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1. Introduction

In [3]. Park discusses notions of strong and weak fairness in the execution of guarded
iterations. These concerns are also considered in [1] and [2]. We show that any “strongly fair”
scheduling algorithm for n processes requires at least n! storage states (i.e. space proportional to
n log n). Similarly, any “weakly fair” scheduling algorithm requires at least n storage states.
Both bounds are optimal.

For our present purposes we may define a scheduler as a transducer A with an input alphabet
of symbols corresponding to the non-empty subsets of {1, ..., n} and output alpbabet {1, ..., n}.
It has the property that for each symbol input the generated output symbol is an element of the
corresponding subset. We may regard each input symbol as requests for service from some subset
of n processes and the output given by A as the scheduler's choice of which one of these to serve.

We consider infinite runs of such a scheduler.
A scheduler is

1. strongly fair if each process which requests service infinitely often is served

infinitely often, and

2. weakly fair if each process which requests service all but finitely often is served
infinitely often.

Thus at any time in a strongly (weakly) fair schedule any process will eventually be served if
it requests service infinitely (continuously) from that time. Park’s example of a strong scheduler
in [P] keeps the processes in a queue. At each step it serves that requesting process which is
earliest in the queue and then sends this process to the back of the queue. That this provides
strongly fair scheduling is easy to see since when any process is unsuccessful in its request it
advances one position in the queue. Park expresses disquiet at the implementation overheads for

such a scheduler.

By contrast, he shows a simple economical weakly fair scheduler. A counter with values in
{1, ..., n} is maintained. At each step the counter is incremented modulo n until it reaches the
number of a process requesting service. This process is then served.

We shall show that both of the schedulers given by Park are optimal in their use of storage

space.
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Proof. Consider the (constant) input sequence in which each process requests service at
every step. If the scheduler has fewer than n states, its resulting ultimately periodic behaviour

bas period less than n and so fails to serve some processor. [
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