Ever since its introduction in the 1980’s, the Fast Multipole Method has been capable of
producing very high accuracy for an acceptable cost in two dimensions; in three dimensions,
it has been considerably less efficient, except when the accuracy requirements were low.
This situation changed somewhat with the appearance of a new version of the FMM in [12],
which is highly efficient over a wide range of accuracies. That paper introduced a rather
involved mathematical apparatus and described the algorithm in its simplest, non-adaptive
form. In this paper, we describe an adaptive version of the scheme of [12], applicable to all
distributions of particles that are likely to be encountered in practice. The performance of
the algorithm is illustrated with numerical examples.
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1 Introduction

In [12], a new version of the Fast Multipole Method (FMM) for the evaluation of potential
fields in three dimensions was introduced. The scheme evaluates all pairwise interactions in
large ensembles of particles, i.e. expressions of the form
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for the gravitational or electrostatic potential and
E(z;) = Z g T———3 ()
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for the field, where z1,Z2,- -+, Z, are points in R3, and ¢1,qq,- -+, g, are a set of (real) coeffi-

cients.

The evaluation of expressions of the form (1) is closely related to a number of important
problems in applied mathematics, physics, chemistry, and biology. These include molecu-
lar dynamics and quantum-mechanical simulations in chemistry, the evolution of large-scale
gravitational systems in astrophysics, capacitance and inductance calculations in electrical en-
gineering, and incompressible fluid dynamics. When certain closely related interactions are
considered as well, involving expressions of the form
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the list of applications becomes even more extensive.

Ever since its introduction in the 1980’s, the FMM has been capable of producing very high
accuracy for an acceptable cost in two dimensions; in three dimensions, it has been considerably
less efficient, except when the accuracy requirements were low. This situation changed some-
what with the development of a new version of the FMM in [12], which is highly efficient over
a wide range of accuracies. That paper introduced a rather involved mathematical apparatus
and described the algorithm in its simplest, non-adaptive form.




Needless to say, most charge distributions encountered in applications are highly non-
uniform, and to be robust, a procedure for the evaluation of sums of the form (1) or (2)
has to be adaptive. In this paper, we introduce such a scheme, applicable to all distributions of
particles that are likely to be encountered in practice. An additional improvement introduced
in this paper is a “compressed” version of translation operators used by the FMM procedure,
which is the principal reason for the improvement of the timings found in Section 7 below over
those in [12].

The paper is organized as follows. In Section 2, we summarize the mathematical and numer-
ical facts to be used in subsequent sections. In Section 3, we review the analytical apparatus to
be used in the design of the improved version of the FMM. Section 4 recapitulates the algorithm
of [12], to be used as the starting point in the construction of the scheme of this paper. In
Section 5, we describe the adaptive version of the FMM and make some comparisons with tree
codes. In Section 6, we illustrate the performance of the method with several numerical exam-
ples. Finally, Section 7 discusses several possible generalizations. For a review of FMM-type
methods and a more thorough discussion of the literature, we refer the reader to [12].

2 Mathematical preliminaries

In this section, we review the analytical tools used in the design of the FMM algorithm. For a
detailed discussion, see [15, 14, 21, 9, 12].

~ We begin by defining the spherical harmonics of degree n and order m according to the
formula '

_ (n— |m]) ime
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Here, the special functions PJ* are the associated Legendre functions, which can be defined by
the Rodrigues’ formula

PR(e) = (-1~ ™ 2 P,

where P,(z) denotes the Legendre polynomial of degree n.

Theorem 2.1 (Multipole Expansion). Suppose that N charges of strengths q1,q2,- -+ ,qn
are located at points X1,Xs,...,XNn with spherical coordinates (p1,c1,51), (p2,a2,B2),- ",
(on,an,Bn), respectively. Suppose further that the points X1, Xa,..., Xy are located inside
a sphere of radius a centered at the origin. Then, for any point X = (r,0,¢) € R® withr > a,
the potential ®(X), generated by the charges 91,92, ,gN, s given by the formula

o(X) = Z Z ,,+1 Y6, 9) , (5)
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Furthermore, for anyp > 1,
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The preceding theorem describes an efficient representation of the far field due to a collection
of sources. Within the FMM, it is also useful to be able to describe the field locally when the
charges themselves are far away.

Theorem 2.2 (Local Expansion) Suppose that N charges of strengths g1,92,---,qn are lo-
cated at the points X1, X, -+, Xn in R3 with spherical coordinates (p1,1,051), (02, 2,52),-++,
(on,an, BN) respectively. Suppose further that all the points X1, X2, -+, XN are located outside
the sphere S, of radius a centered at the origin. Then, for any point X € S, with coordinates
(r,6,90), the potential ®(X) generated by the charges qi,q2,--,qn is described by the local
ezpansion:
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with A" defined by (14). Furthermore, for any p > 1,
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2.1 Translation Operators

The FMM relies on the ability to translate multipole and local expansions. The relevant
translation operators are described in the next three theorems [11, 9].

Theorem 2.3 (Translation of a Multipole Expansion) Suppose that N charges of strengths
41,92, -+ ,qN are located inside the sphere D of radius a centered at Xo = (p,,3). Suppose
further that for any point X = (r,0,¢) € R3\ D, the potential due to these charges is given by
the multipole ezpansion

o(X) = Z E r’"+1 Y0, 4) (11)

n=0m=-n

where (r',6',¢') are the spherical coordinates of the vector X — X,.




Then, for any point X = (r,0,¢) outside a sphere Dy of radius (a + p) centered at the
origin,
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Furthermore, for any p > 1,
N . : p+1
(X Yk 0 Ei:l qul (a+p) . 1
(X) - ]ch;g ritl 9,9) < (r —(a+p) r (15)

Definition 2.1 Formula (13) defines a linear operator converting the multipole expansion
coefficients {O;‘} into the multipole expansion coefficients {M]" }. This linear mapping will be
denoted by Tpps.

Theorem 2.4 (Conversion of a Multipole Expansion to a Local Expansion) Suppose
that N charges of strengths q1,q2,---,qn are located inside the sphere Dx, of radius a centered
at the point Xo = (p,, B), and that p > (c+ 1)a for some ¢ > 1. Then the corresponding
multipole ezpansion (11) converges inside the sphere Dy of radius a centered at the origin.
Furthermore, for any point X € Dy with coordinates (r,0,¢), the potential due to the charges
g1,92, - ,gN s described by the local ezpansion:
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Definition 2.2 Formula (17) defines a linear operator converting the multipole expansion
coefficients {O;‘} into the local expansion coefficients {L;"} This linear mapping will be denoted
by TM L-

Theorem 2.5 (Translation of a Local Expansion) Suppose that Xy, X are a pair of points
in R3 with spherical coordinates (p,c, B), (r,0,$) respectively, and (r',0',¢') are the spherical
coordinates of the vector X — Xo and p is a natural number. Let Xy be the center of a pth-order
local expansion with p finite, its expression at the point X is given by the formula

P n
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everywhere in R3, with
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Definition 2.3 -Formula (21) defines a linear operator converting the local expansion coeffi-
cients {O'} into the local expansion coefficients {L)'}. This linear mapping will be denoted
by TrL.

Remark 2.1 The matrices representing the linear operators 7Tasar, Tarr, and Trr are dense,
so that applying them to truncated expansions with O(p?) coefficients costs O(p*) operations.
This is one of principal reasons for the relatively high CPU time requirements of most existing
FMM implementations in three dimensions. Section 3 of this paper provides tools for the rapid
application of the operators Tprar, TarL, Tor to arbitrary vectors, improving the efficiency of
FMM algorithms significantly.

2.2 Rotation Operators

In this subsection, we introduce operators which transform multipole and local expansions
under rotations of the coordinate system. These operators will play a role in Section 3. The
basic results are contained in the next two theorems, whose proofs can be found in [3], together
with formulae for the evaluation of the coefficients R™™ in (22), (23).




Theorem 2.6 (Rotation of Multipole Expansions) Suppose that (e, ez, e3) are the three
standard orthonormal basis vectors in R3, given by the formulae

e = (1’0’ 0)7
€2 = (0: 1, 0)7
€3 = (Oa 0, 1),

and (w1, ws,ws) are three other orthonormal verctors in R3, forming another basis.
Suppose further that a harmonic functz’on ® :R3\ {0} = R is defined by the formula

B(X) = Z > n+1 Y 0,9),

n=0m=-n

with (r,0, @) the spherical coordinates of the point X € R® associated with the basis (e1, ez, €3).
Then, there exist coefficients R;"’m’ withn=20,1,---,p, m = -n,...,n, m' = —n,...,n, such
that for any X € R3,

X)=3 3 . Y4,

n=0m/=—n

where (r,0',¢') are spherical coordinates of X in the system of coordinates associated with the
basis (wy,ws,ws), and

n
My = 3 R .M (22)
m=-n
foralln=0,1,...,p, m' = —n,..,n.

Theorem 2.7 (Rotation of Local Expansions) Under the conditions of Theorem 2.6, sup-
pose that a harmonic function ® : R3 — R is defined by the formula

X)) =3 3 Lr-rH.yme, )
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where (r,0,¢) are the spherical coordinates of the point X € R3 associated with the basis
(e1,e2,€3). Then for any X € R3,

P n ~m! !
®(X)=3 > Ly -r.Y(e,¢),
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where (r,0',¢') are spherical coordinates of X in the system of coordinates associated with the
basis (wy,ws,ws), and

n
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for alln =0,1,....,p, m' = —n,...,n. Furthermore, the coefficients R;"”"' are the same as in

(22).




Definition 2.4 Given a rotation Q : R3 — R3, formulae (22), (23) define operators converting
the multipole coefficients { M} into the multipole coefficients {M™} and the local coefficients
{L™} into the local coefficients {f};"}, respectively. These two operators are identical, and will
be denoted by R(2).

Remark 2.2 An inspection of formulae (22), (23) shows immediately that the numerical eval-
uation of the operator R(f2) requires O(p?) operations.

2.3 Exponential representation

The new generation of FMMs is based on a combination of multipole expansions and exponen-
tial or “plane wave” expansions. Given a source point P = (zg,yo,2p) and a target location
Q = (z,y, 2), with z > 2z and r = ||P — Q||, we begin with the formula [16]

l = i /oo e—A(z—zo) /2" eiA((z—zo)cosa+(y—yo) sina)da . (24)
r 2mJo 0

We will construct approximations to the integral in (24) via appropriately chosen quadrature

formulae. These quadratures are investigated in detail in [23]; in the following lemma, we

simply state the result for three special cases, corresponding to three-digit, six-digit and nine-

digit accuracy.

Lemma 2.8 ([23, 12]) Suppose that Xo = (z0,Y0,20), X = (z,y, 2) are a pair of points in R3,
and that r = || X — Xo||. Suppose further that the coordinates (z — zo,y — Yyo,2 — 29) of the
vector X — X satisfy the conditions

1<z—2 <4, 0</(z—20)2+ (y—0)? < 4V2. (25)
Then

1 3 w}% M —=23-[(z—20)—i(z—z0)-cos(e3 , ) —(y—yo)-sin(a3 . )] 3
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- - _% Ze—)\k'[(z—zo)—z(z—zo)-cos(aj,k)—(y—yo)-sm(aj,k)] <1.1x 10—9, (28)

T k= Mk j=1 .

where o3 = 215/ MR, of ) = 2nj /MR, o) = 2rj/M}. The weights {w},l=1,...,8}, {wf,l=
1,..,17}, {w},l = 1,..,26}, the nodes {A},l = 1,..,8}, {X¢,l = 1,..,17}, {3}l = 1,...,26}
and the integer arrays {M2,k =1,...,8}, {Mf,k =1,..,17}, {M},k = 1,...,26} are given in
Tables 13, 14, 15 of the Appendiz, respectively.




Remark 2.3 The conditions (25) in the preceding Lemma appear to be rather special. They
are, however, related to the geometric refinement of space introduced by the FMM and their
use will become clear in the next section.

Remark 2.4 When the desired precision is clear from the context, we will simplify the notation
used in Lemma 2.8, writing each of the expressions (26), (27), (28) in the form

1 3(5) My, . . '
L 3 Z e~ M(z=20) | gii-[(z=20)-cos(aj k) +(y—vo) sin(esk)l| < ¢ (29)
T o M j=1

where the integers s(¢) and the triplets {My,wi, x| £ = 1,...,€} all depend on ¢, and
ok = 2mj/Mj. The total number of exponential basis functions used in (29) will be denoted
by :

s(e)

k=1

3 Data Structures and Fast Translation Operators

In order to develop a fast algorithm, we first define the computational domain to be the
smallest cube in R3 containing all sources. We then build a hierarchy of boxes, refining the
computational domain into smaller and smaller regions. At refinement level 0, we have a single
box corresponding to the entire computational domain. Refinement level [ + 1 is obtained
recursively from level ! by the subdivision of each box into eight cubic boxes of equal size. In
the nonadaptive case, this recursive process is halted after roughly logg N levels, where N is
the total number of sources under consideration.

Definition 3.1 A box c is said to be a child of box b, if box c is obtained by a single subdivision
of box b. Box b is said to be the parent of box c.

Definition 3.2 Two boxes are said to be colleagues if they are at the same refinement level
and share a boundary point. (A box is considered to be a colleague of itself.) The set of.
colleagues of a box b will be denoted by Coll(b).

Definition 3.3 Two boxes are said to be well separated if they are at the same refinement
level and are not colleagues. '

Definition 3.4 With each box b is associated an interaction lisi, consisting of the children of
the colleagues of b’s parent which are well separated from box b (Figure 1).

Note that a box can have up to 27 colleagues and that its interaction list contains up to
189 boxes. Figure 1 depicts the colleagues and interaction list of a box in a two-dimensional
setting.




Figure 1: The colleagues of a (two-dimensional) box b are darkly shaded, while its interaction list
is indicated in white. In three dimensions, a box b has up to 27 colleagues and its interaction list
contains up to 189 boxes.

The interaction list for each box will be further subdivided into six lists, associated with the
six coordinate directions (+2, —z, +y, —y, +z, —z) in the three dimensional coordinate system.
We will refer to the +2 direction as up, the —z direction as down, the +y direction as north,
the —y direction as south, the +z direction as east, and the —z direction as west.

Definition 3.5 (Directional lists)

The Uplist for a box b consists of those elements of the interaction list which lie above b and
are separated by at least one box in the +z-direction (Fig. 2).

The Downlist for a box b consists of those elements of the interaction list which lie below b
and are separated by at least one box in the —z-direction.

The Northlist for a box b consists of those elements of the interaction list which lie north
of b, are separated by at least one box in the +y-direction, and are not contained in the Up or
Down lists.

The Southlist for a box b consists of those elements of the interaction list which lie south
of b, are separated by at least one box in the —y-direction, and are not contained in the Up or
Down lists.

The Eastlist for a box b consists of those elements of the interaction list which lie east of b,
are separated by at least one box in the +z-direction, and are not contained in the Up, Down,
North, or South lists.

The Westlist for a box b consists of those elements of the interaction list which lie west of b,
are separated by at least one box in the —z-direction, and are not contained in the Up, Down,
North, or South lists.

For any box b, we will denote the number of elements in its Uplist by N(Uplist(b)), and
adopt a similar convention for each of the remain five lists.

Remark 3.1 It is easy to verify that the original interaction list is equal to the union of the




Figure 2: The Uplist for the box b (see Definition 35)

Up, Down, North, South, East and West lists. It is also easy to verify for two boxes b, ¢ that

c € Uplist(b) « b€ Downlist(c),
c € Northlist(b) < b€ Southlist(c), (31)
c € Eastlist(b) < b€ Westlist(c).

Furthermore, suppose that two boxes b and ¢ are of unit volume and that ¢ € Uplist(b). Then
for any point Xo = (zo,y0,20) € b and any point X = (z,y,2) € c, the vector X — Xy =
(z — z0,y — Yo, 2 — 20) satisfies the inequality

1<z-2 <4, 0</(z—20)2+ (y — 30)2 < 4V2. (32)
Note that this is precisely the condition (25) in Lemma 2.8.

Remark 3.2 When there is no danger of confusion, we will use Uplist(b) to refer to the geo-
metrical region defined by the union of all boxes in the Uplist of box b. This is a slight abuse
of notation, since Uplist(b) is, strictly speaking, a set of boxes. We will take the same liberty
with Downlist(b), Northlist(b), Southlist(b), Eastlist(b), Westlist(b) and Coll(b).

3.1 Rotation Based Translation Operators

In this section, we describe a simple scheme for reducing the cost of applying any of the three
operators Tasam, T, Tor to an arbitrary vector from O(p*) to O(p®) operations. The scheme
is based on the observation that when a multipole or local expansion is translated along the
z-axis, the cost is reduced from O(p*) to O(p3) [5, 12, 22]. The following lemma is obtained
immediately from the resulting simplification of formulae (13), (17) and (21).
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Lemma 3.1 If, in Theorems 2.3, 2.4 and 2.5, the spherical coordinates of the point Xy are
(p,0,0), then the formulae (13), (17) and (21) assume the form

J O_;?—n AgA_l;—n n'Yrg((),O)

MF=3" 7t (33)
n=0
x, Ok Ak - Ak Y0, (0,0)
L = nX—:O (-1) nAO . pitntl (34)
Ok AO Ak YO (0 0) n—j
k -J —J
Lj = Z . ( 1)n+_1 An ’ (35)

n=j
respectively.

Definition 3.6 The special cases of the linear operators Tasps, Tpmr, and Tz defined by the
formulae (33), (34), and (35) will be denoted by T, Tiyr, and T#; respectively.

Observation 3.3 (Rotation Based Translation Operators) Inspection of formulae (33),
(34), (35) indicates that each of the operators 7}, 77 and 7/ can be applied numerically to
an arbitrary pth-order expansion for a cost proportional to p®. Thus, a translation operator can
be applied to an arbitrary vector for a cost proportional to p? via the following procedure. First,
the system of coordinates is rotated so that the new z-axis points to the desired translation
center. Then, the expansion is translated via one of the formulae (33), (34) and (35). Finally,
the translated expansion is rotated back to the original system of coordinates. Since each of
the three stages costs O(p®) operations, the cost of the whole process has also been reduced to
O(p®) operations. Formally, the scheme we have outlined corresponds to the factorizations

TMM = R(Q_l) [e] TIZWM (o] R(Q), (36)
T = R(Q-l) o Tirr © R(2), (37
Tie = R(Q7)oTiL o R(Q), (38)

where R () is defined in section 2.2 and R(27!) denotes the inverse rotation operator.

3.2 Plane Wave Based Translation Operators

In three-dimensional fast multipole schemes, the operator 7371 (converting multipole expan-
sions into local ones) tends to be applied much more frequently then the operators Tasar, 7oL
which shift multipole and local expansions. Ignoring boundary effects, one ends up applying
Tar to the multipole expansion for each box about 189 times when the charge distribution is
uniform. The operators Tarar, TrL, on the other hand, are applied roughly once per box. In the
algorithm of this paper, the operators Tasar, 721 are applied via the order p® scheme described
in the preceding section; Tjsr is applied by means of a much more complicated procedure,
involving the plane wave representation introduced in on Lemma 2.8 of section 2.3.

The following observation provides an expansion of the form (29) for the potential generated
by a collection of charges. It is an immediate consequence of Lemma 2.8.
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Observation 3.4 Suppose that N charges of strengths gqj,g2,...,qn are located at points
X1, Xa,+-+, Xn in R3 with Cartesian coordinates (z1,y1,21), (Z2,Y2,22), - (TN, UN, 2ZN), Te-
spectively. Suppose further that all points X3, X», ..., Xy are inside a cubic box b with unit
volume centered at the origin and that X = (z,y, 2) € R3 such that X € Uplist(b). Let ®(X)
denote the potential generated by the charges q1, g2, ..., ¢~ and let ¥, be defined by the formula

s(e) M

‘I/E(X) — Z E W(k,j) . e—'\k’- . ei,\k.(a:. cos(a;j k )4y sin(aj,k))’ (39)
k=1j=1

with the coefficients W (k, 7) given by the formula

N
W(kaj) = % Z q; - e)‘kz’ . e—i)‘k'(dn-cos(aj,k)"‘yl'sm(aj,k)), (40)
=1

forallk=1,...,s(¢),5 =1,..., Mg. Then, if A= Z{il ||, we have the estimate
|®(X) — T (X)| < Ae. (41)

Observation 3.5 A somewhat involved analysis shows that, under the conditions of the pre-
ceding observation, s(¢) ~ p, where p is chosen according to (7) to achieve the same accuracy
using a multipole expansion. Likewise, the total number of exponential basis functions Sezp in
(39) is of the same order as the total number of multipole moments (p?) in (7) in order that
the two expansions provide the same precision ¢.

Expansions of the form (39) will be referred to as ezponential ezpansions. Their main utility
is that translation takes a particularly simple form.

Theorem 3.2 (Diagonal translation) Suppose that a function ¥ (X) : R3 = C is defined
by the formula (39), which we view as an ezpansion centered at the origin for X = (z,y,2).
Then, for any vector Xo = (zo,Y0,20) € R3, we have the shifted expansion

s(e) M;
U (X) = Z Zk V(k, ) - e~ M(2=20) . giAe-((z=20)- cos(a;,x)+(y—yo0)-sin(aj &) (42)
k=1j=1 A
where
V(k,j) = W(k,j) - e~ Mk20 ei)‘k'(zO'Cos(aj,k)+y0'3in(aj,k))’ (43)

fork=1,..,5(), j=1,..., Mk.

Definition 3.7 Formula (43) defines a linear operator mapping the coefficients {W (k, j)} to
the coefficients {V'(k,)}. This linear operator will be denoted by Degp.
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The operator Desp provides a tool for translating expansions of the form (39) at a cost
of O(Sezp) ~ O(p?) operations. In FMM algorithms, however, it is convenient to be able
to use multipole and local expansions. Thus, in order to be able to use the operator Degp,
linear operators converting multipole expansions into exponential expansions and exponential
expansions into local expansions have to be constructed. The following two theorems provide
such operators.

Theorem 3.3 Suppose that N charges of strengths q1,¢2,---,qn are located inside a boz b of
volume d® centered at the origin, € is a positive real number and p is an integer such that for
any point X € Uplist(b) with spherical coordinates (r,0,¢), the potential ®(X) generated by
the charges q1,92,* - ,gN satisﬁes the inequalz'ty

I<I>(X) Z Z = +1 -Y™(,4)| <. (44)
n=0 m=—n"
Then
s(e) My
@(X) _ Z ZW(k,J) ] e—(Ak/d)-z . ei()q,/d)-(:z:-cos(aj,k)-i»y-sin(aj,k)) < (A/d + 1) -g, (45)
k=1j=1

where (z,y,2) are the Cartesian coordinates of X, A=Y, |ai|, and

. /d m im-a; k O;T
W(k,j) = Wk m;p( 3)iml . gim-a;, 2 N CET T

fork=1,..s(), j=1,.., M.

(Ae/d)",  (46)

Definition 3.8 Formula (46) defines a linear operator converting the coefficients {O™} into
the coefficients {W(k, 7)}. This linear mapping will be denoted by Carx.

Theorem 3.4 Suppose that N charges of strengths q1,q2,---,qn are located inside a boz b
of volume d® centered at the origin, € is a positive real number, and that for any- point X =
(z,y,2) € Uplist(b), the potential ®(X) generated by the charges q1,qo,---,qN satisfies the
inequality
s(e) My
3(X) =S N W(k,j)- e~ (Ax/d)z | gi(Me/d)-(z- cos(aj,k)+y-sin(aj k)
k=1j=1

<(4/d)-e,  (47)

where A = Efil |gi|. Then there ezists an integer p, such that

p n
B(X)- 3 3 Ip-Yr(e,4) -

n=0m=-n

where (7,0, @) are the spherical coordinates of X and

< (A/d+1)-¢, (48)

L™= (i)l s(e) e M; Lo i
" VI =m)n+m)! k;(‘ k/d) ]_;W( 1J) - €Ok, (49)

forn=0,..,p, m=-n,..,n.
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Definition 3.9 Formula (49) defines a linear operator converting the coefficients {W (k,j)}
into the coefficients {L]'}. This linear mapping will be denoted by Cxr.

Remark 3.6 It is easy to see that (46) can be evaluated numerically for & = 1,...,s(¢),j =
1,..., My, at a cost proportional to p3. Indeed, we first calculate (2p + 1) - s(€) quantities Fim
defined by the formula

- Or' n
Fk,m = n=zlml \/(n = m)'(n T m)! (Ak/d) 3 (50)

for k = 1,...,s(¢),m = —p, ...,p. This step requires O(s(e) - p?) operations. We then evaluate
the coefficients W (k, j) via the formula

N wp/d & A imea;
W(k,j) === > (=)™ ™k By, (51)
M, = »
for k = 1,...,s(¢), j = 1,..., My, at a cost of O(Seqp - p) Operations. Thus, the total cost of
applying the operator Cpsx numerically to a pth-order multipole expansion is

Cost(Crx) ~ O(p*s(€) + pSezp) ~ O(0%), (52)

making use of Observation 3.5. A similar argument shows that the operator Cxy can also be
evaluated numerically for a cost proportional to p®.

The proofs of Theorems 3.2, 3.3, 3.4 can be found in [12]. The following observation follows
immediately from Theorems 3.2, 3.3 and 3.4.

Observation 3.7 (Multipole to local translation for the Uplist) Suppose that b,c are
two boxes such that c is in the Uplist of b. Then the translation operator 7377 which converts
a multipole expansion centered in b to a local expansion centered in ¢ can be applied via the
following procedure. First, convert the multipole expansion centered in b into an exponential
expansion via the operator Cpx; then, use the operator Degp to translate the resulting ex-
ponential expansion to the center of box c; finally, convert the latter expansion into a local
expansion in box c via the operator Cxr. In short,

TML =CXL ODezpocMX- (53)

Observation 3.8 (Multipole to local translation: general case) The decomposition (53)
of the operator Tjsy is valid only when box c is in the Uplist of box b. When box ¢ is not in
the Uplist of box b, the operator 7js1 can easily be applied by first rotating the system of
coordinates, so that in the new coordinate system, box c lies in the Uplist of box b, applying
the operator 7pr via (53) to the rotated expansion, and finally rotating back to the original
system of coordinates. Formally, this corresponds to the factorization

TuL = R(Q_l) oCxpr o Dea:p oCmx © R(Q) (54)

The rotation operators R(2) are described in section 2.2.
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Multipole Local

()<=

Exponential Exponential

Figure 3: A large number of multipole-to-local translations, each costing O(p®) operations are
replaced by a single multipole-to-exponential operator costing O(p?) operations, a large number of
exponential translations costing O(p?) operations, and a single exponential-to-local operator costing
O(p®) operations.

Remark 3.9 As mentioned earlier, application of the translation operators 73z, is a dominant
part of FMM algorithms, occurring up to 189 times per box. Naive application of these oper-
ators results in a cost of roughly 189 - p* operations per box, which is prohibitively expensive
in most cases. Fast rotation-based schemes [5, 22, 12] use Observation 3.3 to reduce the cost
to roughly 189 - 3 - p3 operations per box; the resulting FMM schemes are fairly efficient in
low-precision applications. Theorems 3.2, 3.3, 3.4 of this subsection can be used to reduce
the cost of application of the operators 7asz, to approximately 20 - p® + 189 - p? operations per
box. Indeed, in order to account for the interaction of box b with its Uplist boxes, we use
the operator Cprx of Theorem 3.3 to convert b’s multipole expansion into an exponential one
for a cost proportional to p. We then use the operator Dezp of Theorem 3.2 to translate the
resulting exponential expansion to each of the boxes in Uplist(b), for a cost propotional to
N(Uplist(b)) - p®. Subsequently, we convert the accumulated exponential expansion for each
box into a local one via the operator Cxy, of Theorem 3.4, for a cost proportional to p3. This
procedure is illustrated in Figure 3. The analogous process must, of course, be repeated for the
Downlist, Northlist, Southlist, Eastlist, and Westlist. For the Northlist, Southlist, Eastlist, and
Westlist (but not for the Downlist), there is an additional cost proportional to 2 - p® operations
per box to rotate the coordinate system, as described in Observation 3.8. The total cost for
each of the six interaction lists is summarized in the following

Cost(Uplist) ~ 2-p + N (Uplist(b)) - P2,
Cost(Downlist) ~ 2-p3+ N(Downlist(b)) - p?,
Cost(Northlist) ~ 4-p + N(Northlist(b)) - p°, (55)
Cost(Southlist) ~ 4-p®+ N(Southlist(b)) - p,
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Cost(Eastlist) ~ 4-p®+ N(Eastlist(b)) - p?,
Cost(Westlist) ~ 4-p° + N(Westlist(b)) - p?,

respectively. Combining (55) with the fact that the maximum total number of boxes in the
interaction list is 189, we obtain

Cost(Tar) ~ 20 - p® + 189 - p°. (56)

Remark 3.10 The procedure of the preceding section has been further accelerated. First,
symmetry considerations can be used to reduce number of translations per box from 189 to
40 without any loss of precision. We refer the reader to [12] for details. Second, while the
expansions (5) and (8) are expressed in terms of spherical harmonics, they are being used to
represent potentials inside or outside of regions that are cubic in shape. Clearly, spherical
harmonics are not an optimal basis for this purpose. Special-purpose harmonics have been
developed for the representation of potentials in such regions; they have been incorporated
in our implementation and the timings presented in Section 6 below reflect this additional
improvement. The procedure itself is fairly involved, and will be reported at a later date [6].

4 The non-adaptive FMM

In this section, we describe the non-adaptive FMM algorithm of [12], combining the factoriza-
tion (54) of the translation operator 7jsz with the factorizations (36), (38) of the operators
Tam, Tor- We present it here as a reference for the subsequent adaptive procedure. For details,
the reader is referred to the original paper [12].

In the FMM, the set of all boxes at level [ is denoted by B;, with By consisting of the
computational box itself. With each box b, we associate fourteen expansions about its center.

e A multipole ezpansion ®, of the form (5) represents the potential generated by charges
contained inside b; it is valid in R3\ Coll(b).

e A local ezpansion ¥y of the form (8) represents the potential generated by all charges
outside Coll(b); it is valid inside box b.

e Six outgoing ezponential expansions WP, WPown WNorth yySouth yyBest ang wiest
of the form (39), representing the potential generated by all charges located in b and
valid in Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist(b), and Westlist(b),
respectively.

o Six incoming ezponential ezpansions V' VPown, yNorth | ySouth yEast and VVest of
the form (39), representing the potential inside b generated by all charges located in
Downlist(b), Uplist(b), Southlist(b), Northlist(b), Westlist(b), and Eastlist(b), respec-
tively.
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NON-ADAPTIVE FMM ALGORITHM

Initialization

Comment [Choose number of refinement levels NLEV = logg N, and the order p of the multipole
expansions. The number of boxes at the finest level is then 8NLEV  and the average
number of particles per box is s = N/(8NEV). Denote the set of all boxes at level
by B;.]

Upward Pass
Step 1

Do for each box b € BNLEV,
Form multipole expansion ®; of potential field due to
particles in box b at b's center, via Theorem 2.1.
End do

Step 2

Do for levels | = NLEV -1, ...,2,
Do for each box b € B;,
Form multipole expansion ®; about the center of b by
merging expansions from its eight children via Theorem 2.3.
(In applying Taras, use the factorization of Observation 3.3.)
End do
End do

Downward Pass
Initialization
Set ¥, = (0,0, ...,0) for all boxes.
Step 834

Do for levels | = 2,..., NLEV,
Do for each box b € B,
Form local expansion ¥, about the center of b by
using Theorem 2.5 to shift the local expansion of b’s parent to b.
(In applying Tzr, use the factorization of Observation 3.3.)
End do
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Step 3B

Do for Dir = Up, Down, North, South, East, West,
Do for each box b € By,
Convert the multipole expansion @, to the
“outgoing” exponential W,Pi’, via Theorem 3.3.
Do for each box ¢ € Dir — list(b),
Translate WP from b to ¢ via Theorem 3.2 and add to V.27,
End do
End do
Do for each box ¢ € B,
Convert the incoming exponential V.2'r to the
local expansion ¥, via Theorem 3.4.
End do
End do

End do

Step 4

Do for each box b € BNLEV.

For each particle in box b, evaluate ¥, at the particle position.

End do

Step 5

Do for each box b € BNLEV,

For each particle in box b,
compute interactions with particles in b's colleagues directly.

End do

5 The adaptive FMM

The preceding algorithm is efficient for reasonably uniform distributions of particles, but its
performance deteriorates significantly for non-uniform distributions. To remedy this situation,
we construct an adaptive version of the scheme. Our strategy follows closely that used in [4]
for the two dimensional case. Starting with the computational box, we build our structure
recursively. If the box under consideration contains no charges, its existence is immediately
forgotten. If it contains fewer than s charges (where s is an appropriately chosen positive
integer), it is not subdivided further and considered childless. Otherwise, it is considered a
parent boz and subdivided into its eight children. The procedure is then repeated for each of
the latter. As in the nonadaptive case, the set of all nonempty boxes at level [ is denoted by

B, with By consisting of the computational box itself.
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5.1 Adaptive lists

In order to describe the adaptive scheme, we will need the following additional lists.

Definition 5.1 List 1 of a childless box b, denoted by Ly (b), is defined to be the set consisting
of b and all childless boxes adjacent to b. If b is a parent box, its List 1 is empty.

Definition 5.2 List 2 of a box b, denoted by Ly(b), is the set consisting of all children of the
colleagues of b’s parent that are well separated from b.

Definition 5.3 List 3 of a childless box b, denoted by L3(b), is the set consisting of all descen-
dents of b’s colleagues that are not adjacent to b, but whose parent boxes are adjacent to b. If
b is a parent box, its list 3 is empty.

Note that any box ¢ in L3(b) is smaller than b and is separated from b by a distance not
less than the side of ¢, and not greater than the side of b.

Definition 5.4 List 4 of a box b, denoted by L4(b), consists of boxes ¢ such that b € L3(c); in
other words, ¢ € L4(b) if and only if b € L3(c).

Note that all boxes in L4(b) are childless and are larger than b.

Figure 4 shows the four lists for a box b in two dimensions. Of these, List 1 and List 2 have
simple analogues in the non-adaptive algorithm of Section 4. Specifically, List 1 of some finest
level box b would consist of its colleagues, whose interactions will be accounted for directly.
List 2 of b would consist of boxes that are of the same size as b and are well separated: i.e.,
the interaction list of Definition 3.4. Lists 3 and 4 do not have analogues in the non-adaptive
scheme.

L, (b) is subdivided further into Uplist(b), Downlist(b), Northlist(b), Southlist(b), Eastlist(b),
and Westlist(b), by obvious analogy with Definition 3.5.

With each box b, we also associate fourteen expansions by analogy with those described in
section 4. The only difference is that the multipole ezpansion ®, is valid in R3\ (L (b) U L3(b)).
Similarly, the local ezpansion ¥, represents the potential inside b generated by all charges
outside L1 (b) U L3(b).

ADAPTIVE FMM ALGORITHM

Initialization
Choose precision € and the order of the multipole expansions p. Choose the maximum number s

of charges allowed in a childless box. Define By to be the smallest cube containing all sources (the
computational domain).
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Figure 4: Lists 1-4 for box b

Build Tree Structure
Step 0

Do for levels I =0,1,2,...
Do for each box b € B;
If b contains more than s charges then
Divide b into eight child boxes. Ignore empty children
and add the nonempty child boxes to By, ;.
End if
End do
End do

Comment [Denote the greatest refinement level obtained above by NLEV and the total number
of boxes created as NBOX. Create the four lists for each box.]

Do for each box b;,7 = 1,2,..., NBOX

Create lists L; (b,;), Loy (bi), L3 (b,‘), L4(b,;).

Split La(b;) into Up, Down, North, South, East, West lists.
End do '

Upward Pass
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Comment [During the upward pass, a pth-order multipole expansion is formed for each box b about
its center, representing the potential in R3 \ (L;(b) U L3(b)) due to all charges in b.]

Step 1

Comment [For each childless box b, form a multipole expansion about its center from all charges
in b.]

-

Do for each box b;,7 = 1,2,...,NBOX
If b; is childless then
Use Theorem 2.1 to form pth-order multipole expansion @,
representing the potential in R3\ (L;(b) U L3(b)) due to all charges in b;.
End if
End do

Step 2

Comment [For each parent box, form a multipole expansion about its center by merging multipole
expansions from its children.]

Do for levels | = NLEV — 1,NLEV —-2,...,0
Do for each box b € B;
If b is a parent box then
Use the operator Tpsas to merge multipole expansions from
its children into ®@.
End if
End do
End do

Downward Pass

Comment [During the downward pass, a pth-order local expansion is generated for each box b about
its center, representing the potential in b due to all charges outside (L;(b) U L3(b)).]

Step 3
Comment [For each box b, add to its local expansion the contribution due to charges in L4(b).]

Do for each box b;,7 =1,2,---,NBOX
Do for each box ¢ € Ly(b;)
If the number of charges in b; < p? then

Comment [The number of charges in b; is small. It is faster to use direct calculation
than to generate the contribution to the local expansion ¥}, due to charges
in ¢; act accordingly.]
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Calculate potential field at each particle point in b;
directly from charges in c.
Else

Comment [The number of charges in b; is large. It is faster to generate the contribution
to the local expansion ¥}, due to charges in ¢ than to use direct calculation;
act accordingly.]

Generate a local expansion at b;'s center due to
charges in ¢, and add to ¥p,.
End if
End do
End do

Step 4

Comment [For each box b on level I with | = 2,3,...,NLEV and for each direction Dir =
Up, Down, North, South, East, West, create from box b's multipole expansion the out-
going exponential W;P¥ in direction Dir, using the operator Cprx. Translate wpir
to the center of each box ¢ € Dirlist(b) using Corollary 3.2, and add the translated

expansions to its incoming exponential expansion VCD".]

Do for levels I = 2,3, ..., NLEV
Do for Dir = Up, Down, North, South, East, West
Do for each box b € B;
Use the operator Cprx to convert multipole expansion
®; into exponential WP,
Do for each box ¢ € Dirlist(b)
Translate the outgoing exponential expansion W,,Di’ to the center of box ¢
using the diagonal translation operator Dx x, and add the translated
expansion to the incoming exponential expansion I/'cDi'.
End do
End do

Comment [For each box c on level I, convert the exponential expansion V.2 into a
local expansion and add it to ¥,.]

Do for each box c € B; ,
Use the operator Cx, to convert the exponential expansion V.2ir
into a local expansion, and add it to V..
End do
End do
End do
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Step 5
Comment [For each parent box b, shift the center of its local expansion to its children.]

Do for each box b;,7 =1,2,--- ,NBOX
If b; is a parent box then
Use the operator 7Ty, to shift the local expansion ¥}, to the centers of its

children, and add the translated expansions to children’s local expansions.
End if
End do

Evaluation of Potentials
Step 6
Comment [Include contribution to potential from local expansion at leaf nodes.]

Do for each box b;,7 = 1,2,..., NBOX
If b; is childless then
Calculate the potential at each charge in b; from the local expansion ¥y, .
End if
End do

Step 7
Comment [Include contribution from direct interactions.]

Do for each box b;,7 = 1,2,..., NBOX
If b; is childless then
Calculate the potential at each charge in b;
directly due to all charges in Ly(b;).
End if
End do

Step 8
Comment [For each childless box b, evaluate the potential due to all charges in L3(b).]

Do for each box b;,7 = 1,2,..., NBOX
If b; is childless then
Do for each box ¢ € L3(b;)
If the number of charges in ¢ < p? then

Comment [The number of charges in c is small. It is faster to use direct calculation
than to evaluate the multipole expansion ®,; act accordingly.]
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Calculate the potential at each charge in b;
directly from charges in c.
Else

Comment [The number of charges in c is large. It is faster to evaluate the expansion
®, than to use direct calculation; act accordingly.]

Calculate the potential at each charge in b;
from multipole expansion ®..
End if
End do
End if
End do

Remark 5.1 Step 3 in the above algorithm could be simplified without increasing the asymp-
totic CPU time estimate of the latter. Specifically, we could always generate the contribution
to the local expansion ¥, due to charges in ¢, even when the number of charges in ¢ is small.
However, the actual computation time would increase somewhat. A similar observation can be
made about Step 8 of the above algorithm.

Remark 5.2 In the actual implementation of the adaptive algorithm, we have introduced
several minor modifications, designed primarily to reduce the memory requirements of the
scheme. In particular, Steps 3, 4, and 5 of the downward pass have been combined to eliminate
some of the intermediate storage.

5.2 Complexity Analysis and Comparison with Tree Codes

The cost of the FMM algorithm of this paper (like the cost of older schemes of this type) can
be separated into two parts. The first part concerns the construction of the data structure
(Step 0); the second part concerns the calculation of the potentials.

If N denotes the total number of particles in the system, the CPU time estimate for the
first part is O(IVlog N) in the general case and O(NN) for reasonably uniform distributions of
particles, where “bin sorting” can be used instead of the recursive procedure outlined above.
The CPU time requirements for the second part are O(N) in all cases. In practice, however,
the first part uses a negligible proportion of the total CPU time.

There has been some confusion in the literature concerning computational complexity,
partly because of an erroneous proof in the original paper [4] addressing the two dimensional
case. A correct proof can be found in [17], under very general assumptions about the distribu-
tion of charges. We omit the detailed analysis of the asymptotic time and storage estimates for
the algorithm of this paper since it does not differ materially from that in [17]. For reasonably
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uniform distributions, it is easy to see that the asymptotic cost of the nonadaptive algorithm
is approximately

N N
27Ns+2Np2+189-s—p2+20?p3,

where s is the number of charges per box at the finest level. The first term comes from direct
interactions with colleagues, the second comes from forming and evaluating multipole and local
expansions at the finest level, and the last two come from multipole-to-local translations, as
shown in (56). Using symmetry considerations, it is possible to reduce the factor 189 to 40
(see Remark 3.10 above). Setting s ~ p%/2, we see that the work required by the nonadaptive
FMM is of the order

O(Np®/?).

Similarly, the storage costs are of the order
N
O(-p%) ~ O(N p*%).

In the adaptive case, precise estimates are more involved, but the reader will note in the
numerical examples below that both CPU times and storage requirements are at a maximum
for the most homogenous distributions.

A second area where there has been some confusion concerns comparisons of the FMM with
what are generally known as “tree codes.” These were introduced independently of the FMM
by Barnes and Hut [2]. (A related scheme by Appel [1] is more like the FMM than like a tree
code.) In tree codes, all interactions are computed by either direct calculation or by evaluation
of a multipole expansion for a source box at a well-separated target position. Within the FMM,
however, one has four options for a source box b and a target box c:

1. compute interactions directly, '
2. evaluate the multipole expansion for b at individual targets in ¢ directly,
3. convert the field due to each source in b to a local expansion in ¢ (which is later evaluated),

4. convert the multipole expansion in b to a local expansion in ¢ (which is later evaluated).

A properly implemented FMM always selects the least expensive option (which is trivial to
choose); thus, it is always more efficient than a tree code. We omitted this decision analysis
in our original descriptions of the FMM [10, 11, 18] in order to focus on the central result,
which is option 4 above. It is this option which reduces the cost to O(N). It is easy to see that
options 2 and 3 are appropriate only in Steps 3 and 8 above, when considering Lists 3 and 4.
The analogues of Steps 3 and 8 here are Stages 5 and 6 in [4].
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6 Numerical Results

The algorithm described in Section 5 has been implemented in Fortran 77, and numerical
experiments have been carried out for a variety of charge distributions using a Sun UltraSPARC
workstation with a CPU clock rate of 167 MHz. The results of our experiments are summarized
in Tables 1-12, with all timings given in seconds.

In the first set of our experiments, the charges were distributed randomly but uniformly in
the cube [—0.5,0.5] x [-0.5,0.5] x [—0.5,0.5]; results are reported in Tables 1-3. In the second
set, the charges were distributed randomly in the polar angles # and ¢ on the surface of a sphere
of radius 0.5, centered at the origin. Obviously, such a distribution is concentrated at the poles
(Figure 5); results are reported in Tables 4-6. In the third set, the charges were distributed
on the surface of a cylinder with height 1.0 and radius 0.05 (Figure 6); results are reported
in Tables 7-9. In the final set of experiments, the charges were distributed on a complicated
surface shown in Figure 7. The results for this configuration are reported in Tables 10-12. In
all our experiments, the charge strengths were taken randomly from the interval (—0.5,0.5).

For each geometry, the numerical tests were performed with three-, six-, and nine-digit
accuracy. For three-digit accuracy, the maximum number of charges allowed in a childless box
was set to be 40. Corresponding numbers for six- and nine-digit accuracies are 100 and 180,
respectively. The timings produced by the adaptive FMM algorithm were compared with those
obtained by the direct calculation. Obviously, it was not practical to apply the direct scheme
to large-scale ensembles of particles, due to excessive computation times. Thus, the direct
algorithm was used to evaluate the potentials at the first 100 elements of the ensemble, and the
resulting CPU time was extrapolated. Similarly, the accuracy of the algorithm was calculated
at the first 100 particles via formula (57) below.

The tables are organized as follows.

1. The first column lists the number of charges used in the calculation.
The second column lists the number of levels used in the multipole hierarchy.
The third column lists the order of the multipole expansion used.

The fourth column lists the corresponding number of exponential basis functions.

ous e N

The fifth column lists the amount of storage used by the adaptive FMM algorithm. In the
three- and six-digit cases, we indicate the number of single precision (REAL*4) words
used, while in the nine-digit case, we indicate the number of double precision (REAL*8)
words used. '

6. Columns six and seven contain the CPU times required by the adaptive FMM and the
direct calculation, respectively. In the three- and six-digit cases, both the FMM and
the direct calculations were performed in single precision; in the nine-digit case, both
calculations were performed in double precision.
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7. Column eight lists the Lz norm of the error in the FMM approximation, which is computed

via the formula
(=X, 8() - B2\ |
E“( > 19(z:)|? ) ’ 1)

where &(z;) are potentials obtained by the FMM algorithm and ®(z;) are potentials
computed by direct calculation in double precision.

Table 1: Timing results for the FMM for 3-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in single precision.

N | Levels | Boxes | p | Sezp | Storage | Trmm Tom Error
20000 4 2267 | 10 | 52 1359822 | 13.3 233 7.9-107*

50000 4 4681 | 10 | 52 3365896 | 24.7 1483 | 5.2-10~4
200000 5 33749 | 10 | 52 | 24789948 | 158 | 24330 | 8.4-10~*
500000 5 37449 | 10 | 52 | 28835176 | 268 | 138380 | 7.0-10~*

1000000 6 48324 | 10 | 52 | 34798506 | 655 | 563900 | 7.1-10~*

Table 2: Timing results for the FMM for 6-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in single precision.

N | Levels | Boxes | p | Seqp Storage | Trum Tomr Error
20000 3 585 [ 19 | 258 | 1057852 | 15.9 233 | 5.1-10~"
50000 4 2065 | 19 | 258 | 3383488 69 1483 | 2.8-1077

200000 4 4681 | 19 | 258 | 8220716 | 198 | 24330 | 4.9-10~7
500000 5 36665 | 19 | 258 | 64326704 | 586 | 138380 | 4.4-10~7
1000000 5 37449 | 19 | 258 | 66414780 | 1245 | 563900 | 4.4-10~7

The following observations can be made from these tables.

1.

The application of the FMM to large scale three dimensional problems is within practical
reach.

. The actual CPU time required by the adaptive FMM algorithm grows approximately

linearly with the number of particles N.

. The algorithm breaks even with the direct calculation at about N = 750 for three-digit

precision, N = 1500 for six-digit precision and N = 2500 for nine-digit precision.

The performance of the algorithm is quite insensitive to the distribution of charges.

27




Table 3: Timing results for the FMM for 9-digit of accuracy with charges uniformly distributed in
a cube. Calculations were performed in double precision.

N | Levels | Boxes | p | Sezp Storage | Trum Tomr Error
20000 3 585|129 | 670 | 2012453 34 296 | 2.8-10710
50000 3 585 |29 | 670 | 2012453 96 1920 | 1.6 -10~10
200000 4 4681 | 29 | 670 | 16479203 | 385 | 30800 | 1.6-10~10
500000 4 4681 | 29 | 670 | 16479203 | 1219 | 192600 | 1.2.10~10

Table 4: Timing results for the FMM for 3-digit of accuracy with charges dlstnbuted on the surface
of a sphere. Calculations were performed in single precision.

N | Levels | Boxes | p | Sesp Storage | Temum Tomr Error
20000 7 1746 | 10 | 52 891080 8.7 233 | 4.2-107*
50000 9 4757 | 10 | 52 2394568 | 21.6 1483 | 3.6-107¢

200000 11 18221 | 10 | 52 9126212 97 | 24330 | 8.0-107¢
500000 12 40717 | 10 | 52 | 20413944 | 224 | 138380 | 6.4-10~*
1000000 13 90139 | 10 | 52 | 45287934 | 473 | 563900 | 5.5-10~*

Table 5: Timing results for the FMM for 6-digit of accuracy with charges distributed on the surface
of a sphere. Calculations were performed in single precision.

N | Levels | Boxes | p | Sesp | Storage | Temm Towr Error
20000 6 624 | 19 | 258 | 1037742 16 233 24-10~7
50000 7 1774 | 19 | 258 | 2774248 40 1483 | 2.7-10"7

200000 9 6790 | 19 | 258 | 10365264 | 183 | 24330 | 2.3-10~7
500000 10 18897 | 19 | 258 | 28580428 | 529 | 138380 | 4.3-10~7
1000000 11 33289 | 19 | 258 | 50405060 | 926 | 563900 | 2.9 -10~7

Table 6: Timing results for the FMM for 9-digit of accuracy with charges distributed on the surface
of a sphere. Calculations were performed in double precision.

N | Levels | Boxes | p | Sezp | Storage | Truu Tow Error
20000 5 429 | 29 | 670 | 1422805 33 296 | 3.2-10~¢
50000 6 1091 | 29 | 670 | 3616209 98 1920 | 8.1-1071!

200000 8 4342 | 29 | 670 | 14394468 | 409 | 30800 | 7.6-10~1!
500000 10 9009 | 29 | 670 | 29828865 | 1038 | 192600 | 1.2- 1010
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Table 7: Timing results for the FMM for 3-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in single precision.

N ‘Levels Boxes | p | Sezp Storage | Trum Tor Error
20000 6 1963 | 10 | 52 1013298 8.2 233 | 2.7-107¢

50000 7 4084 | 10 | 52 2014394 | 20.8 1483 | 4.0-1074
200000 8 18795 | 10 | 52 9056494 93 | 24330 | 5.1-107*
500000 9 31093 | 10 | 52 | 15409424 | 194 | 138380 | 5.1-10~*

1000000 9 101374 | 10 | 52 | 49326404 | 457 | 563900 | 4.9-10~*

Table 8: Timing results for the FMM for 6-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in single precision.

N | Levels | Boxes | p | Sesp Storage | Truum Towr Error
20000 5 505 | 19 | 258 868700 | 13.8 233 [ 2.5-101

50000 6 2037 | 19 | 258 | 3180832 39 1483 | 2.9-1077
200000 7 7001 | 19 | 258 | 10582852 | 143 | 24330 | 5.6-10~7
500000 8 19849 | 19 | 258 | 29654956 | 508 | 138380 | 7.0-10~7

1000000 8 29341 | 19 | 258 | 44253336 | 921 | 563900 | 6.4-10~7

Table 9: Timing results for the FMM for 9-digit of accuracy with charges distributed on the surface
of a cylinder. Calculations were performed in double precision.

N | Levels | Boxes | p | Seqp Storage | Trmm Tomw Error
20000 5 505 [ 29 | 670 | 1676098 30 296 | 2.8-10~1
50000 6 751 [ 29 | 670 | 2478241 86 1920 | 5.1-10711

200000 7 2515 [ 29 | 670 | 8348058 | 341 | 30800 | 8.2-1011
500000 7 7344 | 29 | 670 | 24250893 | 795 | 192600 | 9.4-10~11

Table 10: Timing results for the FMM for 3-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in single precision.

N | Levels | Boxes | p | Sezp | Storage | Teuu Tow Error
20880 7 1213 | 10 | 52 573996 6.7 243 | 2.2-107%
51900 8 4184 | 10 | 52 1952046 17 1539 | 2.7-10~¢

203280 9 15423 | 10 | 52 7204398 60 | 24730 | 3.4-10~*
503775 10 45837 | 10 | 52 | 21358082 | 164 | 141060 | 3.3-10~*
1007655 10 60427 | 10 | 52 | 28513092 | 282 | 568090 | 2.9 - 10~
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Table 11: Timing results for the FMM for 6-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in single precision.

N | Levels | Boxes | p | Sezp | Storage | Trmu Tow Error
20880 7 1038 | 19 | 258 | 1601028 17 243 | 1.3-10~°
51900 8 1403 | 19 | 258 2165338 40 1539 | 9.8-10~8

203280 9 4447 | 19 | 258 | 6697050 | 149 | 24730 | 1.2-1077
503775 9 15307 | 19 | 258 | 22662792 323 | 141060 | 2.6 -10~7
1007655 10 45784 | 19 | 258 | 67176488 | ‘714 | 568090 | 2.0-10~7

Table 12: Timing results for the FMM for 9-digit of accuracy with charges distributed as in Fig. 7.
Calculations were performed in double precision.

N | Levels | Boxes | p | Sesp Storage | Temum Tor Error
20880 6 574 [ 29 | 670 | 1856177 46 309 | 3.6-10"12
51900 7 1191 | 29 | 670 | 3855741 | 101 | 2020 | 1.1-10"10
203280 8 3883 | 29 | 670 | 12577869 | 342 | 32050 | 6.5-10"12
503775 9 11499 | 29 | 670 | 37263647 | 896 | 193900 | 1.0-10~1!

Figure 5: Charges distributed on the surface of a sphere.
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7 Generalizations and Conclusions

We have described an adaptive FMM for the Laplace equation based on a new diagonal form
for translation operators acting on harmonic functions. It is related to the FMM for the
high-frequency Helmholtz equation, in the sense that the latter is based on diagonal forms of
translation operators for partial wave expansions [7, 19, 20].

The present scheme admits a number of extensions. The most straightforward ones are to
the Helmholtz equation at low frequencies and to the Yukawa equation. The corresponding
multipole expansions are well-known, and appropriate plane wave representations have been
derived (see, for example, [13]).

From a more abstract perspective, it is worth noting that the main improvement made in
this paper and in [12] over earlier FMMs is due to the use of one basis for representing the far
field due to a collection of sources (spherical harmonics) and a separate basis for translating
information between boxes in the FMM data structure (plane waves). The applicability of
this approach is not limited to the Laplace and Helmholtz equations. We are currently in
the process of constructing such optimal (or nearly optimal) bases for more general potentials,
including those that do not satisfy a partial differential equation, but possess certain less
stringent analytical properties. A forthcoming paper [8] describes such an algorithm for the
square root of the Laplacian in two dimensions; further generalizations will be reported at a
later date.

8 Appendix

The three tables in this Appendix contain the nodes and weights (in columns 2 and 3) needed
for discretization of the outer integral in Lemma 2.8. Column 4 contains the number of dis-
cretization points needed in the inner integral, which we denote by M.

Table 13: Nodes, weights and M3 for 3-digit accuracy.

k Node W eight M;
1| 0.10934746769000 | 0.27107502662774 4
2| 0.51769741015341 | 0.52769158843946 8
3 | 1.13306591611192 | 0.69151504413879 | 16
4 | 1.88135015110740 | 0.79834400406452 | 16
5 | 2.71785409601205 | 0.87164160121354 | 24
6 | 3.61650274907449 | 0.92643839116924 | 24
7 | 4.56271053303821 | 0.97294622259483 8
8 | 5.54900885348528 | 1.02413865844686 4
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Table 14: Nodes, weights and M} for 6-digit accuracy.

k Node W eight M
1| 0.05599002531749 | 0.14239483712194 8
2| 0.28485138101968 | 0.31017671029271 8
3| 0.66535367065853 | 0.44557516683709 | 16
4| 1.16667904805296 | 0.55303383994159 | 16
5 | 1.76443027413431 | 0.63944903363523 | 24
6 | 2.44029832236380 | 0.70997911214019 | 32
7| 3.18032180991515 | 0.76828253949732 | 32
8 | 3.97371715777193 | 0.81713201141707 | 32
9| 4.81216799410634 | 0.85872191623337 | 48
10 | 5.68932314511487 | 0.89480789582390 | 48
11 | 6.60040479444377 | 0.92680189417317 | 48
12 | 7.54190497469911 | 0.95586282708096 | 48
13 | 8.51136569298099 | 0.98299145008230 | 48
14 | 9.50723242759128 | 1.00913395385703 | 48
15 | 10.52874809650967 | 1.03531774600508 | 48
16 | 11.57587019602884 | 1.06318427913963 8
17 | 12.65078163968520 | 1.10232109521088 4
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Table 15: Nodes, weights and M} for 9-digit accuracy.

k Node Weight M;
1| 0.03705701953816 | 0.09473396337900 8
2| 0.19219683859955 | 0.21384206006426 | 16
3| 0.46045971214897 | 0.32031528543989 | 16
4| 0.82805130101422 | 0.41254929390710 | 16
5 | 1.28121229944787 | 0.49176691815621 | 24
6 | 1.80792019276297 | 0.55998309037174 | 32
7| 2.39814728074333 | 0.61909314036708 | 32
8 | 3.04359012306582 | 0.67064351982741 | 32
9 | 3.73732742924096 | 0.71586567032066 | 48
10 | 4.47354768940212 | 0.75576118553096 | 48
11 | 5.24735518169467 | 0.79116885492295 | 48
12 | 6.05462948620944 | 0.82280556212477 | 64
13 | 6.89191648795972 | 0.85129012269433 | 64
14 | 7.75633860708838 | 0.87715909928110 | 64
15 | 8.64551915195994 | 0.90087981520398 | 64
16 | 9.55751929613924 | 0.92286282936149 | 72
17 | 10.49078760616705 | 0.94347471535979 | 72
18 | 11.44412262341269 | 0.96305166489156 | 80
19 | 12.41664955395045 | 0.98191478773737 | 80
20 | 13.40781311788324 | 1.00038891281291 | 88
21 | 14.41739038894472 | 1.01882849188686 | 88
22 | 15.44553016867884 | 1.03765781507554 | 88
23 | 16.49282861241170 | 1.05744113465683 | 88
24 | 17.56045648926099 | 1.07903824697122 | 72
25 | 18.65046484106274 | 1.10434337868208 | 32
26 | 19.76847686619416 | 1.14488166506896 4
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