the right argument when compression is applied and the
results can be assembled in a rectangular array.

In carrier APL, we permit the application of compression to two arrays of the same
shape. The basic APL data structure is changed to be a ragged array. To evaluate the
compression of two matrices, corresponding rows are paired and compression applied; the
results are assembled as the rows of a ragged matrix. Figure 2-7 presents a sample

evaluation.
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R+~ B/M

B ~— 1011 M +~— ABCD R +~— ACD
0110 EFGH EF
1000 IJKL I

Figure 2-7: Compression applied to two matrices.

By changing the data structure to a ragged array, we can apply in parallel all
functions that are rank uniform. A fanction is rank uniform if the rank of the result is
determined by the rank of the argument(s); note there are no constraints on the shapes of
the argument(s) and result. By uniformly mapping rank, we ensure that if the arguments
of a function can be represented as subarrays of a ragged array, then the results can also
be assembled as subarrays in a new ragged array. If both rank and shape were permitted
to vary, the results of the application could only be assembled in a tree-like data structure

such as a nested array.

We redefine the APL primitives as a mapping from a set of arrays with a
characteristic rank (two sets for dyadic functions) to another set of fixed rank arrays.
This mapping is called the base definition of the function. For example scalar plus (+) is
defined to map two scalars to their sum, another scalar. Grade up (4), the sorting
function, maps a vector of data to a vector of indices. Catenate (,) joins two vectors into
a longer vector. Laminate () joins two scalars into a vector.® With a few exceptions, all
the primitive functions can be defined as mappings of scalars, vectors, or matrices to

scalars, vectors, or matrices.

The definition of each function can be characterized by a rank vector. For a dyadic

function, the vector has three components: the rank of the left argument, the rank of the

8Laminate has a distinct token () in carrier APL.
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right argument, and the rank of the result. For monadic functions only two components

are necessary. We call this vector the base rank of the function. Figure 2-8 presents the

base ranks of several primitive functions.”
arg result
compress (/) 11 1
plus (+) 00 O
grade up (4) 1 1
catenate (,) 11 1
laminate (;) 00 1

Figure 2-8: Base ranks of some primitive functions.

When a monadic function is applied to an array, the array is partitioned into a
frame, or carrier, of base arguments, and the function is applied independently to each
base argument. For a dyadic function, both arrays are partitioned, base arguments in
corresponding locations are paired, and the function applied to each pair. In both cases
the base results are assembled in a new carrier array, and the partiticning is removed
from all carriers. The programmer need not indicate a partition; it is determined by the
base rank of the primitive functions. The each operator of the nested array system is

effectively incorporated into the function application mechanism.

The carrier array extension does change the meaning of some APL programs which
use higher rank arrays. However, on the domain of the base definitions, the primitives of
carrier APL and current APL are essentially equivalent. Thus, most programs which
operate on vectors are unchanged, and in particular (ViV)=1pV)/V removes duplicates

from a vector.

"Iverson has similarly characterized the functions of current APL with rank vectors [27). Note he assigns a
different order to the components.
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2.3.2 Parallel Application
With carrier arrays, the remove duplicates idiom extends to a collection of vectors
with no changes. We represent the vectors as rows of a ragged matrix; no padding is

necessary. Figure 2-9 presents the base ranks of the functions in the idiom.

arg result
dyadic iota (1) 11 1
shape (p) 1 0
monadic iota (t) 0 1
equal (=) 00 O
compress (/) 11 1

Figure 2-9: Base ranks of functions in remove duplicates idiom.

The functions are equivalent to their counterparts in current APL on the domain of
the base definitions. However, there are differences when the functions are applied to
higher rank arrays. Dyadic iota (1) is defined for vectors. When applied to a pair of rank
N arrays, both arrays are partitioned into collections of vectors, corresponding vectors are
paired, and dyadic iota applied to each pair. It produces vectors, which are assembled in
a rank N result. Shape (p) is defined to give the length of a vector. Applied to a rank N
array, it will return a rank N-1 array of lengths. Monadic iota (1) maps scalars to
vectors. Applied to a rank N array, it produces an array of rank N+1. Equal (=) is a
scalar function. It compares corresponding elements in its array arguments. And
compression (/) is defined for pairs of vectors, giving a vector result. Figure 2-10 presents

a sample evaluation of the idiom.

The idiom also extends to higher rank collections of vectors. A hierarchy of
classifications is represented by adding dimensions to the ragged array. The extension to

higher rank arrays is completely data driven; no changes in the program text are required.
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|4 —— ABACBF
FFAC
ABBAC

Wy - 1214286
1134
12215

% — 645

1pV - 1234586
1234
12345

(ViVi=1pV S 110101
1011
11001

(ViV)=1pV)/V - ABCF

FAC
ABC

Figure 2-10: Removing duplicates from multiple vectors with carrier arrays.

2.3.3 Datum Rank

How can we represent non-scalar data without introducing a new data type such as a
string, a tree, or a nested array? Ragged arrays allow non-rectangular structures to be
represented, but the primitive functions manipulate the structures piecemeal. What we
need is a mechanism for indicating which of the last axes of an array represent cne
structure, and should be treated as a unit. Enclose serves this purpose in the nested array
system. In carrier APL, when a function is applied, a datum rank is specified. The
datum rank indicates the rank of the data structures represented in the array. If we
apply function F with datum rank K to a rank N array X (i.e., F{K}X), the last K
dimensions of X are implicitly enclosed, and F is applied as defined above tc a rank N—K

array of rank K data items.

The base definitions of most APL functions have natural generalizations to arrays of
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non-scalar items. The structure functions {e.g., shape (p), catenate (,), reverse (9)) are
indifferent to the type of the data they manipulate and can be extended in a
straightforward manner. Scalar equality and its related functions have obvious
extensions. Two non-scalar items are equal if the implicitly enclosed arrays have the
same shape and equal elements in corresponding locations. The corresponding elements
are simple, for the implicit enclosures of carrier APL cannot be nested. Detailed

definitions of the primitive functions are given in chapter 3 (see section 3.3).

Each primitive function can be applied with a variety of datum ranks. For example,
we can apply equal (=) to two matrices M1 and M2 in three different ways. Figure
2-11 presents the alternatives. We can compare the two arrays as matrices of simple
items, applying equal with datum rank zero and comparing corresponding scalars. Or we
can compare them as vectors of vectors, using datum rank one. When the function is
applied, the matrices are partitioned into collections of vectors, corresponding vectors are
paired, and the function applied to each pair. Or we can compare them as scalars
containing matrices, using datum rank two. When the function is applied, each matrix is

enclosed and the two scalars compared.

Ml +~- COBOL M2 ~— ALGOL
COBOL COBOL
M1={0} M2 - 00011
11111
Mi={1} M2 - 01
M1={2} M2 - 0

Figure 2-11: Equal applied with three different datum ranks.

Not all datum ranks are permissible for every function. For example, for many
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selection functions such as take (1) or compression (/), only the right argument to the
function can contain non-scalar items; the left argument is a numeric or boolean guide to
the selection of the data. When these functions are applied, the datum rank specified in
the application form refers only to the right argument. Other functions such as monadic
iota or encode are defined only for arrays of simple items, and an application with a non-

zero datum rank is an an error.

We characterize the extended definition of a primitive function by noting the
permissible ranks of the items in the arguments and the result. These ranks are
assembled in a datum rank vector for the function. For a dyadic function, the vector has
three components: the permissible ranks of .items in the left and right argument, and the
corresponding rank of the items in the result. For monadic functions only two
components are necessary. For example, equal (=) compares two rank N items.and
returns a rank O result; its datum rank vector is N N 0, where N can be any non-negative
integer. Figure 2-12 presents the datum rank vectors for several primitive functions.
Note all primitive functions map datum rank uniformly, that is, the rank of the items in

the argument(s) determine the rank of the items in the result.

arg result
gradeup (4) N o
catenate (,) NN N
take (1) 0N N
encode (T) 00 0

Figure 2-12: Datum rank vectors of some primitive functions.
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2.3.4 Non-scalar Data
We can extend the remove-duplicates idiom to word lists by adding the appropriate
datum rank to the code. Figure 2-13 presents the datum rank vectors for the functions in

the idiom, and figure 2-14 presents the solution and a sample evaluation.

arg  result
dyadic iota (1) NN 0
shape (p) N o
monadic iota (1) 0 0
equal (=) NN O
compress (/) 0N N

Figure 2-13: Datum rank vectors of functions in remove duplicates idiom.

We represent the word list as a ragged character matrix V, one word per row; there is
no need for padding. In the idiom, we interpret V as a vector of words. Thus we apply
functions dyadic iota (1) and shape (p) to V with datum rank one. Dyadic iota maps a
vector of non-scalar items to a vector of simple indices. Similarly, shape maps a vector to
its length. Thus monadic iota (1) and equal (=) are applied to arrays of scalars, and we
use datum rank zero. We do not need to specify it, for zero is the default datum rank.
The left argument to compression (/) is a boolean vector; the right argument is V. We
apply compression with datum rank ome. Ounly the right argument is partitioned,
compression is applied, and we get our result.

Datum rank gives us a mechanism in carrier APL for manipulating a subarray as a
single data object. With this mechanism, APL idioms can be transformed in a routine

way to apply to arrays of non-scalar data.
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1% —— ' APL
BASIC
APL
COBOL
BASIC
FORTRAN

12{1}V) —— 1214286

p{1}V - 6

1p{1}V - 123458

Vi{1}V)=1p{1}V - 110101

(Vi{13V=1p{1}V/ {1}V — APL
BASIC

COBOL
FORTRAN

Figure 2-14: Removing duplicates from a word list with carrier arrays.

2.3.5 Analysis

Carrier arrays directly addresses the weaknesses of APL we outlined in chapter 1.
Ragged structures can be naturally represented in ragged arrays, and the datum rank
provides a mechanism for manipulating collections of non-scal#.r data objects. Both scalar
and non-scalar functions can be applied in parallel. APL expressions can be developed for
scalars, vectors, matrices or other fixed rank arrays and they extend uniformly to

collections of these arrays. The power of the APL programming style is increased.

A carrier array is a ragged array with an associated three level partitioning. When
we apply a function F to an array X with datum rank K (i.e., F{K}X), the array is
partitioned into three levels. The lowest is the datum level; the last K dimensions of the
array are enclosed as determined by the datum rank. The middle level is the base level;
the arguments to the base definition of F. And top level is the carrier level, the collection

of base arguments.

Note ((Vi{1}V)=1p{1}V}/{1}V will remove duplicates from a multiple word lists if each
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list is represented as a plane in a three-dimensional array. Each primitive function is
applied using its base definition, and the array V is partitioned into a three-level

structure: a collection of lists of words.

We consider the evaluation of Vi{1}V in more detail, for it presents clearly all three
levels of carrier partitioning. In the evaluation, we first form the datum level. Dyadic
iota is applied with datum rank one, so we enclose the last dimension of the left and right
arguments; each instance of V becomes a matrix of words. We next create the base and
carrier levels. Dyadic iota is defined for a pair of vectors. We again partition the left and
right arguments; each matrix of words becomes a collection of vectors of words. We can
now see the three levels at once. The datum level contains the atomic data objects being
manipulated, the words in the word list. The Base level contains the arguments to the
base definition of dyadic iota, the lists of words. And the carrier level is the collection of
‘base arguments, the collection of word lists. To complete the evaluation, we pair
‘corresponding vectors in the partitioned left and right arguments, and apply dyadic iota
to each pair. The results are assembled in a new carrier, and partitioning is removed

from all arrays. Figure 2-15 presents a sample evaluation.

v - APL
BASIC
APL
COBOL
BASIC
FORTRAN

FORTRAN
FORTRAN
APL
COBOL

{1}V - 1214286
1134

Figure 2-15: A three level carrier evaluation with dyadic iota.



32

A partitioned carrier array is a dynamic structure. When a function is applied, the
array is partitioned. After the evaluation, the partition is removed. A partitioned, three-
level carrier array exists only during function application; the base data structure is a
heterogeneous ragged array. This is analogous to the execution of machine code. No
type is associated with a machine word; it is imposed on the word when it is fetched and
an operation performed, and the type is forgotten when the word is stored. Dynamic
partitioning gives carrier APL the ability to vary the application axis, as the axis operator
does in current APL, for the same array in carrier APL can have many different

partitionings.



Chapter 3

CARRIER APL

In this chapter we examine the components of the carrier array system in more detail.
We define carrier arrays and their associated three level partition. We define how
functions can be applied to a carrier of base arguments. We give the base definitions of
the primitive functions. And we describe how defined functions are defined and

evaluated.

3.1 Carrier Arrays

A carrier array is a ragged array with an associated partition. The partition is
dynamic; it exists only during function application. The basic data structure is a
heterogeneous ragged array. To define carrier arrays, we first characterize ragged arrays,

and then specify how they are partitioned during function application.

33
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3.1.1 Ragged Arrays

How do we characterize a ragged array? Knputh has noted that an array can be
viewed as a special kind of ordered tree [36]; we expand this notion in defining a ragged
array. We define a uni form-depth tree to be a ordered tree where all paths from root to
leaf have the same length; we call this length the depth, or rank, of the tree. A level in
the tree is the set of nodes at a fixed path length from the root; nodes at the 7th level all
have a path of length I from the root. A complete tree is a tree with uniform branching
at each level, that is, on each level, every node on the level has the same number of
branches. A rectangular array is a complete, uniform-depth tree. We define a ragged

array to be a uniform-depth tree.

Each level in the tree corresponds to a dimension in the array. The root is the
“zeroth” dimension, which we usually recognize only in scalars, and the correspondence
proceeds top-down. The first dimension in the array corresponds to the first level in the
tree, the second dimension to the second level, and so forth. Data is stored in the leaves
of the tree. The data items stored are either characters or numbers, the primitive data
elements of current APL. An array has an associated type determined by the type of data
in the array. A type is either character or numeric. The type of a heterogeneous array is

determined by the data in the first leaf of the tree.

For example, a ragged matrix is a uniform-depth tree of rank two. All the paths
from root to leaf are of length two; the leaves contain the data items in the matrix.
Figure 3-1 graphically illustrates our definition of a ragged matrix. Note this definition of
a ragged array is independent of how it is represented in machine memory; we describe

possible representations in chapter 5 (see section 5.1).

We permit empty sub-arrays by associating a rank with a leaf node in the tree, and
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ABC --root--

D / | \

EF node node node
/ 1\ | / \

AB C D E F

Figure 3-1: A ragged array and the corresponding tree.
including this rank in determining the length of the path from root to leaf. Leaves which
contain a data item have an associated zero rank, but other leaves may have a non-zero
rank. To preserve uniform-depth, leaves with a non-zero rank have a correspondingly
shorter path from root to leaf. Empty subarrays also have a character or numeric type

associated with them; the type is determined when the array is created.

Empty subarrays are important in carrier APL. Carrier partitioning is not preserved
between the evaluation of the various function appliéations in an expression. If some of
the base results of a function application are empty, this information must be preserved in
the unpartitioned ragged array, so that the next function in the expression may process
the empty result. For example, consider 2 0 31 M, where M is a matrix of three rows.
Take (1) pairs a scalar with a vector to produce a vector. When we evaluate 2 0 31M, the
base results are three.vectors, of length twé, zero, and three respectively. These results
are assembled in a new carrier. When partitioning is removed, we have a ragged matrix
with an empty row.

Rosenburg and Standish both define a ragged array as a mapping from a set of
indices to a set of data [87, 70]. This definition is not satisfactory for carrier APL, for it
cannot distinguish between empty subarrays and the ragged edges of the array. Rather
v;re define inde‘xing in terms of the definition of a ragged array as a tree. An tndez of a
rank K ragged array is a K-tuple of integers which pick a path from root to leaf. The

first element in the K-tuple selects a branch from the root to the first level in the tree;
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the second element selects a branch from the first level, and so forth. The indexed

element is the selected leaf. If a non-existent branch is selected, the index is invalid.

3.1.2 Partitioning

A carrier array is produced when a ragged array is partitioned during function
application. The partition consists of three levels. Each level consists of a number of
contiguous dimensions in an array; the number is the rank of the level. The lowest level
is the datum level; it contains the atomic data objects manipulated by the function. The
middle level is the base level; it contains the base arguments of the function being applied.
The top level is the carrier level; it is a frame carrying the base arguments of the

function.

Partitioning can only be described within the context of a function application.
Consider a monadic function F applied with datum rank K to a rank N array A, i.e.
F{K}A. Let F have base rank I J, and let K be a permissible datum rank for F. When F
is applied, A is partitioned into a three-level carrier array. The datum level has rank K;
when F is applied, the last K dimensions of A are implicitly enclosed. The base level has
rank I, which is the rank of the base arguments to F. The carrier level has rank
N—(I+K), the difference between the>rank of the array A and the rank of the base and
datum levels. This difference cannot be negative. If the rank of A is less than [+K, A is
temporarily coerced to have rank [+K, by adding the necessary number of singleton
dimensions; A is then partitioned again. The partitioned carrier array produced from A is
is called an M-carrser for F with datum rank K, where M «~—~ N—(I+K). If the rank of

carrier level is zero we have a scalar carrser.

For example, reversal is applied with datum rank 2 to a rank 6 array A (i.e., ${2}4),



37

where A has rectangular shape 2 3 4 5 8 7. A is partitioned into a 3-carrier of base
arguments; the carrier level has rank 3 and rectangular shape 2 3 4. Each base argument
is a vector of matrices; the base level vectors have length 5, and the datum level matrices
have rectangular shape 8 7. To complete the evaluation, each base level vector is
“reversed, and the results are assembled in a new 3-carrier. The partitioning is then
removed from both A and the new array; the net result is equivalent to the reversal of A

on the fourth dimension in current APL (i.e., ¢ [4]1A4).

3.2 Application Forms

The concept of an array as a cuﬁer of function arguments permits a great freedom in
the pairing of functions with arguments. In discussing carrier APL in previous chapters,
we have assumed functions were applied “componentwise”: a monadic function is applied
independently to each base argument in a carrier array; a dyadic function is applied
independently to base arguments in corresponding locations of two carriers. We call this
componentwise application scalar product. For monadic functions, scalar product is
perhaps the only reasonable application form. For dyadic functions, however, other
possibilities exist. Current APL offers a rich set of operators to apply scalar functions to
arrays. Along with the default application form of scalar product, scalar functions can be
applied using inner and outer product, reduction, and scan. In this section we examine

how these application forms can be extended to carrier APL.
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3.2.1 General Considerations

An application form is a syntactic construct which specifies how a function is to be
applied to an array (or a pair of arrays). It contains a function, an optional operator, and
an optional datum rank. The datum rank is an expression that must evaluate to a non-
negative integer; it is usually a constant. If no operator is mentioned, a scalar product is

applied; if no datum rank is specified, zero is assumed.

Application forms specify how a function is applied to a collection of base arguments;
they partition an array and then select and pair arguments from the carrier level. They
do not affect the evaluation of a function. Function evaluation, including all
conformability checks and exception handling, is determined independently for each pair
of base arguments by the base definition of the function. Application forms apply
functions to arguments, and assemble the results.

The base results of each function application are assembled in a new carrier. We can
calculate the rank and the partitions of the result carrier before applying the function, for
every primitive function maps base rank and datum rank uniformly. However, we cannot
know the shape of the result carrier before evaluation, for the primitive functions do not
map shape uniformly.

Every application form partitions its array arguments into carriers in the same
manner (see section 3.1.2). They differ in how they pair the base arguments of the
carriers. In the remainder of the section, we describe the pairings of the various

application forms.
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3.2.2 Scalar Produet: A F(K} B

Scalar product is the componentwise application of a function to the base arguments
in a carrier array(s). There is no defined ordering of the applications; it is as if they all
are evaluated in parallel. The scalar product of a monadic function is straightforward.
The array is partitioned; the function applied to each base argument; the results collected
in a new carrier; and the partitioning removed. The definition for a dyadic function is
similar. Both arrays are partitioned; the carriers checked for conformability;
corresponding base arguments paired; the function applied to each pair; the results

collected in a new carrier; and the partitioning removed.

Two carriers are conformable for the scalar product of a dyadic function if their
carrier levels have equal rank and equivalent shapes. We compare shapes of the carrier
level of two M-carriers by comparing the branching at corresponding nodes in their tree
definition, working from the root down to the Mth level. If no differences are found, the
shapes are equivalent. If one of the carriers is a scalar carrier, we have a scalar extension,

which we define below. Otherwise, if the carriers are not conformable, we have an error.

An example of a dyadic scalar product is presented in figure 2-15 of chapter 2. The

form is V2{1}V: dyadic iota is applied with datum rank 1 to two copies of a rank 3 array.

3.2.2.1 Scalar Extension: A F{K} B

A useful addition to the concept of componentwise application is scalar extension.
Consider a dyadic function F applied to two arrays A and B ; the form is A F{K} B.
Assume A is partitioned into a J-carrier, and B into a O-carrier. The one base argument
in B is paired with each of the base arguments in A, and the function is applied

independently to each pair; it is as if the O-carrier is extended to conform with the
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J-carrier. A similar extension is performed if the left argument is the scalar carrier.

For example, suppose we want to cross reference a list of variable names with the
text of a defined function, reporting the variables referenced by each function line.
Assume the variable names are all one character (as they too frequently are in APL
programs). We can represent the variables in a vector V, and the function in a matrix F,
one line per row. (We do not include the function header in F.) We now want to apply
the membership function between V and each row of F. Using scalar extension, we
specify VEF. Membership is defined for pairs of vectors. F is partitioned into a 1-carrier;
V becomes a O-carrier that can be applied with scalar extension. The vector base
argument in V is paired with every base argument in F, and membership is applied to
each pair. Each row of the result is a boolean mask indicating which variables are
present in the corresponding row of the function, i.e., (VEF)[I;] «~— VEF[I;]. Figure
3-2 presents a sample evaluation.

|4 - KASNIR

F - S—4,A

I~ 144/Se ,>+\N «~ pA

R+~ ,"1&4N

K - R(S10ALN,'I"
VeF - 011000

011110

000101
111011

Figure 3-2: An example of scalar extension.

What if V'is a scalar in the above example, e.g. V ~— 'A'? Membership requires a
vector left argument. A first partitioning of V results in a carrier level of negative rank; V'
is then implicitly promoted to a vector. It can then be partitioned into a O-carrier, and

the evaluation proceeds as described above. After the evaluation of the scalar product,
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the coercion is removed, and V remains a scalar.

3.2.3 Outer Product: A°.F{K}B

When a function is applied as an outer product to two ragged arrays, a full cartesian
product of the base arguments in the two carriers is formed, and the function is applied
independently to each pair. There is no defined ordering of the applications; it is as if

they are all evaluated in parallel.

Consider the outer product form Ae.F{K}B, where F'is being applied as an outer
product with datum rank K to the two arrays A and B. Assume A is partitioned into an
IL-carrier, and B a J-carrier. We form a cartesian product of the base arguments from the
two carriers in two steps. First we pair each base argument a from the Lcarrier A with
the entire J-carrier B. Then for each (a,B) pair, a is paired with every base argument b in
the J-carrier B. The result is an I+J-carrier of (a,b) base arg.ument’pairs. F is then
applied to each pair, the results assembled in a new I+J-carrier, and the partitioning
removed from all arrays. Figure 3-3 presents the partitioning and evaluation of a sample

outer product.

For a more interesting example, we extend the cross-reference problem discussed
above. Recall we represented a function as a character matrix F, and the variables names
used in the function as a character vector V. We reported the variables referenced by
each line of the function. Suppose we now want to cross reference the formal parameters
separately from the other variables used in the function. V becomes a matrix; the formals
in the first row, the other variables in the second. F is unchanged. We want to compare
each row of V with every row of F. We apply membership with outer product; the form

is Vo.€F. Membership is defined for pairs of vectors. Both V and F are partitioned into
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A - 10 20 30 B - 123
40 50
60 70 80

First pairing: (¢, B)

(10,1 2 3) (20,12 3) (30,1 2 3)

(40,12 3) (50,12 3)

(60,1 2 3) (70,1 2 3) (80,1 2 3)
Second pairing: (a,b)

(10,1) (10,2) (10,3)

(20,1) (20,2) (20,3)

(30,1) (30,2) (30,3)

(40,1) (40,2) (40,3)
(50,1) (50,2) (50,3)

(60,1) (60,2) (60,3)

(70,1) (70,2) (70,3)

(80,1) (80,2) (80,3)
Evaluation: A¢.+B

11 12 13

21 22 23

31 32 33

41 42 43
51 52 53

61 62 63

717273
81 82 83

Figure 3-3: Base argument pairing and evaluation of Ae.+B
1-carriers of vector base arguments. Each base argument in the 1-carrier for V is paired
with every base argument in the l-carrier for F, and membership applied to each pair.
The result is a 2-carrier cqntaining vector base results; when partitioning is removed, it is

a rank 3 ragged array. Figure 3-4 presents the example.
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vV - KA
SNIR

F — S—4,A

I~ 1++/Se.>+\N <~ pA

R+~ ,"1#t+tN

K — R[S10ALD,'
Vo.€F - 01

01

00

11

1000

1110

0101
1011

Figure 3-4: An example of outer product.

3.2.3.1 Outer Product and Transpose: A°.D FK}B

The combination of outer product and transpose is very powerful, and it occurs
frequently in APL programming. For example, to add a vector V to each column of a
matrix M, we write 1 1 20Vo.+M. Unfoﬁunately, in most APL implementations this is a
wasteful computation, for the entire outer product is calculated before the transpose is
performed. Abrams has noted that the transpose can be regarded as a further
specification of the pairing of arguments requested by the outer product, and the
superfluous pairs can be discarded before the function is applied {1]. However, in the
presence of side-effects (such as a divide-by-zero error), this merging of transpose and
outer product is not equivalent to a sequential interpretation of the two functions.
Because of its effect on the semantics of the language, the desirability of this optimization

has been debated in the APL community for years [1, 2, 73, 75].

In carrier APL we allow the programmer to determine how a transpose, outer product

combination should be evaluated. If the transpose is to be a guide in the pairing of
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arguments to the outer product, the transpose vector can be included in the outer product
form; for example, we write Vo.1 1 2+M. If a full evaluation of the outer product

followed by the transposition is desired, we write 1 1 20Vo + M.

We extend the definition of outer product to include a transpose vector. A full outer
product form is A°.D F{K}B, where F is being applied as an outer product with datum
rank K and transpose vector D to the two arrays A and B. D maust be a constant. We
form a fulll cartesian product of base arguments as before, but the transpose vector D is
used to restrict the pairing. It is as if the array of pairs is transposed by D. The function
Fis then applied to this restricted set of pairs.

We now define the permissible transpose vectors in an outer product form, and
explain in more detail how it restricts the pairing of base arguments. Assume A is
partifioned into an I-carrier, and B a J-carrier. First, D must be a valid transpose vector
for the I+J-carrier of base argument pairs. Thus it must satisfy the following three

conditions:

1. (pD)=I+J. The length of D must equal the rank of the carrier level of the
array of pairs.

2. A/DetI+J. D must contain only valid dimensions of the carrier level.

3. A/uD)eD. D must be dense.

However D is only a means of restricting the full cartesian product of base arguments;
it is not a substitute for the general dyadic transpose primitive. Thus we further restrict
D so that the first I elements and the last J elements both form ascending sequences, and
each sequence contains no duplicates. These are restrictions Abrams imposes on a
transpose vector in his general dyadic form [1]. They restrict D to indicating how the
dimensions of the two carriers are merged in the result. 11D maps the dimensions of the

Lcarrier A to dimensions in the array of pairs; (~J)1D maps the dimensions of the
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J-carrier B to dimensions in the array of pairs; and the rank of the array of pairs is the
maximum value of D, i.e., [/D. If an arbitrary permutation of the dimensions is required,

an explicit transpose should be used.

Because ItD and (=Jj1D are both ascending sequences, Web can construct the array of
pairs by traversing the two carriers top-down, level by level, mapping levels in the carriers
to levels in the array of pairs. Essentially we interleave the two carriers into one result.
We give a recursive definition of the pairing below. Let D1 be ItD; D2 be (—=J/)1D; C1 be
the I-carrier A; and C2 be the J-carrier B. At each level we compare the first values in

D1 and D2 and based on the comparison, perform one of three actions:

1. If 11D1 is less than 11D2, then the first dimension of C1 is mapped to this
level in the result. We split C1 into subarrays along its first axis, drop the
first element from D1, and recursively pair each subarray with C2.

2. 1f 11D?2 is less than 11D1, then the first dimension of C2 is mapped to this
level in the result. We spiit C2 into subarrays along its first axis, drop the
first element from D2, and recursively pair each subarray with C1.

3.1f 11D1 and 11D2 are equal, then the first dimension of both C1 and C2 is
mapped to this level in the result. We split both C1 and C2 along the first
dimension, trim to a common length, drop the first element from D1 and D2,
and recursively pair corresponding subarrays.

The pairing stops when both C1 and C2 are scalar carriers, and D1 and D2 are empty.
(Note this algorithm is to define how base arguments are paired in forming the extended
outer product. There are many efficient implementations of this type of array
traversal [1, 82, 25].)

For example, consider adding a vector B to the columns of a matrix A. We write
Ae.1 2 1+B.2 Plus is a scalar function, and the datum rank of the application is zero.

Thus A is partitioned into a 2-carrier and B a 1-carrier. D1+-21Dis 12, and D2+"11Dis

8Note Be.1 1 2+.A is an equivalent expression.
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1. The rank of the result is two; B is mapped to the first dimensions of the result, and A
is mapped to both dimensions. Using the above algorithm, we first split both A and B
along their first dimension, drop the first value from D1 and D2, and pair corresponding
subarrays (a,5). Then, for each (a,5) pair, we split the subarray @ of A, pair with 5, and
drop the remaining value from D2. The values of D1 and D2 are exhausted, and the
pairings are complete. The base argument evaluations can now proceed. Figure

3-5 presents sample pairings and evaluation. (Compare with figure 3-3.)
A - 10 20 30 B Aiad 123
40 50
60 70 80
First pairing:
(10 20 30,1) (40 50,2) (60 70 80,3)
Second pairing:
(10,1) (20,1) (30,1)
(40,2) (50,2)
(60,3) (70,3) (80,3)
Evaluation: Ao.1 2 1+B
11 21 31

42 52
63 73 83

Figure 3-5: Base argument pairing and evaluation of A°.1 2 1+B

For a more interesting example, we return to the cross-reference problem. We want
to cross reference two functions in parallel. Ignoring the distinction between formal
parameters and other variables, V is now a matrix, each row corresponding to the name-
‘list for a function. F is rank 3 array, each plane representing a function. Note scalar
extension is not applicable here; V'is no longer a O-carrier for membership. Rather, Vis a

l-carrier, and F' a 2-carrier. We want to compare each base argument in the l-carrier for
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V with every base argument in the corresponding row in the 2-carrier for F. We specify
Vo.11 2€F. The outer product is evaluated as defined above. V and F are partitioned;
the 1-carrier for V and the first dimension of the 2-carrier for F are merged along the first
dimension of the matrix’of pairs; the second dimension of the 2-carrier is mapped to the
second dimension of the matrix of pairs. Membership is applied to each pair of base
arguments; the results are assembled in a 2-carrier. When partitioning is removed we

have a rank-3 array. Figure 3-8 presents a sample evaluation.

v - KASNIR
RDSIL

F - S—4,A
I+~ 144/Se . >+\N ~ pA
R+~ ,"1t'1N
K -~ R[S10ALNL,']
I~ (D=8,D)/11+pS
L~ "1+I-0,"14I
R ~ Lp(S#D)/S

Vo,112eF &= 011000
011110
000101
111011
01110

00011
11101

Figure 3-8: An example of outer product with transpose vector.

3.2.4 Reduction: F/{K}A

Reduction is a mechanism for sequentially applying a function to selected elements of
an array. Unlike scalar product and outer product, there is an explicit ordering to the
function applications. Reduction is defined for vectors of base arguments of a function,

and extended to higher rank carriers “row-wise”; each vector of base arguments is
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independently reduced.

To be applied with reduction, a function ¥ must have base arguments and results of
equal rank, i.e., the base rank of Fis of the form J I I. Also F must preserve datum rank,
i.e. its datum rank vector must be of the form N N N or 0 0 0. We call a function which
meets these restrictions reducible. For a reducible function, a carrier of the base results of
the function has the same three-level structure as a carrier of either the left or right base

arguments.

The reduction of a vector of base arguments can be given a simple recursive
definition, as suggested by Jenkins and Michel [31]. Consider the reduction F/{K}A,
where F is applied as a reduction with datum rank K to A. F must be a reducible
function with base rank I I I. Assume A is a 1-carrier for F applied with datum rank K;
since F is reducible, A has a suitable carrier structure to be a l-carrier for either the left
or right base arguments or the base results of F. Let J be /+K. Note A has rank 1+J.

We define the reduction as follows.

(I{JNAF F1{NA if 2<p{NNA
FIK}A - A if 1=p{N1A
Identity or Error if O=p{J}A
Since APL is right associative, this definition is equivalent to placing F between every
base argument in the partitioned 1-carrier A (if 2<p{J/}A) and evaluating the resulting

expression.

For example, we can apply catenate with reduction to ravel a word list. Let M be a
character matrix representing a word list, one word per row. The reduction form is ,/M.
Catenate has base rank 1 1 1. M is partitioned into a l-carrier for catenate, a vector of
base arguments. This 1-carrier is reduced and the words are successively catenated into

one vector. Figure 3-7 presents a sample evaluation. Note we first apply catenate with
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M - THE
APL
IDIOM
LIST

M, e THE APL IDIOM LIST

Figure 3-7: A catenate reduction.
scalar extension to tag a blank onto the end of each row in the matrix.
If we assemble several word lists into a rank-3 array A, we can use the catenate
reduction to ravel each list. A is a 2-carrier for catenate, a matrix of base arguments.
Each row of base arguments is independently reduced. Figure 3-8 prt'zsents a sample

evaluation. Note the planes of the three-dimensional array A are displayed adjacently.

A - STRUCTURED  THE A
PROGRAMMING APL PROGRAMMING
IDIOM LANGUAGE
LIST
JAN Y STRUCTURED PROGRAMMING
THE APL IDIOM LIST

’ A PROGRAMMING LANGUAGE

Figure 3-8: A catenate reduction of a rank 3 array.

3.2.56 Scan: A{K}A

Scan is best defined in terms of reduction; it is the successive reduction of all prefixes
of a vector. Like reduction, scan is defined for vectors of base arguments of a function,
and extended to higher rank carriers row-wise.

Consider the form FA\{K}A, where F'is applied as a scan with datum rank K to A. F
must be a reducible function with base rank I  I. Assume A is a l-carrier for F applied
with datum rank K. Let J be I+K. The reduction of F/{K}A is well-defined, and the

scan of A is defined as follows.

AK}A ~— FI{K}1p{TTAN{IA
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The expression on the right means the following. Take has base rank 0 1 1 and
datum rank of the form 0 N N. A has rank 1+J. Thus A is a scalar carrier for right
base arguments to take applied with datum rank J. Using scalar extension, A is paired
with each element of the index vector tp{J}A, and take applied to each pair. The result
is a new l-carrier containing the successive prefixes from the first dimension of A. The
partitioning is removed, resulting in a ragged array of rank 2+J. Reduction repartitions
the result into a 2-carrier, and independently reduces each row of base arguments, giving

us the scan of A.

We can use scan to create triangular matrices. For example, consider ,\;t/N. Flatten
(7) is a new function; it maps a scalar to a vector (see section 3.3.5.2). ;tN creates a one
column matrix of indices, and catenate scan combines the rows. Similarly ;Npl creates a
one column matrix of ones, and ,\7Npl combines them to form a a triangular mask.
Figure 3-9 presents sample evaluations.

713 — 1

"3pl - 1

o

\53p1 — 1
11
111

Figure 3-9: Two scan reductions.
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3.2.6 Inner Product: A F{I}.G{K} B
As noted by Abrams, inner product is essentially a combination of outer product,
reduction, and transpose {1]. In carrier APL, by supplying the appropriate transpose

vector, it can be defined directly in terms of reduction and outer product.

Consider the inner product form A F{I}.G{K} B. Assume A is a I-carrier and B a
J-carrier for G applied with datum rank K. F must be reducible. Then the inner

product is defined as follows.

AFD.GIK}B —— FI}/ A>.DG{K} B

D is (1I-1),((I-1)+J),(I-1)+1J which is equivalent to
12... -1 1+J-11I+1 ... I+J-1

If either I or J is zero, D is omitted from the definition. The transposed outer product
pairs the last dimension of the -carrier A with the last dimension of the J-carrier B. The
lengths of corresponding rows along the paired dimensions must be equal. We then apply
G to the base argument pairs, remove the partitioning of the result, and apply the

reduction.

Note the pairing of the last dimensions of the left and right carriers is a change from
current APL, which pairs the first dimension of the right argument to an inner product
with the last dimension of the left argument. We make this change for two reasons.
First, columns along the first dimension are not always well defined in a ragged array;
they may have gaps. And second, in most non-mathematical uses of the inner product,
such as the A.= comparison function, the data to be processed lies along the last
dimension of both arrays, and the right argument must be transposed to to place the data

along the first dimension. This transpose is not required in carrier APL.

For an example, we return to the cross-reference problem presented above. Recall we
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cross referenced a list of variable names with the text of an APL function, reporting the
variables referenced by each line of the function. We now want, for each function line, a
count of the number of distinct variables it refers to. As before, we assume all variable
names are one character, and they are represented in a vector V. The function is

represented as a matrix F, one line of the function per row.

To éount the distinct variable references per line, we write V+.€F. Membership has
base rank 1 1 1. Fis partitioned into a l-carrier for membership, V a O-carrier, and an
outer product is performed. Since V is a O-carrier, a transpose vector is not required in
the outer product form. The result is a boolean matrix; each row identifies the variables
referenced in the corresponding line in the function. Plus reduction is then applied to the
rows of the boolean matrix, giving a count of distinct variable references per line. Figure

3-10 presents a sample evaluation.

v —— KASNIR
F - S—4,A
I~ 144/So . >+\N ~ pA
R~ ,"1+:N
K~ R[S]®ALD,']
V+.€F - 2425

Figure 3-10: An example of inner product.

3.3 Primitive Functions

In this section we present the base definitions of the APL primitive functions. We
divide the functions into seven groups: the arithmetic scalars, the equality functions, the
relations, the structure functions, the selection functions, the functions without obvious

A

extensions to mon-scalar items, and the functions of unbounded rank. We examine each
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group in turn.
Several APL primitives (indexing, assignment, and branching) do not fall into this

classification. We define them separately as special forms.

3.3.1 General Considerations

As discussed in chapter 2 (see section 2.3.1), each primitive function is given a base
definition on arrays of fixed rank. This definition is characterized by a base rank, a
vector containing the ranks of the arguments and result of the function. For a dyadic
function, the vector has three components: the rank of the left argument, the rank of the
right argument, and the rank of the result. For monadic functions only two components
are necessary. For example, take (1) is defined to map a scalar and a vector to a vector,
and it has base rank 0 1 1. Figure 3-11 gives the base ranks of the APL primitive

functions.

An exception is the functions of unbounded rank. These functions cannot be defined
for fixed rank arrays, and thus cannot be applied with the partitioning algorithms and
application forms defined in sections 3.1 and 3.2. A # in a base rank represents an

unbounded argument. We discuss functions of unbounded rank in greater detail below.

On the domain of simple, homogeneous arrays, we define a primitive function by
restricting its current APL definition to arrays of the appropriate rank. Detailed
definitions of the current APL primitive functions are given by Falkoff and Orth in their
proposed APL standard [21]. Note, however, that restricting the current APL definitions
to fixed rank arrays changes their effect when they are applied to higher rank arrays in
carrier APL. For example, shape (p) is defined for vectors. When applied as a scalar

product to a matrix in carrier APL, it returns the length of each row. This is quite
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Monadic Dyadic
arg result arg result
arithmetic scalars 0 0 arithmetic scalars 600 0o
grade up (4) 1 1 relational scalars 00 O
grade down (V) 1 1 mem bership (€) 11 1
shape (p) 1 0 dyadic iota (1) 11 1
flatten () 0 1 catenate (,) 11 1
reverse () 1 1 laminate () 00 1
monadic transpose (8) 2 2 rotate (¢) 01 1
diagonal (¢) 2 1 compress (/) 11 1
monadic iota (1) 0 1 expand (\) 1'1 1
matrix inverse (&) 2 2 take (1) 01 1
ravel (,) + 1 drop (1) 01 1
rank (p) « 0 matrix divide (8) 22 2
encode (T) 10 1
decode (L) 11 0
deal (9) 00 1
dyadic transpose (8) 1 * «
reshape (p) £ %

Figure 3-11: Base ranks of primitive functions.

different than the shape of a rectangular matrix in current APL.

Most of the primitive functions have natural extensions to arrays of non-scalar data.
Each extended definition can be characterized by a datum rank vector, which gives the
permissible ranks of the items in the arguments, followed by the rank of the items in the
result. The items in an argument are either restricted to rank 0, or else any rank N item
is permissible. The rank of the items in the result are determined by the rank of the \
items in the arguments; arrays of rank IV items are mapped either to another array of
rank NN items, or to a simple array.

Figure 3-12 presents the datum rank vectors of the primitive functions. An N in a
datum rank vector represents any integer greater than or equal to zero; in a given datum
rank vector, every instance of N represents the same value. In addition, if any element of
“1iDRV of a datum rank vector DRV is zero, the corresponding arguments must be

simple. For example, the left argument of compression (/) must contain boolean values;
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the right argument may contain pon-scalar items; and the datum rank vector is 0 IV N.
Similarly, if "11DRV is numeric, the rank of the items in the result have that rank for
every application. For example, shape (p) maps a vector of arbitrary rank items to a

simple scalar, and the datum rank vector is N 0.

Monadic Dyadic
arg result arg result
arithmetic scalars N N arithmetic scalars NN N
grade up (4) N o relational scalars NN o©
grade down (V) N o membership (€) NN 0
shape (p) N 0 dyadic iota (2) NN O
flatten (;) N o catenate (,) NN N
reverse ($) N N laminate () NN N
monadic transpose (§) N N rotate () 0ON N
diagonal (@) N N compress (/) 0N N
monadic iota () 0 0 expand (\) 0N N
matrix inverse (&) 0 0 take (1) 0N N
ravel (,) N N drop (1) 0 N N
rank (p) N o matrix divide () 00 O
encode (T) 00 O
decode (1) 00 O
deal (9) 00 O
dyadic transpose (8 ) 0 N N
reshape (p) 0 N N

Figure 3-12: Datum ranks of primitive functions.

We also extend the domain of the base definitions of the primitive functions to
heterogeneous arrays. The extension is straightforward; the definitions below permit
heterogeneous arguments, unless explicitly prohibited.

In the remainder of this section, we give the base definitions of the primitive

functions and special forms.
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3.3.2 Arithmetic Scalars

The arithmetic scalars are the APL arithmetic and boolean functions. Figure
3-13 lists the arithmetic functions; figure 3-14 gives their base ranks and datum ranks.
The functions are defined only for numeric data. For numeric scalars, we use the

definitions of current APL.

The base definitions are extended to non-scalar data “by leaf”. A pon-scalar item
can be viewed as a ragged array. An arithmetic function is applied to a non-scalar item
as if the function is applied to its ragged array representation with a scalar product. For
monadic functions there are no conformability constrai‘nts; the function is applied to each
element of the ragged array compnsing the item. For dyadic functions the items must
have the same rank and shape, else an error occurs. The carrier partitioning ensures that
the ranks are tlhe same; thus we need only check the shapes. If conformable, the

corresponding elements of the two ragged arrays are paired, and the function applied.

Monadic Dyadic
conjugate (+) plus (+)
negative (—) minus (-)
signum {x) times (x)
reciprocal (=) divide (+)
floor (1) minimum (|)

ceiling ()
exponential (%)
natural logarithm (®)
maguitude (})
factorial (!)

roll (9)

pi times (O)

not (~)

maximum ([)
power ()
logarithm (®)
residue (})
binomial (1)
circular (O)
and (A)

or (V)

nand (»)

nor (¥)

Figure 3-13: Arithmetic scalar functions.
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Base Datum
arg  result arg result
Monadic scalars 0 0 N N
Dyadic scalars 00 O NN N

Figure 3-14: Ranks of the arithmetic scalar functions.

3.3.3 Equality
The functions concerning equality are the scalar functions equal (=) and not equal (#)
and the the two membership-testing functions dyadic iota (1) and membership (€). Figure

3-15 gives their base and datum ranks.

Base Datum

arg result arg result
equal (=) 00 O NN 0
not equal (#) 00 O NN 0
mem bership (€) 11 1 NN 0
dyadic iota (1) 11 1 NN 0

Figure 3-15: Equality functions.

3.3.3.1 Equal (=)
Equal maps a pair of scalars to a boolean result. We compare simple scalars with the
definition of current APL. We extend equal to non-scalar data recursively, recurring on

the rank of the datum, using the current APL definition as a base case.

Let V1 and V2 be vectors. Then we define equality of rank 1 data items as follows:
Vi={1}V2 <= ((pV1)=pV2) A A/V]e,1 1=V2

Note we use a transposed outer product to compare corresponding elements in V1 and V2.
It will return a boolean result if V1 and V2 have different lengths, whereas the scalar

product V1=V2 or the inner product V1A.=V2 would return a conformability error.

. We can generalize this definition by noting a rank K item can always be partitioned

into a vector of rank K—1 items. Let Al and A2 be rank K arrays. Then we have:

Al ={K}A2 ~— ((p{K—1}Al}=pA2{K—1}) A M/Ale.1 1={K—1}A2
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We assume Al and A2 have the same rank; because of carrier partitioning, items of

different rank can never be compared by the equal function.

3.3.3.2 Not Equal (#)

Not equal is defined to be the complement of equal. Let Al and A2 be two rank K
arrays. Then:

Al#{K}A2? ~— ~Al={K}A2
3.3.3.3 Membership (€)

Membership maps a pair of vectors to a vector. Each item in the left argument is
mapped to a boolean in the result which identifies if the item is present in the right
argument. The argument vectors may be vectors of rank NNV items of any type; the two
vectors may have different lengths. The result is a boolean vector of simple items; it has

the length of the left argument.

Membership is defined in terms of the equal function. Let Al and A2 be two arrays
of rank K+1. Then:

Ale{K}A2 +~— Vv/Ale.={K}A2

3.3.3.4 Dyadic Iota (1)

Dyadic iota maps a pair of vectors to a vector. Each item in the right argument is
mapped to the index of its first occurrence in the left argument; if the item does not occur
in the left argument, it is mapped to the one plus the length of the left argument. The
argument vectors may be vectors of rank N items of any type; the two vectors may have
different lengths. The result is an integer vector of simple items; it has the length of the

right argument.

Dyadic iota is defined with the not equal function. Let Al and A2 be two arrays of
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rank K+1. Then:
Al{K}A2 «~— 1++/A\A2.#{K}Al

The idiom A\ preserves the longest prefix string of ones in a boolean vector and sets the
remainder of the vector to zero. Each rank K item along the first dimension of A2 is
compared with all the rank K items along the first dimension of Al; the prefix of unequal
comparisons is identified; and one is added to its length, giving the index of the first

match.

3.3.4 Relations
The relational functions are the scalar functions less than (<), less than or equal to
(<), greater than (>), and greater than or equal to (=), and the two sorting functions

grade up (4) and grade down (¥). Figure 3-18 gives their base and datum ranks.

Base Datum
arg result arg result
less than (<) 00 O NN 0
less than or equal to (<) 00 O NN O
greater than (>) 00 O NN 0
greater than orequalto (=) 0 0 0 NN 0
grade up (4) 1 1 N o
grade down (¥) 1 1 N 0

Figure 3-18: Relational functions.

3.3.4.1 Less Than (<)

Less than maps a pair of scalars to a boolean result. In current APL, lgss than is
defined only for numeric scalars. In carrier APL, we compare all data types. One
character is less than another if it precedes the other in the atomic vector; if C1 and C2

are character scalars, then

C1<C2 = (JAViC1)<[0AViIC2

Also any character is less than every number.
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We extend less than to determine a lexicographic ordering of vectors. Let V1 and V2
be two vectors. V1 is less than V2 either if V1[I] is less than V2[I] for the smallest I for
which the two vectors differ, or if there is no such I, V1 is shorter than V2. In carrier

notation, we write:

N<{1}12 <= TIVI2
where
T1 — 1t1(+/A\V1e.1 1=12)IV1e.1 1<WR
T2 «~ (AV1e.1 1=V2)A(pV1)<p\2

T1 finds and compares the first values for which the two vectors differ, and 72 compares

the lengths of two vectors in the case that they have no first difference.

We can generalize this definition to to arbitrary rank items by noting that a rank K
item can be partitioned into a vector of rank K-—1 items. Let Al and A2 be rank K

arrays. Then:

AI<{K}A2 ~— TIVI2
where
T1 ~ 11{+/A\Ale.1 1={K—-1}A2)lAle.1 1<{K~1}A2
T2 < (M Ale.1 1={K-1}A2Mp{K—-1}A1)<p{K—1} A2

We assume Al and A2 have equal rank; because of carrier partitioning, unequal rank

items cannot be compared with the less than function.

3.3.4.2 The Other Scalar Comparison Functions (< > >)

Given the definitions of less than (<) and equal (=), we can easily define the
remaining scalar comparison functions:

o Less than or equal to:

Al1{K}A2? —— (A1<{K}A?2) v Al={K}A?2
o Greater than:

A1>{K}A2 «~— ~A1<{K]}A2
e Greater than or equal to:

Al2{K}A2 <= ~Al<{K}A?2
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3.3.4.3. Grade Up (4)

Grade up is a sorting function; it maps a vector to a vector of indices that could be
used to rearrange the original vector into ascending order. In current APL,‘ grade up is
restricted to numeric vectors; in carrier APL, it is extended to vectors of non-scalar data

of arbitrary type. The result is always a vector of simple indices.

Let A be a rank K+1 array. Then A{K}A is the the permutation of tp{K}A which

satisfies the following:
1. For all I and J in 1p{K}A, if I<J then

AIMKIAD D <{K} (A[IMK}IANLJ]
2. 1f A[NN={K}A[J] and I<J, then
(AMEKYARD < (MK}AWJS

The second condition ensures that the sort is stable [37]. Indexing is a special form
defined in section 3.3.9.1. To evaluate A[I], we partition A into a vector of rank K

items, and index the vector with I, returning an item.

3.3.4.4 Grade Down (V)

Grade down is the complementary sort to grade up; it sorts into descending order.
Informally, grade down is the reverse of the permutation generated by grade up.
However, the reverse of a grade up does not give a stable sort, so we explicitly define

grade down.

Let A be a rank K+1 array. Then V{K }A is the the permutation of 1p{K}A which
satisfies the following:
1. For all I and J in 1p{K} A, if I<J then
AIVIKIAN D 2{K} (AIV{K}IAD[J]
2. 1f A[={K}AL[J] and I<J, then
(V{K}IARD < (V{K}AWJ
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3.3.5 Structure Functions

The structure functions manipulate the structure of an array; they are indifferent to
the type of the items. Thus they extend naturally to heterogeneous arrays and arrays of
non-scalar data. The structure functions are shape (p), flatten (), reverse (¢), monadic
transpose (&), diagonal (¥), catenate (,), laminate (7), and rotate (¢). Flatten and
diagonal are new primitives, and laminate has a distinct token. Figure 3-17 gives their

base and datum ranks.

Base Datum

arg  result arg result
shape {p) 1 0 N 0
flatten () 0 1 N 0
reverse (¢) 1 1 N N
transpose (®) 2 2 N N
diagonal (¢) 2 1 N N
catenate {,} 11 1 NN N
laminate {}) 00 1 NN N
rotate {}) 01 1 0N N

Figure 3-17: Structure functions.

3.3.5.1 Shape (p)
Shape maps a vector or rank K items to its length. The result is a simple scalar. We

discuss shape further in the context of reshape (see section 3.3.8.4).

3.3.5.2 Flatten (;)
Flatten is defined for a scalar containing a rank K item. It flattens the item,

- comstructing a ravel order vector of its leaves. The result is a vector of simple items.
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3.3.5.3 Reverse ($)

Reverse reverses a vector of rank K items.

3.3.5.4 Monadic Transpose (¥)
Monadic transpose transposes a matrix of rank K items. To ensure the result is a
well-defined ragged array, the rows of the matrix are truncated to a common length

before the transpose is performed, i.e., for a rank K+2 matrix A

S{K}A —— Q{KH/p{K}AUKIA

3.3.5.5 Diagonal (®)
Diagonal selects the diagonal of a matrix of rank K items. It is the equivalent of the
1 19M of current APL. As for transpose, the rows of the matrix are truncated to a -

common length before the diagonal is selected.

3.3.5.8 Catenate (,)

Catenate joins two vectors of rank K items into a longer vector of rank K items.

3.3.5.7 Laminate (})
Laminate joins two scalars of rank K items into a vector of rank K items. Note

laminate has a distinct function token in carrier APL.

3.3.5.8 Rotate ()
Rotate rotates a vector of rank K items as determined by an integer scalar left

argument. The left argument must be simple.
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3.3.6 Selection Functions

The selection functions select items from an array. They extend naturally to
heterogeneous arrays and arrays of non-scalar data. The selection functions have a
boolean or numeric left argument which guides the rearrangement of the data; non-scalar
items are not allowed in these guides. The selection functions are compress (/), expand

(\), take (1), and drop (1). Figure 3-18 gives their base and datum ranks.

Base Datum

arg result arg result
compress (/) 11 1 0N N
expand (\) 11 1 0N N
take (1) 01 1 0N N
drop ({) 01 1 0 N N

Figure 3-18: Selection functions.

Expand and take require fill items. The fill stem is a singleton of rank equal to the
datum rank of the application. A singleton is an array in which each dimension is a
vector of length one. The data at the leaf of the singleton fill item is either zero or blank,

and it is determined by the type of the array. (See section 3.1.1 for a discussion of types.)

3.3.86.1 Compress (/)
Compress pairs a boolean vector with a vector of rank K items, and selects elements
from the right vector which correspond to ones in the left vector. The two vectors must

have the same length. The left argument must be simple.

3.3.8.2 Expand (\)
Expand expands a vector of rank K items as determined by boolean vector left
argument. The length of the right vector must equal the sum of the boolean. The left

argument must be simple.
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3.3.8.3 Take (1)
Take pairs an integer scalar with a vector of rank K items, and takes the designated

number of items from the vector. The scalar must be simple.

3.3.8.4 Drop ({)

Drop pairs an integer scalar with a vector of rank K items, and drops the designated

pumber of items from the vector. The scalar must be simple.

3.3.7 Functions without obvious extensions to non-scalar items

Several APL functions have no obvious extension to arrays of non-scalar items. To
define these functions, we restrict their current APL definitions to fixed rank arrays of
simple scalars. They are not defined for heterogeneous. arrays or arrays of non-scalar
items, and they cannot be applied with a non-zero datum rank. The functions are
monadic iota (), matrix inverse (B), matrix divide (B), encode (T), decode (1), and deal

(9). Figure 3-19 gives their base ranks and datum ranks.

Base Datum
) arg result arg result
monadic iota (2)
matrix inverse (8)

0 1 0 0
2 2 0 0
matrix divide (B) 2 2 2 00 O
encode (T) 10 1 00 O
decode (1) 11 0O 00 O
deal (9) 00 1 00 O

Figure 3-19: Functions with no extension to non-scalar data.

3.3.8 Functions of unbounded rank
Several primitives cannot be defined for fixed rank arrays; an argument to each of
these functions has unbounded rank. An array argument to a function of unbounded

rank cannot be partitioned into a three-level carrier of base arguments, for we cannot
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determine the rank of the base level. Thus, functions of unbounded rank cannot be
applied with the application forms defined in section 3.2; they must be applied to an
entire array. However, the functions can be applied with datum rank. Array arguments
are partitioned into a a two level structure. The functions extend to higher rank arrays in

an idiosyncratic manner, similar to the mixed functions of current APL.

o

The functions of unbounded rank are ravel (,), rank (p), dyadic transpose (&), and

reshape (p). Rank (p) is a new function. Figure 3-20 presents the base and datum rank.

Base Datum
arg result arg result
ravel (,) + 1 N N
rank (p) + 0 N 0
dyadic transpose (¥) + 0N N
reshape (p) + x 0N N

Figure 3-20: Functions of unbounded rank.

3.3.8.1 Ravel (,)

Ravel is defined as in current APL; it flattens an arbitrary array into a vector. If a
datum rank of K is given in the form ,{K}A, then A is partitioned into an array of rank
K items, and the partitioned result is a vector of rank K data. If A has rank less then K,
it is coerced to have rank K, and the result is a singleton vector of rank K data. In every

case, when partitioning is removed, the result is a rank K+1 array.

3.3.8.2 Rank (p)

Because shape (p) is defined to give the length of a vector, the current APL idiom
ppA does not return the rank of an array in carrier APL; rather it returns the shape of
the shape. Rank is a new function which gives the rank of an array. p{K}A partitions a
rank N array into a rank N—K array of rank K items, and returns N—K, the rank of the

upper partition. If N is less than K, zero is returned.
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3.3.8.3 Dyadic Transpose (§)

Dyadic transpose is defined for a vector left argument, and an arbitrary rank right
argument. Consider V®{K}A, where the length of Vis I and the rank of Ais N. A'is
partitioned into an M-carrier of rank I subarrays, each containing rank K data, where
M ~— N—-(I+K). V transposes each rank I subarray independently; the results are
assembled in a new M-carrier. If Iis greater than N—K, A is coerced to have rank [+K.

We define how to transpose a ragged array below.

Note the rank of the subarray to be transposed depends on the length of V, and the
rank of the result depends on the value of V. This is the reason for restricting the left
argument of a transpose to a vector. If we allow a carrier of vectors to transpose a carrier
of subarrays, we cannot-partition the carrier of subarrays without restricting the vectors
to a commbn length, and the results of the various transposes cannot be assembled in a
pew carrier without restricting the number of duplicates in the values of the vectors.
These restrictions are in conflict with the carrier concept of the independent application

of base argument pairs.

V must meet all the requirements for a transpose vector in current APL.

1. (pV)=I. The length of V equals the rank of the subarray being transposed.
This is assured by the partitioning.

2. A/V&il. V must contain only valid dimensions of the subarray.
3. A/GVIEV. V must be dense.

We define a dyadic transpose as a series of applications of the monadic transpose
function and diagonal function (see sections 3.3.5.4 and 3.3.5.5). Applied with an
appropriate datum rank, the monadic transpose function can interchange any two
adjacent dimensions in an array. If A is a rank N array, &{K}A interchanges the N—K

and the N—(K+1) dimensions of A. Similarly, the diagonal function can merge any two
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adjacent dimensions. Thus a dyadic transpose can be effected by a series of monadic
transposes followed by a series of diagonals. The number of monadic transposes is
determined by the number of inversions which keep the transpose vector from sorted
order.® The number of diagonals is determined by the number of duplicate elements in

the transpose vector. Figure 3-21 presents the definition of two transposes.
431204 —— ®{1}0{2}00{1}0{2}4

3211804 «— ¢{2)0{1}9{2}29(1}9{2}A
Figure 3-21: Two dyadic transposes defined.

Because the monadic transpose and diagonal functions truncate the rows of their
matrix argument to a common length, the ordering of the transposes and diagonals can
affect the result if the array being manipulated is not rectangular. We define a canonical
ordering, which is the series of monadic transposes corresponding to the interchanges in
the “bubble sort” [37] of the transpose vector, followed by the appropriate number of
diagonal functions. We make repeated passes from right to left over the transpose vector,
interchanging numbers in the vector that are out of order; for each interchange of
numbers, we interchange the corresponding dimensions in the array with a monadic
transpose. For example, to effect 3 1 2DA, we first interchange the first and second
dimensions of A, and then the second and third. Once the dimensions have been
appropriately arranged, we merge the adjacent dimensions where required with the
diagonal function, again moving from left to right along the sorted transpose vector.
Both the examples in figure 3-21 are in canonical order. (Note this algorithm is to define

a dyadic transpose; it is not necessarily an implementation strategy.)

9See Knuth [37] for a discussion of inversions.
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3.3.8.4 Reshape (p)

Reshape is defined for arbitrary rank left and right arguments. The elements of the
left argument must be non-negative integers; the elements of the right argument may
have any type. The definition is recursive, recurring on the rank of the left argument.
For a scalar S and an array A, we use the reshape of current APL. SpA cre‘ates a vecfor
of S elements selected in ravel order from A, recycling to the beginning of A if necessary.
This extends immediately to non-scalar items. Sp{K}A partitions A into an array of rank

K items, and reshapes the array.

For a vector S, we say:

Sp{K} ~— SHEK}N+\0,"1IS)H{K}+/S)p{K}A
(+/S)p{K}A forms a vector of rank K items. Each element of (+\0,7115) is paired with
the vector using scalar extension, and drop applied; the result before partitioning is
removed is a matrix of rank K items. When take is applied with datum rank K, each
element of S selects a prefix from the corresponding row in the matrix. The sequence of

drop followed by take assures that successive elements are selected from A.

For S with rank N, where N is greater than one, we say:

Sp{K} «— {(pS)p{K+1}(,S)p{K}A
Recall pS has rank N—1 if S has rank N, and ,S is a vector. Thus the equivalence gives
a recursive definition with a well-defined base case.

A ragged array introduces a new concept of shape into APL. The shape (p) of a rank
N ragged array is an array of rank N-1, each element containing the length of the
corresponding vector in the original array. We call this an additive shape, for the number
of elements in an array equal the sum of the elements in its shape. Rectangular arrays

have traditionally had a multiplicative shape. The multiplicative shape of a rank N



rectangular array is a length IV vector; each element of the vector giving the length of the
corresponding dimension in the array. Thus the number of elements in a rectangular
array is the product of the elements in its multiplicative shape. For vectors, the additive

and multiplicative shapes are the same, but they differ for higher rank arrays.

Note that the multiplicative shape of any nom-empty rectangular array can be
calculated from its additive shape. Figure 3-22 presents the algorithm. For any ragged
array, the algorithm gives the shape of the smallest rectangular array which contains it.

RECTSHAPE ~ p{K}A

for I— K=1tol do
RECTSHAPE < RECTSHAPE, I/,p{}A

Figure 3-22: Calculating rectangular shape of a rank K+1 array A

Reshape copstructs an array from an additive shape. We can examine the
relationship of reshape with the shape function by examining the form (pAlpA. Let A be

a rank 3 array. Then, by expanding the recursive definition of reshape, we get:

(pAlpA —— (pppAlp(2}(, ppAlp{1}(,pAlpA

It is clear that pppA —= p{2}A and ppA ~= p{1}A. So we have:
{(pAlpA —— (p{2}A)p{2}(, p{1}A)p{1}(, pAlpA

This corresponds to an intuitive model of building a tree level by level: first constructing
a collection of vectors, assembling the vectors into matrices, and the matrices into a

three-dimensional array. Thus we say:
(pAJpA —— A
And notice that:

(pAlpA —— (pAlp,A

So we get the familiar identity of current APL:
(pAlp,A ~— A
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By a similar analysis, we see SpA has shape S and rank 1+S.

3.3.9 Special Forms

Special forms are constructs in APL which cannot be defined as monadic or dyadic
functions. The special forms are indexing {[1), because of its unconventional syntax; and
assignment (—), indexed assignment ([]+), and branching (—), because they are primarily
evaluated for side effect. The special forms cannot be applied with the carrier
partitioning and application forms defined in sections 3.1 and 3.2. Each special form

determines how its arguments are partitioned and results formed.

3.3.8.1 Index (Al[;...;K])

The index form A[[;...;K] is the same as in current APL; the array A is paired
with an an index list delimited by brackets. The elements of the index list can be
arbitrary rank arrays of non-negative integers. A is partitioned into an array of rank one
plus the number of semicolons in the form; the remaining dimensions, if any, are enclosed
to form non-scalar items. If the rank of A is less than the number of semicolons in the
form, A is coerced to the appropriate rank by adding singleton dimensions.

To define indexing we introduce an auxiliary function denoted by [0.1° [J indexes a
vector with a scalar, using the definition of current APL, i.e., VIII «— VII] where
Ie1pV. [ returns an error if ~J€1pV. [ extends directly to a vector of non-scalar items.
If A has rank K+1, then A[J{K}I partitions A into a vector of rank K items, and indexes
the vector with I. The result is a scalar containing a rank K item; with partitioning

removed, it is a rank K array. Thus [J has base rank 1 0 0 and datum rank N O N.

19Note [ is not a carrier APL primitive, and is used only in the definition of indexing.
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With [J we can define the indexing form. Let A be a rank 3 array. Let I, J, and K

be ragged arrays of non-negative integers with ranks N, M, and O, respectively. Then:

AlLJ;K] <= ((A=.0{2}0e. D1} . 0K

The result is a rank N+M+0 array of items selected from A.

Note the definition fits nicely with the definition of a ragged array as a tree; we index
by selecting items in a breadth first search of the tree. .Ao.[}{2}J indexes the vector
which is the first level in the tree, and for each item selected, °.[3{1}J indexes the vectors
which form the second level of the tree, and again, for the items selected ¢.[JK indexes

the vectors on the third level of the tree.

This definition for a rank 3 array extends to the general case. Let A be a rank N
array, and let L,L,... ,IJ- be a sequence of arbitrary rank ragged arrays of non-negative

integers. Then:

All;L;... ;IJ-] - (. .((A°.D{N—I}Il)°.D{N—2}I,2). . .)°.D{N"J}IJ.
The result is a rank +/(pl)),(pL,), . ..,'iJIJ- array of rank N—J items; with partitioning
removed it is a rank (N=J)++/(p1,),(pL,), . .. ,ZJIJ. array.

Empty subscript positions are permissible, and if given, select every element in the
corresponding dimension. This is accomplished by dropping the corresponding application

of 0. For example, if A is a rank 3 array, then:

All;; K]l ~— (4°.D{2}De.0K
If the array is ragged in the dimension corresponding to the empty subscript, no array
value could be substituted for the empty subscript to give an eduivalent result.

As in current APL, an elemeht of an index list may contain repeated values. Figure

3-23 presents a sample application of indexing.
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A — ABCD
EFG
HlJ

KL
MNO

All 2;2 1p2;2 3] — EF
EF

EF
MN
MN

MN

Figure 3-23: An sample application of indexing.

3.3.9.2 Assignment (~)
Assignment is the same as in current APL; the value of the right expression is

associated with the name on the left.

Assignment introduces a side effect which affects the order of execution of functions
in an expression. To avoid ambiguity,!! - carrier APL follows the “Minnowbrook rule” as
described by Lathwell [38]: Names are bound in right to left order as they appear in an
expression. Thus an assignment in an expression may affect the value of identifiers to its

left in the expression, but not the identifiers to its right.

NSee Wiedmann [75] for a discussion of potential ambiguities.
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3.3.9.3 Indexed Assignment (A[l;...;K]+~B)

Indexed assignment is similar to the indexed assignment of current APL. Consider
the form A[II;I2;...;IJ.]'—B, where A is a rank N array. A[I!;Iz;...;IJ.] must be a
valid index form. The result of A[Il iy eeas] j] , before partitioning is removed, is a rank
M array of rank K items, where M —= +/(pl,),(pL,), ... ,Z'JIJ. and K —— N-J. Bis also
partitioned into an array of rank K items. As in current APL, the singleton dimensions
are removed from the partitioned values of A[Il;Iz; cen ;IJ.] and B, and the ranks and
shapes of the resulting arrays compared. (A dimension is a singleton if the length of all
the vectors along the dimension is one, i.e., if C is a rank NN array, then the Ith dimension
is a singleton if 1A.=p{N—DI}C.) If, with singleton dimensions removed, the partitioned
value B has the same shape and rank as the indexed value A[Il;Iz;. . .;IJ.], then the
items of B replace the corresponding indexed items of A. If, with singleton dimensions
removed, Bis a scalarywith one rank K item, then the single item replaces each indexed
item in A. Otherwise A[Il ilyieas ;Ij] and B are not conformable for indexed

assignment.

The rule for disambiguating multiply specified values is the rule give by Falkoff and
Orth in their APL Standard [21]. If an item in A is selected more than once by
A[I1 shpiees ;IJ.], then the item assigned will be the item in B with the largest index in the

vector ,{K}B.

3.3.9.4 Branch (—)

As in current APL, branching transfers control within the body of a defined function.
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3.4 Defined Functions

In current APL the application of defined functions is more constrained than the
application of primitives. A defined function is applied to its entire array argument(s). It
does not extend meaningfully to higher rank arrays unless explicitly programmed with the
extension in mind. Moreover, defined functiops cannot be applied with any of the

operators.

In carrier APL, we apply defined functions in the same manner as we apply the
primitives. The partitioning algorithm and application forms defined in sections 3:1 and
3.2 are used, permitting defined functions to be applied in parallel to arrays of non-scalar
items. In this section we specify how defined functions are defined, applied, and

evaluated.

3.4.1 Applying defined functions

To apply a defined function with an application form, we need the same information
about the function that we have for the primitives. The function must have a base
definition, a base rank, and a datum rank. However, not all defined functions can be
defined as a mappfng from fixed rank arrays to fixed rank arrays. Thus we divide the
defined functions into several categories: fumctions of bounded rank, fumctions of
unbounded rank, functions which return no explicit result, and niladic functions. - We

i

consider each category in turn.
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3.4.1.1 Defined functions of bounded rank
A defined function of bounded rank is a monadic or dyadic function that returns an
explicit result, and that can be defined for fixed rank arrays. It can be applied with all of

the application forms.

The base rank and the permissible datum ranks must be declared. Any non-negative
integer is a valid base rank for an argument or result of a function of bounded rank. The
permissible datum rank of an argument may be 0 or N, where an N means any datum
rank is permissible. The permissible datum rank of the result may also be 0 or N, but it
may be N only if one of the arguments has datum rank N. Thus defined functions of
bounded rank map a rank an array of /N items to a simple array, or to another array of

rank IV items.

The base definition is given by the function body. It must accept a base argument(s)
with a base and datum level corresponding to the declared ranks for the argument, and
return a base result with a base and datum level corresponding to the declared ranks of
the result. We cannot determine by static examination if a function body returns results
with the correct base and datum rank. However, if in the context of the evaluation of an
application form, a function produces base results of incorrect rank, an error is signalled

and application halts.

We declare the base rank and the permissible datum ranks in the function header by
attaching the rank attributes to the corresponding formal parameter. For example, figure
3-24 presents the definition of a dyadic function MERGE with base rank 1 1 1 and
datum rank N N N. Local variables are specified as in current APL, separated from the
formal parameters by a semicolon. The function body may be a multi-line program,

including labels and branching, as in current APL.



VR:1:N~-X:1:NMERGEY:1:N ;L
[1] L~ (pX)pY
[2] R~ ,(L1X) LY

v

Figure 3-24: A defined function MERGE with base rank 1 1 1 and datum rank N N N.

When MERGE is applied with an application form, the base and datum ranks are
used to partition the argument arrays into carriers, and the application form determines
the pairing of base arguments. For each pair of base arguments, the left argument is
bound to X, the right argument to Y, and the function body is evaluated. The base result
is the value of R. The base results are assembled in a new carrier, as determined by the

application form. Partitioning is removed, and the application is complete.

The application of a defined function with order dependent side effects to a carrier of
base arguments is usually undefined. Scalar product and outer product have no defined
ordering of function applications to base argument pairs. Reduction and scan apply
functions sequentially to the items of a vector, but there is no defined ordering of their
row-wise extension to higher rank arrays. Naturally, any implementation will order the
applications of a function to the arguments in a carrier, but the ordering is

implementation dependent, and may vary.

3.4.1.2 Defined functions of unbounded rank

A defined function of unbounded rank is a monradic or dyadic function which returns
an explicit result, and which is not a mapping from a set of fixed raﬁk arrays to a set of
fixed rank arrays. The function header and body are identical to the defined functions of

current APL. No base or datum rank vectors are specified.

A function of unbounded rank is applied to its entire array argument(s); no three-

level carrier partitioning is performed. However, a monadic defined function BAR of
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unbounded rank can be applied to a rank N array A with a datum rank K by specifying
BAR{K}A. A is partitioned into a rank N—K array of rank K items, and the formal
parameter of BAR is bound to the partitioned value. If N is less than K, the value of A‘
is coerced to rank K by adding singleton dimensions. In a dyadic application, e.g.,
A DBAR{K}B, both a&ay argu'ments are partitioned into arrays of rank K items. The
permissible datum ranks are not specified; the ew;'aluation of the function body determines

if K is an acceptable datum rank, and also determines the datum rank of the result.

3.4.1.3 Defined functions with no explicit result

Functions with no explicit result may be defined as functions of bounded rank, or of
unbounded rank. If defined with bounded rank, the base and datum ranks of the
arguments are declared and attached to the formal parameters as described above. The
function can be applied with the application forms. Arrays are partitioned into carriers,
base arguments paired, and the function applied in the standard manner. Obviously no
base results are produced. If defined with unbounded rank, the header of the definition is
identical to the header in current APL, and the function may be applied with datum

rank.

3.4.1.4 Niladic functions
Niladic functions are defined and applied as in current APL. They cannot be applied

with the application forms or with datum rank.
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3.4.2 Evaluating defined functions

The evaluation of a defined function is similar to current APL. The formal
parameters are bound to arguments; a new environment is created; and the body of the
function is evaluated in the new environment. The scoping of names is dynamic as in

current APL.

Applying a defined function with a non-zero datum rank introduces an array (or
arrays) of mon-scalar items into the new environment. Let FUN be a monadic defined
function with formal parameter X. If we apply FUN with datum rank K to an array A,
i.e., FUN{K}A, the formal X is bound to an array of rank K items. This is true if FUN
has bounded or unbounded rank. We call K the smplicit datum rank of X. Note the
implicit datum rank is associated with the array value and not the application form. The
binding exists only during the evaluation of FUN, but the value is global to the
evaluation of any form within the function body. Through side effects, the partitioned

value may be returned to the global environment.

Implicit datum rank adds a partition to a ragged array. If an array A has implicit
datum rank K, then A is an array of rank K items. The ragged arrays defined in section
3.1.1 are in effect arrays of rank O items, and they have implicit datum rank 0. Thus
every array has an implicit datum rank. When we say we remove the partition from an
array with implicit datum rank K, we actually map the array to an array with implicit

datum rank 0.

We define how to apply a function to an array with implicit datum rank. Recall that
the primitive functions map the rank of the items in an array in a very uniform manner;
arrays of rank NV items are mapped either to another array of rank [V items, or to a

simple array. Let A be an array with implicit datum rank J, and let B be the value of A
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with the partition removed. Consider the application of a primitive function F to A with
datum rank K the form is F{K}A. To evaluate F{K}A we first evaluate F{K+J}B. The
evaluation of this second form is well-defined, for B is a simple array. Let C be the result
of the evaluation. Then, if F preserves datum rank, we associate the implicit datum rank
J with C; otherwise, if F maps a rank K item to as simple scalar, the implicit datum rank
of C is zero. Note the application results in an error if K+J is not a permissible datum
rank for F. In the application of a dyadic function, the implicit datum rank of both
argument arrays must be the same, unless one argument to the function is restricted to an
array of simple items.

The definition of the application of primitives with implicit datum rank extends
immediately to defined functions. Defined functions are comstructed from primitive
functions; thus they also map an array of rank N items to another array of rank N items,
or to a simple array. Note we cannot construct an array of arbitrarily nested items by
“pesting” implicit datum ranks. Each time a function is applied, the implicit datum rank
is removed from the argument array and added to the datum rank of the application
form. Thus, if we call one defined function from the body of another, the size of the
implicit datum ranks of the values in the local environments may grow, but they never

form a nested, multi-leve! partition.

3.4.3 Examples

3.4.3.1 Remove duplicates
Figure 3-25 presents the remove duplicates idiom as a defined function of bounded

rank; it is declared to have base rank 1 1 and datum rank N N.

Let M be a character matrix representing a word list. Consider the form
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V R:1:N <~ REMDUP V:1:N
[1] R~ (ViV)=1pWV)/V
v

Figure 3-25: Remove duplicates as a defined function of bounded rank.
REMDUP{1}M, where REMDUP is applied with datum rank 1. To evaluate the
_expression, we first partition M into a vector of rank 1 items and bind the formai
parameter V to this partitioned value. V has implicit datum rank 1. In the body of
REMDUP, every application of a function to V is equivalent to the application of the
function to M with datum rank 1. Note that dyadic iota (2) and shape (p) both map
rank K items to scalars. Thus the results of these functions have implicit datum rank 0,
and functions applied to the results are effectively applied with datum rank 0. Thus we
see ((ViV)=1pWV)/V in the local environment is equivalent to (AMi{1}M)=1p{1}M)/{1} M in
the global environment. This second expression is the extension of the remove duplicates

idiom to non-scalar data presented in chapter 2 (see section 2.3.4).

3.4.3.2 Row sort

Defined functions of bounded rank are useful in extending idioms which otherwise
cannot extend to higher rank arrays. For example, we sort a vector V with the form
VIAV]. This idiom does not extend to collections of vectors because of the syntactic
restrictions of the indexing form. However, we can write a defined function which can
independently sort the rows of an arbitrary rank array. The definition of ROWSORT is
given in figure 3—26;.the function has base rank 1 1 and datum rank N N. The scalar
product ROWSORT A independently sorts the rows of an array A.

V R:1:N -~ ROWSORT V:1:N

(1] R~ V[4V]

v

Figure 3-28: Row sort as a defined function of bounded rank.



Chapter 4

ANNOTATED EXAMPLES

This chapter presents some examples of programming with carrier arrays. In the first
section, we examine the key-word-in-context problem and compare a carrier APL solution
with solutiors in current APL and nested arrays. In the remainder of the chapter, we

consider a variety of programming problems and present their solutions in carrier APL.

4.1 Key word in context.

The key-word-in-context problem has often been used to portray programming
techniques and style [61, 35, 63, 57, 58]. The problem is: Given a list of book titles,
produce a sorted list of titles keyed by each word in the title; a title appears once for each
word in it. KWIC is a non-trivial problem; Parnas estimates a KWIC system can be
coded by a good programmer in a week or two [61]. A simple solution requires several

pages of PASCAL.

KWIC is a natural problem for APL. Ar algorithm for a solution is:
1. Determine the sort order of the words in the titles.

82
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2. Copy and rearrange the titles into sort order.
3. Highlight the key word for each entry.
The steps in the algorithm correspond directly to primitives in APL: gradeup (4) for
sorting, indexing for rearranging, and rotate (¢} for highlighting. A four line solution can
be written in current APL if we assume the titles can be represented as a simple matrix:
each word in a title is a single character, and all titles have a common length. However,
the program becomes significantly more complicated when we extend it to realistic data.
In carrier APL, a four line solution generalizes trivially from a simple matrix to collections
of titles embedded in a rank 3 array. In this section we present a KWIC system written

in carrier APL and contrast it with solutions written in current APL and nested arrays.

4.1.1 Carrier APL

4.1.1.1 Simplified KWIC

First consider a simplified version of the KWIC problem. We represent a list of titles
in a ragged matrix A: each title is a row of the matrix; each word in the title is a single
character. Figure 4-1 presents a solution and a sample evaluation. In the first line we
calculate S the sort order of the “words”; recall that gradeup can be applied directly to a
character vector. Line two contains a standard APL idiom for classifying the numbers in
S into intervals of length N; it in effect reports the title containing the word
corresponding to each element in S. Line three calculates the offsets R needed to rotate
each word to the front of its title. We now have all the information needed for a KWIC

index; in line 4, we apply this information with index and rotation to form the result K.
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S—4,A
I~ 1+4/Se.>+\N ~ pA
R+~ "IN
K~ R[S10A[D,']
A - SP
TAIL
APL
S - 475692813
N —— 243
I - 232231312
R — 010123012
K — AILIT
APL|
ILITA
LITAI
LIAP
AS
PLIA
SH
TAIL

Figure 4-1: Simplified KWIC in carrier APL.

4.1.1.2 Realistic KWIC

We now extend the solution to a more realistic data structure. Titles are represented
in a three dimensional ragged array: each plane is a title; each row is a word. Figure
4-2 contains a solution and the resulting index. Note the solution is essentially identical
to the simplified KWIC solution. We insert datum ranks to indicate we are now
representing words as character vectors, not single characters. We also add a flatten ()

in line four to format the index for output.



S~ A{1},{1}A

I~ 1++/8o.>+\N +~ p{1}A

R+~ ,"1+4tN

K - S{2HRIS19{1}ALD,{1}'1")," !

A — Structured The A
Programming APL Programming
Idiom Language
List
K - A Programming Language |

APL Idiom List | The
Idiom List | The APL
Lenguage | A Programming
List | The APL Idiom
Programming | Structured
Programming Language | A
Structured Programming |
The APL Idiom List |

Figure 4-2: Realistic KWIC in carrier APL.

4.1.2 Current APL

4.1.2.1 Simplified KWIC

A similar KWIC program can be written in current APL if we represent a list of titles
as a rectangular matrix: each title is a row of the matrix; each word in the title is a
single character; all titles have a common length. Figure 4-3 presents the program.
There are a few differences from the carrier solution: we must index the characters from
A into an alphabet ALPHA before sorting, and the expressions to calculate NV and R are
slightly more complicated. However, the carrier and current APL sclutions areAnearly

identical.

S~ AALPHA1, A

I~ 1++/Se.>+\N ~ (pA)[1] p(pA) [2]
R~ ,"1+(pA)pr(pA) (2]

K —~ R[SIGALL],'I

Figure 4-3: Simplified KWIC in current APL.
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4.1.2.2 Reaslistic KWIC
The current APL solution does not extend simply to a more realistic data structure.
We now represent titles in a three dimensional array: each plane is a title; each row is a
word. The planes and rows are blank padded as necessary, for the words and titles may
have varying length. Figure 4-4 contains a solution.
M+~ Av.#" !
S — A MY ,Q(pALPHA) L8O 1+ALPHAtA
I~— 14+/50.>H\N — +/M
—~ M/ {117 1+((x/(pA) [1 21),(pA) [3])p1 3 28(pA}[1 3 2] pr(pA) [2]
— R[S;10[21(4, [2)(pA) [1 3] p(pA) (31 11"} [L; ;]
Y*- ((pXD1], x/(pX)[2 31+ 0 1)p
C ~ V19T ~ Y#' !

H~[/+/C
K ~ (pY 1], Hp(,{(+/Cle . 2eHN\(,C}/ ,Y

Figure 4-4: Realistic KWIC ip current APL.

The solution is more than twice as long as the previous program, and is an order of
magnitude more complicated. We first calculate M, a mask to identify the biank rows of
A, and we use it as a filter throughout the program. S is again the sort order of the
words in A, but we now represent each word as a number in base pALPHA before
applying grade up. This sorting idiom loses precision for long words; a longer, iterative
method should be used. The expression to calculate the rotators R is significantly more
complicated, for we can not rotate each word as a unit in current APL; rather, we must
rotate each column of characters. The KWIC index X is calculated as before, but we add

a four line idiom to format it for output.
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4.1.3 Nested Arrays

The nested array system is a superset of current APL, and thus the current APL
solutions are also nested array solutions. However, a collection of book titles can be
represented as nested array without any blank padding: each title is a vector of enclosed
character vectors, and the titles are in turn enclosed and assembled in a vector. For

example:

((Structured) (Programming)) ((The) (APL) (Idion) (List)) ((A) (Programaing) (Language))

The KWIC solution for this data structure is not a simple generalization of the four
line APL solution. Figure 4-5 presents the program. The first two lines convert the
nested representation to a rectangular matrix of words for sorting. We sort the matrix of
words as in current APL, converting each word to a base pALPHA number. The
calculation of I, R, and the KWIC index X are similar to the simplified APL solution.
Two lines are then required to format the nested KWIC index for output.

Al ~ D /A

A2 ~ H[/p” AT Al

S« 4,8(pALPHA) Q" 1+ALPHALA2

I+— 14+/S2.>H\N - D [p"A

R+~ ~1+D>,/t"N

X~ R[S107AL[L,"'1

Te o X, =0
K«<1(/p"Dt"T

Figure 4-5: Realistic KWIC with nested arrays.

4.1.4 Anaslysis

Only the carrier array solution generalizes from simple to realistic data. The concept
of datum rank permits a function to extend directly from array of scalars to arrays of
non-scalar data. In current APL, the primitives apply naturally to a simple matrix. But

when this matrix becomes a three-dimensional blank padded array, an otherwise simple
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algorithm must be contorted to apply the primitives to the new data structure. And in
the nested system, when a nested data structure is introduced, the program must be
rewritten with the new representation in mind.

Carrier arrays contain the match of data structure and primitives required for the key
word problem; the current and nested APL do not. Current APL does not have an
adequate representation for an array of non-scalar data, and thus the primitives cannot be
simply applied. Book titles can be represented naturally in a nested array, but we must
switch between nested and flat representationé of data, depending on the operation we
perform. A nested array is converted to a character matrix to be sorted; the nested
representation is used for rotating and rearranging the titles; and the nested KWIC index

is mapped to a flat character matrix for output.

4.2 Other Examples.

In this section we present more examples of carrier APL programs.

4.2.1 Tokenizing Strings.

A common APL idiom (called MAKEARRAY in the APL Idiom List [63]) breaks a
character vector of strings separated by delimiters into a matrix, one string per row. The
idiom is coded in carrier APL in figure 4-6. We assume there are no adjacent delimiters
in the input vector S (unless there are null strings in S). Iis the index of each delimiter
in S, and L is the length of each string. L is also the additive shape of the desired result,
and can be used to reshape S with the delimiters removed, producing the result R.

This program generalizes without changes to tokenize independently the rows of a

higher rank array. With the insertion of appropriate datum rank, it will also tokenize
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IQ—(' I=S’| ‘)/11+pS
L~ -1+I-0,"1I
R~ Lp(S#* *)/S

Figure 4-8: MAKEARRAY idiom

arrays of pon-scalar data.

4.2.2 Symbol Table Update.

The symbol table lupdate problem is presented in the APL ldiom List [83]. Two
structures, A and B, comprise the symbol table. A is a list of symbols; B is an associated
usage count list. X is a new symbol to be added to the table. If X is in A, the
appropriate element of B should be incremented. If X is not in A, it should be appended

to A, and a count of one appended to B.

An elegant solution can be written in current APL if we assume each symbol can be
represented as a single character. A and B are then vectors, and X is a scalar. Figure
4-7 presents the program. This solution extends immediately to add several symbols to

the table in parallel. X is now a vector of symbols; we assume it contains no duplicates.

A~ A, (M—~XcAX
B ~ (B, M/0)+AcX

Figure 4-7: Symbol Table Update for scalar symbols

In this example, the data structures A, B, X, and M are vectors. Membership,
catenate, and compression are evaluated in the restricted domain of their base definition
in carrier APL. Thus the evaluation of this program using the semantics of carrier APL
is identical to its evaluation in current APL. However, by appropriately inserting datum
rank, we can extend the carrier APL program to non-scalar symbols. Figure 4-8 contains

the extended solution.

All the functions in this program are applied using scalar product; thus this program
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A~ A {1} M-—~Xe{1}A/{1}X
B ~ (B, M/0)+A&{1}X

Figure 4-8: Symbol Table Update for non-scalar symbols

will also update multiple symbol tables in parallel.

4.2.3 Triangular Forms.
Ragged arrays and the carrier APL primitives make it easy to create and manipulate

triangular arrays. For example:

o (1N)pt+/1N creates an N-row triangle of successive integers.:

(¢5)p1+/15 — 1
23
4586
78910
1112131415

e 1t N creates the first N sequences of positive integers.

1d - 1
12
123
1234
12345

e [\(zN)171N creates a triangle with I occurrences of I in the ith row.

I\(5)115 - 1
2 2
333
4 4 44
55555

We can combine the last two expressions with the binomial coefficient function (:) to

calculate Pascal’s triangle.

(T1+125) . "1+[\(5)17e5  ——

el i ]
o O D e
[~
N

—

The APL Idiom List [83] presents a program which finds integers whose square is a
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palindrome (i.e., the decimal expansion reads the same backward and forward.) Figure
4-9 contains the solution in current APL. Y contains the decimal expansion of the first
N#2 integers, one per row. The expansions of the smaller numbers are padded with
leading zeros, and the second line of the program is largely devoted to rearranging the
padding.

Y ~ (14100 N+2)p10) T(1tN)*2

T =~ Y=(—+/N\Y=0)0dY
Z —= (A\D/T1N

Figure 4-9: Palindrome in current APL

In carrier APL, we can store the decimal expansions in a triangular form without
padding. The test for palindromes in line 2 is now straightforward: does an expansion
equal its reversal? Figure 4-10 presents the simplified carrier solution. Note we no longer

need to transpose the result of the encode function.

Y ~ (14100 M)pl10) T M — (1N)+2
Z ~ (Y={1}oV)/1N

Figure 4-10: Palindrome in carrier APL

4.2.4 Replicate.

Replicate is an extension of compression which has been implemented in several APL
systems [8, 17, 85]. The left argument to replicate (/) is a vector of non-negative integers
which indicate how mvany copies of the corresponding elements in the right vector appear

in the result. For example:

(:3)/' ABC' - 'ABBCCC'

Replicate is a one-line idiom in carrier APL; figure 4-11 contains the code. Vis a
vector of data; M is the numeric guide to replicating the elements of V. We first use

reshape and transpose to create a matrix of the elements of V; row I contains
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[/M copies of V[I]. We then apply take to select the desired number of elements from

each row, and ravel the result.

,MIQU/ Mp{1}V
Figure 4-11: REPLICATE idiom

In carrier APL, defined functions can be applied with all the application forms, in a
manﬁer similar to the primitives. Thus we can define a REPLICATE function with base
rank 1 1 1 and datum rank O N N and use it in carrier APL programs as an extension to
compression. Figure 4-12 contains the definition.

V R:1:N < M:1:0 REPLICATE V:1:N

(1] R~ ,MIQ(/Mp{1}V
v

Figure 4-12: REPLICATE function

David Rabenhorst of IBM [66] suggested that the replicate function would simplify
the KWIC index programs discussed in section 4.1. Figure 4-13 presents a carrier solution
using the REPLICATE function. The program is essentially the same as before (see
figure 4-2), but the second line is simpler. Moreover, the expressions for S, D, and R can
be substituted into the fourth line of the program, producing a (relatively) readable one-
liner. Similar simplifications are found when using replicate in the current and nested
APL solutions.

S < A{1},{1}A

D < (p{1}A) REPLICATE{2} A

R+~ ,"1+1p{1}A
K < {eHRO(}D,{1}'1)(83," !

Figure 4-13: Realistic KWIC in carrier APL with REPLICATE
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4.2.5 Rational Numbers

In his evaluation of nested arrays, Orth [60, 59] uses rational numbers to examine the
capabilities of the nested array system to support a limited form of data abstraction. He
represents rational numbers in a nested array, and defines rational plus and times
- functions. He then examines if an APL arithmetic expression can be transformed into an
equivalent rational arithmetic expression by the appropriate substitution of function
pnames. In the nested array system, Orth shows this is not possible; a defined rational
plus function cannot be equivalent to the primitive plus (+) in both a scalar product
application and a reduction. With carrier arrays, we can define such a rational plus

function.

In carrier APL, a rational number can be represented as a vector of two integers, a
numerator and a denominator. Figure 4-14 presents the defined functions PLUS and
TIMES for adding and multiplying rational pumbers. Each function maps a pair of
rational numbers to a new rational, which in our representation- is a mapping from a pair
of vectors to a vector. Thus both functions have base rank 1 1 1. The datum rank

vector is 0 0 0, for the components of the representation of a rational number are scalars.

v R:1:0 «~ A:1:0 PLUS B:1:0
[1] R~ (A+.x0B),("114)x"11B
v

vR:1:.0 «— A:1:0 TIMES B:1:0
[1] R~ AXB
v

Figure 4-14: Functions for Rational Arithmetic

Rational numbers can be collected in an array by representing them as length-two
vectors along the last dimension. When PLUS or TIMES is applied to arrays X and Y of

rational numbers (e.g., X PLUS Y), X and Y are partitioned into collections of vectors,
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and the function is applied independently to each pair of corresponding vectors. This
parallels the application of the primitive plus (+) function to two arrays of scalars: Plus
is applied independently to pairs of corresponding scalars. If PLUS is applied with an
operator such as reduction or outer product, the partitioning semantics again parallels the
application of the primitive plus function to an array of scalars with the same operator.
Thus PLUS and TIMES can be directly substituted for the primitives + and X in
every application context when transforming an arithmetic expression to rational
arithmetic {assuming there are no name conflicts.) In the figure 4-15, A and B are arrays

of integers; AR and BR are corresponding arrays representing rational numbers.

Current APL Carrier Arrays

A+B AR PLUS BR

A++/B AR PLUS PLUS/BR
A+.xB AR PLUS.TIMES BR

Figure 4-15: Integer and Rational Arithmetic
However, PLUS is not equivalent to the primitive plus when applied to an empty
array with any of the application forms. For example, the reduction of an empty array is
defined to be either the identity element of the applied function or an error if no identity
exists (see section 3.2.4). There is no means of specifying the identity element of a
defined function in carrier APL.}? Thus the PLUS reduction of an empty array is an

error, whereas the plus (+) reduction is zero.

More importantly, with or without the nested or carrier extension, APL is not a good

language for data abstraction, for the programmer wants to use the primitives of the

12APL2 [65] addresses this problem; in APL2, the system label [JID provides a means of specifying an
identity element for a defined function.
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language to manipulate the representation of the data object directly. But the primitives
have no knowledge of the representation, and their application can have unfortunate
consequences. For example, the fill element in the overtake of a vector of integers
(C11(1+pIV)11V) is O, the identity of the primitive plus function. However, the overtake of
a vector of ratiomals (T11{1}(1+p{1}JRVI1{1}RV) is 1p0, which is not a well-defined

rational.

4.2.6 A Phone List

Carrier APL is well suited for small database applications. A phone list is a small
database. Our sample phone list is a collection of records, each containing a person’s
name, his phone number, and his office number. In this section we present a set of carrier

APL functions which create and manipulate the sample list.

4.2.6.1 Parsing the data

Assume the data for the phone list is stored as a stream of text, a long character
string with embedded new lines. Each line is a record; the fields within each record are
separated by colons. We can use the MAKEARRAY idiom defined in section 4.2.1 to
parse the data into a three dimensional array: one record per plane, one field per row.

Figure 4-16 defines MAKEARRAY as a function, and in figure 4-17 we parse the |
data for a sample phone list. STREAM contains the raw da‘ga. We first use
MAKEARRAY to break STREAM at each newline character (<n!>), resulting in the
matrix RECORDS which contains one record per row. We then apply MAKEARRAY in
parallel to each row of RECORDS, resulting in the phone list PL. (The planes of PL are

displayed adjacently for convenience.)
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VR:2:N+ D:0:N MAKEARRAY S:1:N;I; L
(1] I-{D=8,D)t1+pS
(2] L~ "1+1-0,71U
[3] R« Lp(S#D)/S

v

Figure 4-16: MAKEARRAY function

STREAM
Steve Wood:436-8160:501F<ni>Bob Nix:436-1834:420<n!i>John
Ellis:436-8160:421<ni>Nat Mishkin:787-2660:501F<ni>

RECORDS < '<ni>' MAKEARRAY "11STREAM
Steve ¥Wood:436-8160:501F
Bob Nix:436-1834:420
John Ellis:436-8160:421
Nat Mishkin:787-2660:501F

PL— ':'* MAKEARRAY RECORDS

Steve ¥ood Bob Nix John Ellis Nat Mishkin
436-8160 436-1834 436-8160 787-2660
501F 420 421 501F

Figure 4-17: Parsing Phone List

4.2.6.2 Sorting by Last Name

Figure 4-18 presents the carrier APL program to sort the phone list PL by last name.
We first collect the last names in LN, noting that the last name in the name field is every
character after the first blank. We then grade LN to get the sort order and rearrange PL.

LN <~ 1}{W' '=PL[;1])/PL[;1]
SPL — PLLA{1}LN]

Figure 4-18: Sorting by Last Name
4.2.6.3 Searching by Last Name
Figure 4-19 contains programs to search the phone list for records which match the
last name represented by the character vector NAME. We first collect the last names in
LN as before, and then use dyadic iota (1) to get the first match or membership (€) to get

~ them all. In both cases, an empty array is returned if there are no matches. Note both
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programs will search for multiple names in parallel; NAME must be a matrix

representing a collection of names, one per row.

I «~ LNi{1}NAME M <~ LNeQ1}NAME
FIRST — PLIU<p{2}PL)/ 1] ALL <+~ M/{2}PL

Figure 4-19: Searching by Last Name
4.2.8.4 Cross Referencing by Office
Figure 4-20 contains two programs to cross reference the phone list by office. In the
first program, we first obtain the list OL of offices in the phone list with duplicates
removed. We then use outerr product to compare each distinct office with the office fields
in the phone list, and select the records corresponding to each office from PL. The result
CR1 is a four dimensional array; each hyperplane CR1[]I] contains all the records of

individuals in office OL[I].

The second program is more efficient. We first sort the phone list PL by office, and
determine the indices I where the offices change. We use I to determine the length L of
each sequence of records with the same office, and use L to reshape the phone list. The
cross reference CR2 is equivalent to CR1, except that CR2 is sorted by office along its

first axis.

OL — (M{1}D=1p{1}D/{1}T — PLI[;3]
CR1 ~ (OLs.={1}PL[;3))/{2} PL

SPL — PLIA{1}PL[;31]

I = (1{1}SPLL;3))#{1)"1H{1}SPL[;31),1)/1p{2} SPL
L ~I-0,"1I

CR2 ~ Lp{2}SPL

Figure 4-20: Cross Referencing by Office.
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4.2.8.5 Formatting for Output
The phone list PL is a three-dimensional array, each plane representing a record. For
output, we pad each field to the maximum width of all the values of the field, and ravel

the planes. Figure 4-21 presents the program and the result of formatting PL.

ML ~ [/QpPL
O = {2}(ML+1)e.2 1 2tPL

Steve Wood 436-8160 501F
Bob Nix 436-1834 420
John Ellis 436-8160 421
Nat Mishkin 787-2660 501F

Figure 4-21: Formatting for Output.



Chapter b

- IMPLEMENTATION ISSUES

Much of an implementation for carrier APL is similar to an implementation of
current APL. The structure of the systems is the same. The tokenizer and syntax
analyzer are essentially identical. The base definitions of the carrier APL functions are

closely related to the primitive functions of current APL.

A carrier APL implementation differs from a current APL system in the application
and evaluation of functions and in the representation of arrays in memory. The
application routines perform carrier partitioning, a concept found only in the scalar
functions of current APL, and they apply functions to arrays of possibly non-scalar items.
Arrays are stored as edge vectors [3], vectors of pointers pointing to vectors of data. The
contiguous, ravel order representation of arrays used in current APL systems is not
appropriate for ragged arrays.

In this chapter, we examine the issues in implementing carrier APL. We first present
the edge vector representation and examine why it is appropriate for carrier arrays. We

then contrast the designs of interpreters for current and carrier APL, and sketch the

99



100

routines which apply and evaluate functions in a carrier APL interpreter. We end the

chapter by considering some issues in compiling carrier APL.

5.1 Edge Vector Representation

We defined a ragged array as a uniform-depth tree (see section 3.1.1). The edge
vector representation is a natural realization of this definition. An edge vector is a vector
of pointers, or edges of a graph. In our definition of an array as a tree, each dimension in
the array corresponds to a level in the tree. In our representation of an array, each
dimension corresponds to a collection of vectors in storage. Each row of a ragged array is
stored as a vector of data; each plane is a vector of pointers to vectors of data; each
hyperplane is a vector of pointers to the vectors representing planes; and so forth. Figure

5-1 presents the edge vector representation of a three-dimensional array.

[-====>]|1=====>]
/ ! |
1=~/ [11--=-->2 3
| !
L=\ |11---=->4 5 6
\
\==me- >H----- >7 8910

FH=-=--->11 12 13 14 15
Figure 6-1: Edge Vector Representation of 3 2p{1}(s5)pt+/15

Edge vectors are stored in a heap; the basic unit of storage is a homogeneous vector.
Each vector has a type and length associated with it. The types are pointer, character, or
one of the three numeric types: boolean, integer, and floating point. The vectors are not
extensible; two vectors are catenated by creating a new vector of appropriate type and

length. However, an edge vector can be a component of more than one array; this sharing
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gives a substantial saving in storage.

We evaluate the suitability of the edge vector representation for carrier arrays using

the following criteria:
e Capabilities for representing a heterogeneous ragged array.
e Capabilities for partitioning a ragged array into a three-level carrier.
e Efficiency of access to an individual element or base argument.
e Efficiency of traversal.
e Storage utilization.

e Complexity of storage management.
These categories capture the special requirements of carrier APL as well as general

desiderata for an array representation.

5.1.1 Representing a heterogeneous ragged array.

Each vector in the representation of an array is stored independently with an
associated type and length. Thus the representation is well suited to represent ragged and
heterogeneous collections of vectors. Note that a row of an array can be stored as a
vector of data only if the row is homogeneous. If the row contains both character and
numeric data, another edge vector must be introduced; the row is represented as a vector
of pointers to single data elements. Throughout the remainder of this section, we assume

each row of an array is homogeneous, though different rows may have different types.

5.1.2 Partitioning a ragged array into a three-level carrier.

A ragged array can be implicitly partitioned into a three level carrier by storing the
ranks of the three levels; the actual partitioning is done while accessing the elements of
the array. Let A be a rank NN array, and let the ranks of the three levels be I J K, where
N——J+J+K. Recall the three levels are carrier, base, and datum. To access the base

arguments, we traverse the top I levels of the tree structure of edge vectors. If the base
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arguments are not‘scalars (i.e., (J+K)>0), the elements of the vectors on the ith level are
pointers to base arguments; if the base arguments are scalars (i.e., (J+K)=0), the elements
of the vector are the base arguments. To access the elements on the datum level, we
similarly traverse the top I+J levels of the tree structure, and to access the components of

each datum, we traverse all V levels of the tree.

5.1.3 EfTiciency of access to an individual element or base argument.

An arbitrary element or base argument can be accessed very efficiently with the edge
vector scheme; we simply follow a chain of pointers. For simplicity, we use zero origin
indexing in the following discussion, and assume that the size of each vector element is
the same as the smallest addressable unit of storage. If AC is an accumulatqr containing
the address of an edge vector in the Kth dimension of an array, then CONTENTS(AC+])
is the address of the Ith component of K+1 dimension. Thus to access an element
AlIl;I2;13] in a rank 3 array, we must execute AC—AC+] three times, each time setting
I to the appropriate index. If we unroll the loop, this requires six instructions on a
PDP-10: three moves and three adds. By comparison, the equivalent index calculation
on a rectangular array stored in ravel order requires three multiplications and three

additions.

5.1.4 Efficiency of traversal.

Ravel order traversal of the elements in an edge vector representation of a ragged
array is easy and efficient. However, traversal along any other axis is expensive.
Traversal along the first dimension requires following a chain of pointers from root to leaf
for every element access. Similarly traversal along the Kth dimension of a rank N array

requires following a chain of at least N—K pointers for each access.
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Traversal along an arbitrary dimension is not as important in carrier APL as it is in
current APL. The axis operator is replaced with datum rank in the application of the
primitive functions. Rather than access elements along the Kth dimension of a rank N
array, in carrier APL we partition the array into a collection of rank N—K data items,
and manipulate the Kth dimension as a collection of vectors of these non-scalar items.
Accessing successive vectors of non-scalar data in ravel order is as simple as traversing the

elements of the array.

5.1.5 Storage utilization.

The edge vector representation requires some overhead for pointers. However, it is
easy to show that if every vector on every level of an array contains at least two
elements, the number of pointers in the representation is less than the number of data
items, and that as the size of the edge vectors increase, the ratio of pointers to data items
decreases. Thus if we assume a pointer takes the same amount of space as a data item,
and ignore the overhead of type and length fields for the moment, we see storage
utilization in the representation of an array is always greater than 50 percent, and often
much greater. Moreover, the edge vector permits the implicit sharing of subarrays
between arrays. The pointer overhead in representing a single array may be recouped by

the sharing of portions of the representation with other arrays.

First consider the relationship of the edge vector representation to the definition of a
ragged array as a tree. Pointers correspond to edges in the tree. Note, however, that in
the representation we have collapsed the lowest level of the tree by collecting the leaves

into vectors of data.!® Thus pointers in the representation are in one-to-one

13This is only true if each row of the array is homogeneous. See section 5.1.1.
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correspondence with edges into internal nodes in the tree.

Now consider a ragged array containing d data elements; the corresponding tree has i
internal nodes and d leaves. Assume each node in the tree has at least k branches, where
k>2. Following a proof by Knuth [36], we note there are i+d-1 edges, for there are no
cycles. Also we know there are at least ki edges, for each internal node has at least k

branches. Thus we have

ki < i+d-1

which gives
(k-1)i+1 <d

In the edge vector representation of this array, we know there are i-1 pointers and d data

elements (assuming the rows of the array are homogeneous). Thus we have

pointers i-1 i-1 1

oo == S— < e < —

data d (k-1)i+1 k-1
If all nodes on each level in the array have two or more branches, the ratio of pointers to
data is no greater than 1, and as the branching factor increases, the ratic decreases. If all
nodes have 10 or more branches, the ratio of pointers to data is 1 out of 10. In the

representation of the triangular array shown in figure 5-1, we have 7 pointers and 15 data

elements.

To estimate more accurately the storage utilization we must estimate the storage
requirements of a pointer, the type and length fields associated with a vector, and the
data in the vector itself. A pointer on a PDP-10 is an 18 bit halfword. The type and
" length can be encoded in another 18 bit halfword, if no vector is longer than 915 (roughly
32,000) elements. (Alternatively the type could be implicit in the address of the data, as

in some PDP-10 LISP implementations [71], and the length could be a full halfword.)
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Thus the address, length, and type of a vector can be represented in a full word, which is
the “pointer” in the above analysis. (Alternatively, the length and type can be stored
with the vector of data, and the pointer in a separate halfword; this arrangement may‘
cause alignment problems for the data in the vector.) Integers and floating point
numbers take a full word in a PDP-10. Thus for numeric arrays, storage utilization is 50
percent or more. Character data can be packed five to a word, and boolean 36 to a word.

For character and boolean data, the edge vector overhead is considerably higher.

The edge vector representation permits the sharing of data between different arrays;
this sharing often offsets the extra stor#ge required for pointers. For example, to
laminate two matrices into a rank 3 array does not require the copying of the two
matrices, as it does in current APL. Only one new edge vector, with two pointers, is

created; one pointer points to the first matrix, the other to the second.

5.1.6 Complexity of storage management.

The internal pointers in the heap introduced by the edge vector representation
significantly complicate storage management when compared to (the techniques uwsed in
current APL systems. However, efficient garbage compactification zlgorithms have been

developed whose running times are linear in the size of the heap.

To reclaim storage, active edge vectors must be identified, arbitrary length vectors of
pointers must be relocated, and their pointer values updated. This problem is addressed
by Wegbreit in the design of a compactifying garbage collector for ECL [72, 19]. In his
algorithm, contiguous blocks of active storage are marked, and a forwarding address of
each block is calculated. Pointers can then be updated, and the blocks moved. Pointer

updating in Wegbreit's algorithm is worse than linear in the sum of the number of
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pointers and the size of the heap.

Morris has developed an improved algorithm which is linear in the size of the
heap [55, 56, 76, 23]. Morris makes two sweeps of the marked heap. Moving from low
addresses to high, he chains together all “upward-pointing” references to each cell. When
a cell is reached, its new location is known, and all upward references are updated to the
new location. Moving from high addresses to low, all “downward-pointing” references are
chained. When a cell is reached, it can be moved to its new location (we are compacting

to the high end of memory), and all downward references updated.

Martin has recently published a new algorithm which is more efficient than Morris's,

though it remains linear in the size of the heap [40).

In the discussion above, we do not comnsider reference counting schemes or the
“copying” garbage collectors which are suitable for virtual memory machines. Cohen
provides a general survey and a comprehensive bibliography of garbage collection

techniques [18].

5.1.7 Alternative representations.

Several alternative representations of ragged arrays are possible, but none of them fit
the requirements of carrier APL. Two representations are suggested by current APL
programming techniques for manipulating ragged structures. A ragged array can be
padded with fill characters and stored in ravel order as a rectangular array. In this
representation, the overhead of blank padding is significant, and it offers none of ‘the
flexibility or capabilities for sharing that accompany the edge vector representation.
Moreover, heterogeneous arrays can not be represented. Alternatively, the data from the

array can be stored contiguously in ravel order; the structure is stored separately as a
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collection of vector lengths or boolean masks. With this type of representation, accessing
an arbitrary element is difficult. And again, heterogeneous arrays cannot be represented.
Rosenberg considers storing ragged arrays by hashing [67]. This method is inappropriate
for carrier APL, for ravel order traversal of the elements is expensive and storage

utilization is low.

5.2 Interpretation

A prototype carrier APL interpreter has been implemented in APLSF [5] on the
DECsystem20; it is a large, 7000 line APL program. All carrier array programs in this
thesis have been run on the system. The interpreter supports the full language with a few
except,ions.14 The system contains a memory model and a storage management system
including a compactifying garbage collector. The edge vector representation is
implemented in this memory model.

In this section, we describe an interpreter for carrier APL, using the prototype carrier
APL interpreter as a guide. We first sketch an interpreter for current APL, and show
that an interpreter for carrier APL has the same structure. We then describe routines to
apply and evaluate functions in carrier APL. The implementations of these routines are
straightforward, and often closely parallel the definition of application forms and
primitive functions given in chapter 3 (see sections 3.2 and 3.3). Thus we do not go into

great detail.

4[ndexed assignment and branching are not implemented, and the definitions of monadic transpose,
dyadic transpose, and indexing have been revised since the interpreter was completed. Defined functions of
unbounded rank, defined functions with no explicit result, and niladic functions are not implemented.
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5.2.1 Current APL

The design of an interpreter for APL is simple and well-understood. The first
complete interpreter was the APL\360 system designed by Breed, Lathwell, and
Moore [13]; most of the subsequent APL interpreters have followed the same design [38].
_APL program text is tokenized as it is read by the interpreter, and no more analysis is
done until a statement is evaluated. The interpreter interleaves parsing and evaluation.
When a statement is to be evaluated, it is scanned from the right, and each well-formed
APL expression is evaluated as soon as it is recognized. The parser is a simple state
machine with a stack. The state machine requires only three states {77, 18], though it is
often convenient to use more. The evaluator is a dispatch to the appropriate function or

operator routine.

Array data is stored in ravel order in a heap. Ravel order storage is well suited to
array operations. An access polynomial permits fast translation between a multi-
dimensional array index and a ravel order storage index. Traversal along an arbitrary
axis is very efficient; elements‘along a common axis are a fixed distance apart and can be
accessed by the successive additions of a constant. Storage is used efficiently, for the data
is contiguous. Storage management is straightforward. All heap entries are referenced
indirectly through pointers in the symbol table or execution stack. Each heap entry
contains two fields in addition to the data stored. One is the length of the entry and the
- other is a backpointer to the stack or symbol table. The doubly-linked pointers makes
garbage collection and relocation easy.

The complexity of the APL interpreter is in the routines which implement the
primitive functions. Here there is almost unlimited opportunity for optimization. For

example, dyadic iota and membership can be implemented with a linear-time hashing
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algorithm [7, 33]; transpose can be effected without moving any data by manipulating an
array descriptor [1}; and the plus reduction of a boolean vector can be implemented very

efficiently using the “translate” instruction of the IBM/360 series [41].

5.2.2 Carrier APL

An interpreter for carrier APL has the same structure as an interpreter for current
APL. Carrier APL program text is tokenized as it is read into the system. Parsing and
evaluation are interleaved as before. There are minor changes in the APL syntax, but the
language can still be recognized by a simple state machine with a stack. The evaluator is

a dispatch to the routine which handles the application form in the expression.

Arrays are stored as edge vectors in carrier APL, as explained in section 5.1. Each
array has a header block which contains the rank of the array, the implicit datum rank of
the array,!® and a pointer to the tree of edge vectors. If the array is a scalar, the value is
stored directly in the header. Storage management requires a compactifying garbage
collector. All arrays are referenced indirectly through stack entries or the symbol table.
However, since the garbage collector traces all active chains of pointers, backpointers to
the stack or symbol table are not stored in array headers.

The evaluator is organized around the application forms. Each type of application
form is implemented in a separate routine. Each routine partitions argument arrays and
passes successive pairs of base arguments to another routine which evaluates the function
being applied. This second routine either implements the base definition of a primitive

function or evaluates defined functions.

15Gee section 3.4.2 for a definition of implicit datum rank.
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The edge vector representation permits the implicit sharing of data between arrays,
and the primitive functions routines exploit this whenever possible. Unlike LISP, APL
has “by-value” assignment and parameter passing [26]. Assignment by value means that
for any assignment A—<EXP>, subsequent changes to the identifiers referenced in
<EXP> will not affect A. Carrier APL maintains the value semantics of APL; thus there
can be no explicit sharing of data between values. However, data can be implicitly shared
if the sharing does not affect the semantics of an expression. Indexed assignment is the
only carrier APL operation which appears to restrict the sharing of data. If implemented
in a manner similar to the RPLACA operation in LISP, it destroys the value semantics
defined above. Rather, we implement indexed assignment by copying the edge vector

that is assigned new values. Thus, for a vector V we have:

Vil +~<EXP> —— V=((I-11V),<EXP>,1lV
This by-value implementation permits all the other primitive functions to share data

wherever possible, as in LISP.

5.2.3 Application Forms

Each of the five application forms (scalar product, outer product, reduction, scan, and
inner product) is implemented by a routine associated with the form. Each routine
determines the carrier partition of the argument arrays and of the result of the
application, performs conformability checks on the carrier level of the argument arrays,
and creates the edge vector structure for the carrier level of the result array. The routine
then cycles through the carrier level of the argument arrays, appropriately pairing base
arguments arguments, and passing them to a routine which implements the function
being applied. The results of each call to the function routine are assembled in the new

carrier. The routines are distinguished in how they traverse the carrier level to access
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base arguments, and in the conformability checks they perform.

The outer product form contains a transpose vector which guides the pairing of the
base arguments. The transpose vector is restricted to a catenation of two ascending
vectors. One maps the dimensions of the left argument to the result; the other maps the
dimensions of the right argument. Since both vectors are ascending, the base arguments
can be accessed and paired by traversing the the carrier levels in the argument arrays in

ravel order without backing up. (See section 3.2.3.1.)

5.2.4 Primitive functions

The base definition of each primitive function is implemented in a separate routine.
Each routine accepts base arguments and a datum rank, allocates storage for the result,
and performs the function. The routines differ from current APL implementations in that
they accept arrays of non-scalar items. We briefly sketch the implementation of each

class of primitive functions below.

5.2.4.1 Arithmetic Scalars
For scalar data, the functions are the same as in current APL. For non-scalar data,
corresponding elements in the data items are first paired, and the current APL routine

applied.

5.2.4.2 Equality

For scalars, the equal function is the same as in current APL. For non-scalar items,
the pointers to the two arguments are compared for a inexpensive test of equality.
(Recall that edge vectors can be shared between two arrays.) If the pointers are unequal,
the respective lengths, types, and data of the edge vectors on the first level of the two

arguments are compared. If the types are both pointer, the equal function is applied
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recursively in a breadth first search of the two trees of edge vectors.

To implement membership, we sequentially search the right argument for an
occurrence of each element in the left argument, using the equal function to test for a
match. For dyadic iota, the arguments are reversed. This algorithm takes time
proportional to the product of the lengths of the two arguments. Faster algorithms can
be used. With the definition of an appropriate hashing function, Bernecky's linear time
implementation {7, 33] can be extended to vectors of non-scalar items. Alternatively, the
non-scalar items can be mapped to a tree structure, as Bernecky has done for nested
arrays in SHARP APL [9], and the searches performed on this representation, giving an

expected-time O(n log n) implementation.

5.2.4.3 Relations

The relational functions define a lexicographic ordering of arrays. For numeric
scalars, the current APL function is used. Character scalars are compared using their
{JAYV values, and characters are less than numbers. Vectors of scalars are compared by
searching sequentially from the left for the first difference, and then comparing the
differing elements; if no difference is found, the shorter vector is less than the lbnger.
Vectors of non-scalar data are compared in a similar manner. The equal function defined
above is used to find the first difference, and less than is applied recursively to the

differing pair of elements.

Using this comparison function, gradeup and gradedown are implemented with

quicksort [37].
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5.2.4.4 Structure and Selection

The structure and selection functions treat vectors of scalar and non-scalar data alike.
With the exception of flatten and shape, they copy and rearrange the edge vector on the
first level of the argument array. If the edge vector is a vector of pointers to non-scalar
data items, these items will be shared between the argument and result arrays. The edge
vector that is being rearranged is always copied, so the value of the argument is

unchanged.

Flatten () is defined for a scalar of arbitrary rank datum, and it flattens the datum.
The result is a scalar containing a vector. Flatten is implemented by copying the data in

the leaves of the edge vector tree into a new vector.

Shape (p) simply returns the length of the edge vector on the first level of the

argument.

5.2.4.5 Functions without ocbvious extensions to non-scalar items
The functions with no obvious extensions to non-scalar items (monadic iota, matrix
inverse, matrix divide, encode, decode, and deal) are implemented as they are in current

APL.

5.2.4.8 Functions of unbounded rank

The functions of unbounded rank are implemented in a straightforward manner.
Ravel flattens an arbitrary array into a vector; the array is traversed and the items
assembled in a new edge vector. Rank returns the rank field in the array header. Dyadic
transpose walks the right argument amray to determine the shape of the result, creates a
new array of appropriate shape, and traverses the argument array again, copying elements

to their new locations in the result array. Reshape copies the items in its right argument
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into new edge vectors; the lengths of the edge vectors are determined by the left

argument.

5.2.4.7 Special Forms

The special forms are also implemented in a straightforward mapner. Indexing
-follows chains of pointers as described in section 5.1.3, and stores the indexed values in a
new array. Assignment updates the value pointer for a symbol in the symbol table.
Indexed assignment is implemented by copying the edge vectors which are receiving new
values. Branching selects the next line of the function body to be processed by the

evaluator.

5.2.5 Defined Functions

There are two major categories of defined functions: defined functions of bounded
rank, and defined functions of unbounded rank. One routine evaluates both categories.
Functions of bounded rank can be applied with the application forms. The routine that
evaluates the application form partitions the array arguments and passes the defined
function with successive pairs of base arguments to the routine which evaluates defined
functions. Functions of unbounded rank cannot be applied with the application forms
and the function is passed with its array arguments to the evaluating routine directly,
without invoking an application routine. Functions of unbounded rank can be applied
with a2 datum rank; if so, the array arguments are partitioned into arrays of non-scalar
items before being bassed to the evaluation routine.

In the evaluation of the function, the binding of formals and treatment of local
variables is conventional; current APL’s dynamic scoping is supported. However, if the

function is applied with a non-zero datum rank K, the formal is bound to an array of
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rank K data items. K is an implicit datum rank, and its value is stored in a special field
in the array header for the formal. As discussed in chapter 3 (see section 3.4.2), an
implicit datum rank is inherited by the result of the application of any function which
preserves datum rank. If the defined function preserves datum rank, its result will also be
an array of implicit datum rank K; this datum rank must be removed from the array

header when the function environment is exited.

5.3 Compilation

Compiling APL is attractive because of the optimizations to be found in analyzing an
APL expression as a unit. The difficulty in compiling APL is in determining the
attributes of identifiers in an expression. In the absence of declarations, these attributes

must be inferred.

In his thesis, Miller analyzes the binding of the attributes of APL identiﬁers into
compiled code [43, 44, 45]. He determines that the most important attributes for
compiling APL are the valence of functions and the rank and type of arrays. Function
valence determines the syntax of the expression,.array rank determines the control
structure of the generated code, and array type determines the selection of machine
instructions. The valence of defined functions rarely changes and can almost always be
determined. Array attributes can be determined from initial values and propagated
through expressions.

Miller gives an algorithm for propagating array attributes through an APL expression.
He determines which features of APL halt attribute propagation, and uses the occurrence

of these features to break programs into blocks which are compiled separately. Once the
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input values to a compilation block are known, attributes can be propagated and the

block compiled as a unit.

The “carrier” comcept of applying functions in parallel along the dimensions of an
array suggests a straightforward streaming of base argument evaluations, and makes
carrier APL an attractive candidate for compilation. In this section, we examine how
Miller’s analysis of expressions can be applied to carrier APL. We first give a brief
overview of his compiler. We then examine array attributes in current and carrier APL,
and discuss rules for breaking programs into compilation blocks. We conclude by
observing that in some ways carrier APL is more amenable to compilation than current

APL.

5.3.1 Compiler Overview

Miller's system interleaves compilation and execution; it is similar to the HP-3000
compiler [32]. When a program is compiled, it is first broken into compilation blocks.
When a block is to be executed for the first time, all existing array attributes are
fbropagat’ed through the block. The block is analyzed as a unit, and highly optimized
code is generated using transformations similar to Abrams’ drag along and beating |1).
The code is then evaluated. A preamble of “signature code” is attached to the head of
the compiled code; this preamble checks for attributes which are bound into the code. On

a subsequent execution, if any of these attributes are changed, the block is recompiled;
otherwise the compiled code is executed directly.

Miller’s compiler generates code for a special-purpose architecture, the ladder
machine [46]. However, his analysis of the problems of compiling APL is applicable to a

compiler for any machine.
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5.3.2 Array Attributes

The array attributes Miller considers important to a compiler are rank, type, and
shape. Of these three, rank and type can usually be determined and bound into the
compiled code for an expression. In carrier APL, the three-level partition of a carrier
array is the most important attribute in an expression, and it is can almost always be

determined and bound into the compiled code.

5.3.2.1 Current APL

In Miller’s compiler, rank is important, for i£ determines the contro! structure of the
generated code. Miller argues that the ranks of array values do not often change between
evaluations of an expression, except for functions that are designed to be rank
independent. Rank can easily be propagated through an APL expression; of the APL
primitives, only transpose and reshape are not rank transparent. (A function is
transparent with respect to an attribute if the values of the attribute in the function
arguments determine the value of the attribute in the result.) In a study of APL
programs, Bauer and Saal found that 80 percent of array ranks in the programs can be

determined by static analysis of the program text [6].

The type of array elements is important in generating machine instructions. Type is
a stable attribute, and it can be easily propagated through an APL expression. All APL
primitives are type transparent, and Bauer and Saal have found that almost 90 percent of
APL domain checking can be done statically. However, the APL primitives are not
transparent with respect to machine representation; a numeric value may be boolean,
integer, or floating point. Miller does not address this issue, for the arithmetic

instructions on the ladder machine are type sensitive.

The shape of an array is a more volatile attribute; the shape of array will often
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change between evaluations of an expression. Moreover, shape cannot be as easily
propagated through an expression. Five primitive functions (compression, expansion,
take, drop, and reshape) are not shape transparent; in two surveys of APL programs,
these functions accounted for approximately a fifth of the primitive functions in the
program text [11, 12, 34]. Bauer and Saal estimate only 80 percent of APL length
checking can be done statically. Miller addresses this problem by propagating three types
of shape: minimum, maximum, and actual. Minimum and maximum shape define a
range of possible shapes for an array, and they are useful for storage allocation and a
limited amount of conformability checking. All primitive functions except reshape allow

the propagation of minimum and maximum shape.

5.3.2.2 Carrier APL

In carrier APL, the three-level carrier structure can be easily propagated through an
expression if we restrict the datum rank in the application form to a constant. This
restriction should not sericusly limit carrier APL programming; all examples in this thesis
use constant datum ranks.

The rank of every value in an expression can usually be determined. Every
application of a primitivé function or special form is rank transparent except for dyadic
transpose. (The rank of the result of a dyadic transpose depends on the value of the left
argumeﬁt.) Every application of a defined function of bounded rank is rank transparent.
An application of defined function of unbounded rank is not, and a call to such a function
halts rank propagation.

Given the rank of an array, we can determine the carrier structure of an application
of a function to the array. The ranks of the three levels of a carrier array sum to the

rank of the array. Both the base and datum rank can be determined statically. The
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datum rank is a constant in the application form, and the base rank is determined by the
function being applied. Thus, knowing the rank of an argument, we can determined the
rank of the carrier level.

Type and shape can not be propagated easily in carrier APL. Heterogeneous arrays
make type propagation very difficult. We cannot know the type of an arbitrary element
selected from a heterogeneous array unless we know the type of each element in the array
and the value of each selector. Thus the selection functions (take, drop, compression, and
indexing) are not type transparent. These functions are used frequently in current APL;
in two surveys of APL programs, these functions accounted for more than a quarter of all
primitive functions in the program text [11, 12, 34]. We expect they would also be used
frequently in carrier APL.

Carrier APL inberits the problems of shape propagation Miller found in current APL.
The same primitive functions halt the propagation of shape in both current and carrier
APL. Moreover, the shape of a ragged array contains many elements, one for every

vector on each level of the array, and it is expensive to propagate.

5.3.3 Determining Compilation Blocks

5.3.3.1 Current APL

A compilation block in a current APL program is a set of expressions which can share
a common control structure in the generated code. The ranks of the arrays in an
expression determine the control structure of the generated code. When the rank of an
array cannot be determined, the block ends, for the following expressions camnot share
control structure with the previous expression. Similarly, an occurrence of either of the

APL primitives gradeup (4), matrix inverse (), or matrix divide () end a block. These
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primitives are implemented in a complicated, self-contained control structure which

cannot easily be merged with other code.

Miller gives several occurrences used to break APL programs into blocks. We list

them below along with a brief description of why they determine a block boundary.

e The source or target of any branch. To be able to identify target locations,
Miller restricts APL branches to labelled statements. A compilation block
contains no loops or branches.

e A dyadic transpose. Dyadic transpose is not rank transparent.
¢ A reshape. Reshape is not rank transparent.

e A call of a defined function. The rank of the result of a defined function is
unknown. A defined function may also change through side effects attributes
of other identifiers in the expression.

» Any primitive function whose evaluation cannot be streamed, e.g., gradeup (4)
matrix inverse (B), and matrix divide (8).

The first category restricts compilation blocks to straight line code. The remaining

categories potentially divide a single APL expression into several blocks.

5.3.3.2 Carrier APL

In carrier APL, the control structure of the generated code is determined by the
three-level carrier structure. As noted above, this three-level structure can be determined
if we know the ranks of the argument and result arrays. Thus, as in current APL, we
break programs into compilation blocks when we cannot propagate rank. Note, however,
that the complicated functions such as gradeup do share a carrier structure with the

surrounding expression, and thus we do not need to break programs when they occur.

There are three occurrences in carrier APL which stop the propagation of rank; we

break programs into blocks at these occurrences.
1. A dyadic transpose. Dyadic transpose is not rank transparent.

2. A call of a defined function of unbounded rank.

3. The target of any branch.



121

There are fewer break points in carrier APL, and they occur less frequently than the
corresponding break points in current APL. Thus, compilation blocks are larger in carrier
APL. Note a call to a defined function of bounded rank does not halt the propagation of
rank, and thus the call can be incorporated in a larger block. We expect that defined
functions of unbounded rank will be rarely used in carrier APL, except in the case when
the rank of the function arguments and results are purposefully indeterminate. Branching
should occur less frequently than in current APL, for all functions can be applied with
application forms. Dyadic transpose should not occur frequently in carrier APL. The
outer product form contains a transpose vector. More importantly, data is typically
stored and manipulated along the last dimensions of an array, and the frequent use of
transpose with inner product and the encode and decode functions has been replaced by
modifying the application axis of these forms.

Of course, a defined function of bounded rank can alter attributes of identifiers in an
expression through side effects. To be comservative, we should break when they occur.
Alternatively, we could insist the global side effects be declared, or warn the the

programmer to compile defined functions with caution.

5.3.4 Compiler Evaluation

From our analysis, we see that more control structure can be shared in compiled
carrier APL, but that the type and shapes of the identifiers cannot be as tightly bound in
the compiled code.

The control structures implicit in the application forms of carrier APL are well suited
to streamed evaluation. As Guibas and Wyatt note, we can organize the evaluation of

A++/Be.+C in a patural way such that the some of the result has been produced before
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any of the subexpressions have been completely evaluated [25]. In carrier APL, all
functions, not just the scalars, can be applied with application forms. Consider the
remove duplicates example discussed in chapter 2. When removing duplicates from the
rows of a matrix, the evaluator can process one row entirely before starting another, with
significant savings in temporary storage and loop overhead. Moreover, base argument
streaming allows the more ambitious APL optimizations proposed by Abrams, Perlis, and
others [1, 62, 25, 32, 43, 44] to be applied largely within base argument computations, e.g.
removing duplicates from a vector. On this restricted domain, these optimizations may

prove more successful.



Chapter 6

CONCLUSION

In our eyes, the major strength of APL is the data-driven semantics of the primitive
functions and operators, the replacement of explicit looping with the parallel flow of
function application along the planes of an array. Carrier APL is a natural generalization
of this data-driven control flow. The rank structure of the array, which permits the
implicit iteration, is maintained, but the constraints of rectangularity and homogeneity
are removed. Primitive functions are redefined to make their parallel application more

uniform.

The major discovery of carrier arrays is that the APL primitives can be limited to the
domain of scalars, vectors, and matrices, and that the higher dimensions of an array
viewed as a earrier of the scalar, vector, and matrix computations. The introduction of
the carrier concept into the language requires a change in the data structure from a
rectangular to ragged array. With the new data structure, ragged data objects can be
represented, and with the three-level carrier partition, a non-scalar object can be
manipulated as a unit. Almost all the primitive functions have natural extensions to

123
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arrays of non-scalar items.

Carrier arrays are a bottom-up extemsion to APL. Their development has been
driven by examples and by the APL programming style. This is in marked contrast to
the development of nested arrays, which has been shaped by a mathematical theory of
arrays [24, 47, 48, 49, 50, 51, 52, 53, 54].16 But, as Orth has pointed out, it is not clear
how relevant array theory is to the extension of a programming language [60]. ldentities
are important in “smoothing” a language, removing, wherever possible, special cases and
exceptions that must be explicitly tested for. And theoretical considerations are
important in assigning meanings to programs, and proving them correct. But it is
pragmatic considerations, how people program and how problems are solved, that should

guide an extension to a language.

18Adin Falkoff contested this, noting that nested extensions developed by him and Iverson have a
pragmatic base [22].
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