
The Laplace Transform is frequently encountered in mathematics, physics, engineering and
other fields. However, the spectral properties of the Laplace Transform tend to complicate
its numerical treatment; therefore, the closely related “Truncated” Laplace Transforms are
often used in applications.
We have constructed efficient algorithms for the evaluation of the left singular functions
and singular values of the Truncated Laplace Transform. Together with the previously
introduced algorithms for the evaluation of the right singular functions, these algorithms
provide the Singular Value Decomposition of the Truncated Laplace Transform.
The resulting algorithms are applicable to all environments likely to be encountered in
applications, including the evaluation of singular functions corresponding to extremely small
singular values (e.g. 10−1000).
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1 Introduction

The Laplace Transform L is a linear mapping L2[0,∞) → L2[0,∞); for a function f ∈ L2[0,∞),
it is defined by the formula

(L(f)) (ω) =
∫ ∞

0
e−tωf(t)dt. (1)

As is well-known, L has a continuous spectrum, and L−1 is not continuous (see, for example,
[3]). These and related properties tend to complicate the numerical treatment of L.

In addressing these problems, we find it useful to draw an analogy between the numerical
treatment of the Laplace Transform, and the numerical treatment of the Fourier Transform F ;
for a function f ∈ L1(R), the latter is defined by the formula

(F(f)) (ω) =

∫ ∞

−∞
e−itωf(t)dt, (2)

where ω ∈ R.
In various applications in mathematics and engineering, it is useful to define the “Trun-

cated” Fourier Transform Fc : L2[−1, 1] → L2[−1, 1]; for a given c > 0, Fc of a function
f ∈ L2[−1, 1] is defined by the formula

(Fc(f)) (ω) =

∫ 1

−1
e−ictωf(t)dt. (3)

The operator Fc has been analyzed extensively; one of most notable observations, made by
Slepian and Pollak around 1960, was that the integral operator Fc commutes with a second
order differential operator (see [18]). This property of Fc was used in analytical and numerical
investigations of the eigendecomposition of this operator; for example in [18, 9, 10, 16, 17, 19,
15].

For 0 < a < b <∞, the linear mapping La,b : L
2[a, b] → L2[0,∞) defined by the formula

(La,b(f)) (ω) =

∫ b

a
e−tωf(t)dt, (4)

will be referred to as the Truncated Laplace Transform of f ; obviously, La,b is a compact
operator (see, for example, [3]) .

The Singular Value Decomposition (SVD) of La,b has been analyzed, inter alia, in [3] and
[5]; Bertero and Grünbaum observed that each of the symmetric operators (La,b)

∗ ◦ La,b and
La,b◦(La,b)

∗ commutes with a differential operator (see [5]). Despite [5, 6, 3, 2, 4, 13, 8, 7], much
more is known about the numerical and analytical properties of Fc than about the properties
of La,b.

We have constructed algorithms for the efficient evaluation of the SVD of La,b. In [12] we
introduced algorithms for the efficient evaluation of the right singular functions and singular
values of La,b. In this paper, we introduce an efficient algorithm for the numerical evaluation
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of the left singular functions, and an additional algorithm for computing the singular value.
Additional properties of the Truncated Laplace transform will be discussed in upcoming papers.

This paper is organized as follows. Section §2 summarizes the various standard mathemat-
ical facts and simple derivations that are used later in this paper, as well as various properties
of the Truncated Laplace Transform. Section §3 contains the derivation of various properties
of the truncated Laplace transform which are related to the left singular functions; the prop-
erties are used in the algorithms presented in the following section. Section §4 describes the
algorithms for the evaluation of the left singular functions and singular values of the Trun-
cated Laplace Transform. Section §5 contains numerical results obtained using the algorithms.
Section §6 contains generalizations and conclusions.

2 Preliminaries

2.1 The Laguerre Functions

In this section we summarize some of the properties of the Laguerre Polynomials, Generalized
Laguerre polynomials, and Laguerre Functions. The Laguerre polynomial Lk(x) of degree k ≥ 0
is defined by the formula

Lk(x) =
k
∑

m=0

(−1)m
(

k

k −m

)

1

m!
xm. (5)

The Generalized Laguerre Polynomial of order α > −1 and degree k ≥ 0, denoted by L
(α)
k (x),

is defined by the formula

L
(α)
k (x) =

k
∑

m=0

(−1)m
(

k + α

k −m

)

1

m!
xm. (6)

The Laguerre Function of degree k ≥ 0, which we denote by Φk, is defined via the formula

Φk(x) = e−x/2Lk(x). (7)

The following well known properties of the Laguerre Polynomials and the Generalized La-
guerre Polynomials can be found, inter alia, in [1].

Lα−1
k (x) = Lα

k (x)− Lα
k−1(x) (8)

d

dx
Lk(x) = −L(1)

k−1 (9)

xLk(x) = −(k + 1)Lk+1(x) + (2k + 1)Lk(x)− kLk−1(x) (10)
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∫ ∞

0
e−xtLk(x)dx = (t− 1)kt−k−1 (11)

As is well-known, the Laguerre Polynomials L0(x), L1(x), ... form an orthonormal basis in
the Hilbert space induced by the weighted inner product

(f, g) =

∫ ∞

0
e−xf(x)g(x)dx. (12)

It follows that the Laguerre functions Φ0(x),Φ1(x), .... form an orthonormal basis in the stan-
dard L2[0,∞) sense.

By (11) and (7),

∫ ∞

0
e−xtΦk(x)dx =

(

t− 1

2

)k (

t+
1

2

)−k−1

. (13)

2.2 The Legendre Polynomials

In this subsection we summarize some of the properties of the Normalized Shifted Legendre
Polynomials, derived from the standard Legendre Polynomials. We define the Normalized
Shifted Legendre Polynomial of degree k = 0, 1, ..., which we will be denoting by P ∗

k , by the
formula

P ∗
k (x) = Pk(2x− 1)

√
2k + 1; (14)

where Pk is the Legendre Polynomial of degree k; the standard definition of the Legendre
Polynomials can be found, inter alia, in [1].

As is well-known, the Legendre Polynomials form an orthogonal basis in L2[−1, 1], but
they are not normalized; a simple calculation shows that the Normalized Shifted Legendre
Polynomials P ∗

0 , P
∗
1 , ... form an orthonormal basis in L2[0, 1].

By (14), the first Normalized Shifted Legendre Polynomial is a constant,

P ∗
0 (x) = 1. (15)

2.3 Singular Value Decomposition of integral operators

The SVD of integral operators and its key properties are summarized in the following theorem,
which can be found, for example, in [20].

Theorem 2.1. Suppose that the function K : [c, d] × [a, b] → R is square integrable, and
T : L2[a, b] → L2[c, d] is defined by the formula

(T (f)) (x) =

∫ b

a
K(x, t)f(t)dt. (16)
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Then, there exist two orthonormal sequences of functions u0, u1, ..., where un : [a, b] → R and
v0, v1, ..., where vn : [c, d] → R, and a sequence α0, α1, ... ∈ R, where α0 ≥ α1 ≥ ... ≥ 0, such
that

(T (f)) (x) =
∞
∑

n=0

αn

(
∫ b

a
un(t)f(t)dt

)

vn(x) (17)

for any f ∈ L2[a, b]. The sequence α0, α1, ... is uniquely determined by K.

The functions u0, u1, ... are referred to as the right singular functions, the functions v0, v1, ...
are referred to as the left singular functions, and the values α0, α1, ... are referred to as the
singular values of the operator T . Together, the right singular functions, the left singular
functions and the singular values are referred to as the SVD of the operator T .

It immediately follows from Theorem 2.1 that

T (un) = αnvn, (18)

T ∗(vn) = αnun. (19)

Observation 2.2. The right singular functions u0, u1, .. of T are eigenfunctions of the operator
T ∗ ◦ T and the left singular functions v0, v1, ... are eigenfunctions of the operator T ◦ T ∗; the
singular values α0, α1, ... of T are the square roots of the eigenvalues of T ∗ ◦ T and T ◦ T ∗. In
other words, for every n = 0, 1, ...,

((T ∗ ◦ T )(un)) (τ) =
∫ d

c
K(x, τ)

(
∫ b

a
K(x, t)un(t)dt

)

dx = α2
nun(τ) (20)

and

((T ◦ T ∗)(vn)) (ξ) =

∫ b

a
K(ξ, t)

(
∫ d

c
K(x, t)vn(x)dx

)

dt = α2
nvn(ξ) (21)

Remark 2.3. The function K can be expressed using the singular functions as follows (see
[20]),

K(x, t) =
∞
∑

n=0

vn(x)αnun(t) (22)

and it can be approximated by truncation of small singular values (also see [20]):

K(x, t) ≃
p
∑

n=0

vn(x)αnun(t) (23)
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2.4 The Truncated Laplace Transform

Definition 2.4. For any pair of real numbers a, b, such that 0 < a < b < ∞, the Truncated
Laplace Transform La,b is the linear mapping L2[a, b] → L2[0,∞), defined by the formula

(La,b(f)) (ω) =

∫ b

a
e−tωf(t)dt, (24)

Obviously, the adjoint of La,b is

((La,b)
∗(g)) (t) =

∫ ∞

0
e−tωg(ω)dω. (25)

The operators La,b and (La,b)
∗ are compact, the range of (La,b)

∗ is dense in L2[a, b] and the
range of La,b is dense in L2[0,∞) (see, for example, [3]).

2.5 The SVD of the Truncated Laplace Transform

By Theorem 2.1, there exist an orthonormal sequence of right singular functions u0, u1, ... ∈
L2[a, b], an orthonormal sequence of left singular functions v0, v1, ... ∈ L2[0,∞) and a sequence
of real numbers α0, α1, ... ∈ R such that

(La,b(f)) (ω) =

∞
∑

n=0

αn

(
∫ b

a
un(t)f(t)dt

)

vn(ω), (26)

and for all n = 0, 1, ...,

La,b(un) = αnvn, (27)

(La,b)
∗(vn) = αnun, (28)

and

αn ≥ αn+1 ≥ 0. (29)

Remark 2.5. The multiplicity of the singular values of La,b is one (see [5]); in other words,
for all n = 0, 1, ...

αn > αn+1. (30)

Remark 2.6. According to Observation 2.2, the right singular functions u0, u1, ... of La,b are
eigenfunctions of the integral operator (La,b)

∗ ◦ La,b : L
2[a, b] → L2[a, b] given by the formula

(((La,b)
∗ ◦ La,b) (f)) (t) =

∫ ∞

0
e−ωt

(
∫ b

a
e−ωsf(s)ds

)

dω =

∫ b

a

1

t+ s
f(s)ds,
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(31)

and the corresponding eigenvalues of (La,b)
∗ ◦La,b are α

2
0, α

2
1, ..., where αn is the singular value

of La,b associated with the right singular function un. In other words,

(((La,b)
∗ ◦ La,b) (un)) (t) =

∫ b

a

1

t+ s
un(s)ds = α2

nun(t). (32)

Similarly, the left singular functions vn of La,b are eigenfunctions of the integral operator
La,b ◦ (La,b)

∗ : L2[0,∞) → L2[0,∞) given by the formula

((La,b ◦ (La,b)
∗) (g)) (ω) =

=

∫ b

a
e−ωt

(
∫ ∞

0
e−ρtg(ρ)dρ

)

dt =

∫ ∞

0

e−a(ω+ρ) − e−b(ω+ρ)

ω + ρ
g(ρ)dρ,

(33)

and the corresponding eigenvalues La,b ◦ (La,b)
∗ are α2

0, α
2
1, .... In other words,

((La,b ◦ (La,b)
∗) (vn)) (ω) =

∫ ∞

0

e−a(ω+ρ) − e−b(ω+ρ)

ω + ρ
vn(ρ)dρ = α2

nvn(ω). (34)

2.6 The differential operators D̃t and D̂ω associated with the singular func-

tions of La,b

In this subsection we summarize several properties related to the differential operator D̃t,
defined by the formula

(

D̃t(f)
)

(t) =
d

dt

(

(t2 − a2)(b2 − t2)
d

dt
f(t)

)

− 2(t2 − a2)f(t), (35)

where f ∈ C2[a, b]; and properties related to the differential operator D̂ω, defined by the
formula

(

D̂ω(f)
)

(ω) =

= − d2

dω2

(

ω2 d2

dω2
f(ω)

)

+ (a2 + b2)
d

dω

(

ω2 d

dω
f(ω)

)

+
(

−a2b2ω2 + 2a2
)

f(ω),

(36)

where f ∈ C4[0,∞) ∩ L2[0,∞). For a derivation of these properties, see [5].

Theorem 2.7. The differential operator D̃t, defined in (35), commutes with the integral oper-
ator (La,b)

∗ ◦ La,b, (specified in (31)) in L2[a, b]. In other words,

D̃t ◦ ((La,b)
∗ ◦ La,b) = ((La,b)

∗ ◦ La,b) ◦ D̃t (37)
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Theorem 2.8. The differential operator D̂ω, defined in (36), commutes with the integral op-
erator La,b ◦ (La,b)

∗, (specified in (33)) in L2[0,∞). In other words,

La,b ◦ (La,b)
∗ ◦ D̂ω = D̂ω ◦ La,b ◦ (La,b)

∗. (38)

Theorem 2.9. The right singular functions u0, u1, ... (defined in (27)) of La,b (defined in (24))
are also the eigenfunctions of D̃t.

Theorem 2.10. The left singular functions v0, v1, ... (defined in (27)) of La,b (defined in (24))

are also the eigenfunctions of D̂ω.

We denote the eigenvalues of the differential operator D̃t by χ̃0, χ̃1, ..., and the eigenvalues
of the differential operator D̂ω by χ∗

0, χ
∗
1, .... By Theorem 2.9, the singular function un is the

solution to the differential equation

d

dt

(

(t2 − a2)(b2 − t2)
d

dt
un(t)

)

− 2(t2 − a2)un(t) = χ̃nun(t), (39)

and by Theorem 2.10, the left singular function vn is the solution to the differential equation

− d2

dω2

(

ω2 d2

dω2
vk(ω)

)

+ (a2 + b2)
d

dω

(

ω2 d

dω
vk(ω)

)

+ (−a2b2ω2 + 2a2)vk(ω) =

= χ∗
kvk(ω).

(40)

Remark 2.11. The singular values αn (defined in (27)) of the integral operator La,b are
known to decay exponentially as n grows; consequently, the direct numerical computation of
the singular functions of La,b beyond the first few singular functions is impossible.

The differential operators D̃t and D̂ω are advantageous in the numerical treatment of the
singular functions un and vn because their eigenvalues are well-separated.

2.7 Properties of the right singular functions un

In this section we presents some of the numerical properties of the right singular functions un,
a more detailed discussion of these properties is found in [12].

We find it convenient to define the function ψn(x) on the interval [0, 1] by the formula

ψn(x) =
√
b− a un(a+ (b− a)x). (41)

We introduce the notation hn = (hn0 , h
n
1 , ...)

⊤ for the vector of coefficients of the expansion
of the function ψn in the basis of Normalized Shifted Legendre Polynomials (defined in (14));
where the element hnk is defined by the formula

hnk =

∫ 1

0
ψn(x)P ∗

k (x)dx, (42)
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so that

ψn(x) =
∞
∑

k=0

hnkP
∗
k (x). (43)

Theorem 2.12. The vector of coefficients hn is the n + 1-th eigenvector of the five-diagonal
matrix M , defined by the formula

Mk−2,k = − (k−1)2k2

4
√
2k−3(2k−1)

√
2k+1

,

Mk−1,k = − k3(1+β)√
2k−1,

√
2k+1

Mk,k = −(−4−6β−2kβ(2+3β)+k2(7+12β+2β2)+(2k3+k4)(7+16β+8β2))
2(2k−1)(2k+3) ,

Mk+1,k = − (k+1)3(1+β)√
2k+1

√
2k+3

,

Mk+2,k = − (k+1)2(k+2)2

4
√
2k+1(2k+3)

√
2k+5

.

(44)

where

β =
2a

b− a
. (45)

3 Analytical apparatus

3.1 Expansion of vn in the basis of Laguerre functions

Suppose that g is a smooth function in L2[0,∞). Then, g can be expressed in the basis of
Laguerre functions Φk (defined in (7)); let η = (η0, η1, ...)

⊤ be the a vector where

ηk =

∫ ∞

0
g(ω)Φk(ω)dω, (46)

then clearly η is the vector of coefficients in the expansion,

g(ω) =
∞
∑

k=0

ηkΦk(ω). (47)

We introduce the notation ηn = (ηn0 , η
n
1 , ...)

⊤ for the vector of coefficients of the expansion
of the left singular function vk (defined in (27)) in the basis of Laguerre functions; where the
element ηnk is defined by the formula

ηnk =

∫ ∞

0
vn(ω)Φk(ω)dω, (48)

so that

vn(ω) =
∞
∑

k=0

ηnkΦk(ω). (49)

8



3.2 A matrix representation of the differential operator D̂ω in the basis of

Φk

The purpose of this subsection is to express the differential operator D̂ω (defined in (36)) in the
basis of Laguerre Functions Φk as the matrix M̂ described in Lemma 3.1. Theorem 3.2 shows
that the matrix M̂ is in fact a five-diagonal matrix; and Corollary 3.3 provides the relationship
between the eigenvectors of M̂ and the left singular functions vn defined in (27).

Lemma 3.1. Let g be a smooth function with the expansion η = (η0, η1, ...)
⊤ specified in (47):

g(ω) =
∞
∑

k=0

ηkΦk(ω). (50)

Suppose that ψ = D̂ω(g), with the expansion c = (c0, c1, ...)
⊤ such that

ψ(ω) =
∞
∑

k=0

ckΦk(ω). (51)

Then,

c = M̂η, (52)

where the matrix elements M̂jk of M̂ are defined via the formula

M̂jk =

∫ ∞

0
Φj(ω)

(

D̂ω (Φk)
)

(ω)dω, (53)

with 0 ≤ j, k <∞.

Proof. By the linearity of the differential operator D̂ω (defined in (36)),

ψ(ω) =
(

D̂ω(g)
)

(ω) =

∞
∑

k=0

ηk

(

D̂ω(Φk)
)

(ω). (54)

Combining (51) and (54),

∞
∑

k=0

ckΦk(ω) =
∞
∑

k=0

ηk

(

D̂ω(Φk)
)

(ω). (55)

Now, by multiplying both sides of (55) by Φj and integrating, we have

cj =

∫ ∞

0

( ∞
∑

k=0

ηk

(

D̂ω(Φk)
)

(ω)

)

Φj(ω)dω. (56)

By linearity,

cj =
∞
∑

k=0

ηk

(
∫ ∞

0
Φj(ω)

(

D̂ω(Φk)
)

(ω)dω

)

. (57)
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Theorem 3.2. For any k ≥ 0,

(

D̂ω(Φk)
)

(ω) =

−
(

4a2 − 1
) (

4b2 − 1
)

(k − 1)k

16
Φk−2 (ω)

+
k2
(

16a2b2 − 1
)

4
Φk−1 (ω)

+
k(k + 1)

(

−48a2b2 − 4a2 − 4b2 − 3
)

+
(

−16a2b2 + 12a2 − 4b2 − 1
)

8
Φk (ω)

+
(k + 1)2

(

16a2b2 − 1
)

4
Φk+1 (ω)

−
(

4a2 − 1
) (

4b2 − 1
)

(k + 2)(k + 1)

16
Φk+2 (ω) ,

(58)

where Φk is the Laguerre function defined in (7).
In other words, M̂ is the symmetric five-diagonal matrix with non-zero entries defined by

the formulae

M̂k−2,k =−
(

4a2 − 1
) (

4b2 − 1
)

(k − 1)k

16
,

M̂k−1,k =
k2
(

16a2b2 − 1
)

4
,

M̂k,k =
k(k + 1)

(

−48a2b2 − 4a2 − 4b2 − 3
)

+
(

−16a2b2 + 12a2 − 4b2 − 1
)

8
,

M̂k+1,k =
(k + 1)2

(

16a2b2 − 1
)

4
,

M̂k+2,k =−
(

4a2 − 1
) (

4b2 − 1
)

(k + 2)(k + 1)

16
.

(59)

Proof. By the definition of D̂ω in (36),

(

D̂ω(Φk)
)

(x) =

= − d2

dω2
ω2 d2

dω2
Φk(ω) + (a2 + b2)

d

dω
ω2 d

dω
Φk(x) + (−a2b2ω2 + 2a2)Φk(ω)

(60)

A somewhat tedious derivation from (60), using identities (8), (9) and (10), yields (58).
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Corollary 3.3. Suppose that ηn = (ηn0 , η
n
1 , ...)

⊤ is the vector of coefficients defined in (48), in
the expansion of the left singular function vn defined in (27); then, ηn is the n+1-th eigenvector
of M̂ :

M̂ηn = χ∗
nη

n, (61)

where M̂ is the five-diagonal matrix (59), χ∗
n are the eigenvalues of the differential operator

D̂ω, and k = 0, 1, 2, ....

Proof. By (40), vn is an eigenfunction of D̂ω, with the eigenvalue χ∗
n:

(

D̂ωvk

)

(ω) = χ∗
kvk(ω), (62)

so that
(

D̂ω

( ∞
∑

k=0

ηnkΦk

))

(ω) =
(

D̂ωvk

)

(ω) = χ∗
k

∞
∑

k=0

ηnkΦk(ω). (63)

Therefore, by Lemma 3.1 we obtain (3.3).

Remark 3.4. If the operator D̂ω is represented in the basis associated with Hermite polyno-
mials, rather than in the basis of Laguerre functions, the resulting matrix M̂ in Lemma 3.1
and Theorem 3.2 is seven-diagonal and of certain analytical advantage. This approach is under
investigation and will be reported at a later date.

3.2.1 The special cases L1/2,γ/2 and L1/2γ,1/2

An inspection of formula (59) immediately indicates that there are two special cases in which
the second off-diagonal of the matrix M̂ defined in (59) vanishes, and M̂ becomes a tridiagonal
band matrix.

The first case occurs when a = 1/2. The substitution of a = 1/2, b = γ/2 into (59) yields

M̂k−1,k =
1

4

(

γ2 − 1
)

k2,

M̂k,k =
1

4

(

−γ2 − 2
(

γ2 + 1
)

k2 − 2
(

γ2 + 1
)

k + 1
)

,

M̂k+1,k =
1

4

(

γ2 − 1
)

(k + 1)2,

(64)

and zero in all other elements of M̂ . In other words, the differential operator associated with
the Truncated Laplace Transform L1/2,γ/2 via (38) is a tridiagonal band matrix in the basis of
Laguerre Functions.
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The second case occurs when b = 1/2. The substitution of a = 1
2γ , b = 1/2 into (59) yields

M̂k−1,k =−
(

γ2 − 1
)

k2

4γ2
,

M̂k,k =−
(

2
(

γ2 + 1
)

k2 + 2
(

γ2 + 1
)

k + γ2 − 1
)

4γ2
,

M̂k+1,k =−
(

γ2 − 1
)

(k + 1)2

4γ2
,

(65)

and zero in all other elements of M̂ . Again, the differential operator associated with the
Truncated Laplace Transform L1/2γ,1/2 via (38) is a tridiagonal band matrix in the basis of
Laguerre Functions.

3.2.2 The special case: L 1

2
√

γ
,
√

γ

2

An additional special case occurs when
√
ab = 1/2, i.e. in the case of the Truncated Laplace

Transform L 1

2
√

γ
,
√

γ

2

. Substituting a = 1
2
√
γ , b =

√
γ
2 into (59) eliminates the first off-diagonal of

M̂ and yields the matrix M̂ (s):

M̂
(s)
k−2,k =

(γ − 1)2(k − 1)k

16γ
,

M̂
(s)
k,k =

(

−γ2 − 6γ − 1
)

k(k + 1)− γ2 − 2γ + 3

8γ
,

M̂
(s)
k+2,k =

(γ − 1)2(k + 1)(k + 2)

16γ
,

(66)

with zero in all other elements of M̂ (s).

3.3 The “standard” form of the Truncated Laplace Transform

As shown in [3], the behavior of the Truncated Laplace Transform La,b is determined by the
ratio

γ = b/a. (67)

The following lemma summarizes the connections between the SVD of the Truncated Laplace
Transform La,b and the SVD of the Truncated Laplace Transform L 1

2
√

γ
,
√

γ

2

; we will refer to the

latter as the standard form of the Truncated Laplace Transform.

Lemma 3.5. Suppose that 0 < a < b < ∞, and that un, vn and αn are the n + 1-th right
singular function, left singular function and singular value of La,b, respectively. Suppose that

12



ũn, ṽn and α̃n are the n+1-th right singular function, left singular function and singular value
of the standard form L 1

2
√

γ
,
√

γ

2

, respectively, with γ = b/a.

Then,

un(t) =

√

1

2
√
γ a

ũn(t/2
√
γa), (68)

vn(ω) =
√

2
√
γ a ṽn(ωa2

√
γ), (69)

and

αn = α̃n. (70)

Proof. The identities are readily obtained by the change of variables t′ = t/2a
√
γ in (32), the

change of variables ω′ = 2a
√
γω in (34), and normalization of the singular functions.

We denote the differential operator associated with L 1

2
√

γ
,
√

γ

2

via Theorem 2.8 by
˜̂
Dω; this

differential operator is specified by the formula

(

˜̂
Dω(f)

)

(ω) =

= − d2

dω2

(

ω2 d2

dω2
f(ω)

)

+
γ2 + 1

4γ

d

dω

(

ω2 d

dω
f(ω)

)

+

(

− 1

16
ω2 +

1

2γ

)

f(ω),

(71)

which is a special case of formula (36). The following lemma specifies the relation between

the eigenvalues of
˜̂
Dω associated with L 1

2
√

γ
,
√

γ

2

and the eigenvalues of D̂ω (defined in (36))

associated with La,b.

Lemma 3.6. Suppose that χ∗
n is the n+1-th eigenvalue of the differential operator D̂ω associ-

ated with La,b, and that χ̃∗
n is the n+1-th eigenvalue of the differential operator

˜̂
Dω associated

with L 1

2
√

γ
,
√

γ

2

, where γ = b/a. Then,

χ∗
n = 4γa2χ̃∗

n = 4abχ̃∗
n. (72)

Proof. The relation is obtained from (36) by the change of variables ω′ = 2a
√
γω.

3.4 The operator Cγ

In this discussion, we find it useful to introduce the transform Cγ : L2
[

1
2
√
γ ,

√
γ
2

]

→ L2 [−1, 1];

we define Cγ of a function f by the formula

(Cγ(f)) (s) = γs/4 f
(

γs/2/2
)

. (73)
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Remark 3.7. A simple calculation shows that

∫ 1

−1
(Cγ(f)) (s) · (Cγ(g)) (s)ds =

4

log γ

∫

√

γ

2

1

2
√

γ

f(t)g(t)dt. (74)

The following lemma provides an expression for the function Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

)

, with Φk

the Laguerre function defined in (7).

Lemma 3.8. For any 1 < γ <∞,
(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s) = γs/4
(

γs/2 − 1
)k (

γs/2 + 1
)−k−1

. (75)

Furthermore, the function Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

)

is even or odd, depending on the value of k:

(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s) = (−1)k
(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(−s). (76)

Proof. The identity (75) is obtained by substituting (13) into (73). The symmetry property
(76) follows immediately from (75).

Corollary 3.9. For 1 < γ <∞, the functions

∣

∣

∣

∣

(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s)

∣

∣

∣

∣

decay exponentially

as k grows, in the following sense

∣

∣

∣

∣

(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s)

∣

∣

∣

∣

≤ 1

2

∣

∣

∣

∣

∣

γs/2 − 1

γs/2 + 1

∣

∣

∣

∣

∣

k

=
1

2

∣

∣

∣

∣

1− 2

γs/2 + 1

∣

∣

∣

∣

k

. (77)

Furthermore, if −1 ≤ s ≤ 1, then,
∣

∣

∣

∣

(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s)

∣

∣

∣

∣

≤ 1

2

∣

∣

∣

∣

1− 2

γ1/2 + 1

∣

∣

∣

∣

k

. (78)

Proof. By (75),

∣

∣

∣

∣

(

Cγ

(

L∗
1

2
√

γ
,
√

γ

2

(Φk)

))

(s)

∣

∣

∣

∣

=
γs/4

γs/2 + 1

∣

∣

∣

∣

∣

γs/2 − 1

γs/2 + 1

∣

∣

∣

∣

∣

k

, (79)

so that for all 1 < γ <∞ and s ∈ R,
∣

∣

∣

∣

∣

γs/2 − 1

γs/2 + 1

∣

∣

∣

∣

∣

< 1. (80)

The inequality (77) follows immediately from (79) and (80). Equation (78) follows immediately
from (77).

14



3.4.1 The function Cγ(un)

We introduce the notation Un for the Cγ of the n+ 1 right singular function of L 1

2
√

γ
,
√

γ

2

; Un is

defined by the formula

Un(s) = (Cγ(un)) (s). (81)

where un is the n + 1-th right singular function of the operator L 1

2
√

γ
,
√

γ

2

and Cγ is defined in

(73).
The following lemma summarizes some of the observations found in [5] and reformulates

them using the notation used in this paper.

Lemma 3.10. The function Un (defined in (81)) is an eigenfunction of the differential operator
˜̃Ds, defined by the formula

(

˜̃Ds ◦ f
)

(s) = (log (
√
γ))−2 d

ds

(

γ2 + 1− 2γ cosh (2s log (
√
γ))
) d

ds
f(s)

−
(

3

2
γ cosh (2s log (

√
γ)) +

1

4
γ2 − 7

4

)

f(s).
(82)

Since the differential operator ˜̃Ds is symmetric around 0, the function Un is even or odd in
the sense that

Un(s) = (−1)nUn(−s). (83)

3.5 Decay of the coefficients

Since the left singular function vn (defined in (27)) is a smooth solutions of a differential
equation (specified in (40)), we expect the coefficients ηnk (defined in (48)) in the expansion of
vn to decay rapidly. In this section we provide an estimate for the actual decay.

Lemma 3.11. Suppose that vn is the n + 1-th left singular function of the operator L 1

2
√

γ
,
√

γ

2

(defined in 24); then

|ηnk | ≤ α−1
n

√
2√

log γ

∣

∣

∣

∣

1− 2

1 +
√
γ

∣

∣

∣

∣

k

. (84)

where ηnk is defined in (48) and αn is the n+ 1-th singular value of L 1

2
√

γ
,
√

γ

2

.

Proof. By (48) and (27),

ηnk = α−1
n

∫ ∞

0

(
∫ b

a
e−ωtun(t)dt

)

Φk(ω)dω. (85)
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Changing the order of integration and using (25),

ηnk = α−1
n

∫

√

γ

2

1

2
√

γ

un(t)

((

L 1

2
√

γ
,
√

γ

2

)∗
(Φk)

)

(t)dt. (86)

A simple calculation using (74) and (81) shows that

ηnk = α−1
n

∫ 1

−1
Un(s) ·

(

Cγ

((

L 1

2
√

γ
,
√

γ

2

)∗
(Φk)

))

(s)ds. (87)

By the Cauchy-Schwarz inequality,

|ηnk | ≤ α−1
n

√

∫ 1

−1
(Un(s))

2 ds

√

∫ 1

−1

(

Cγ

((

L 1

2
√

γ
,
√

γ

2

)∗
(Φk)

))2

(s)ds. (88)

Now, since the right singular function un is normalized, and using (74) and (81),

|ηnk | ≤ α−1
n

2√
log γ

√

∫ 1

−1

(

Cγ

((

L 1

2
√

γ
,
√

γ

2

)∗
(Φk)

))2

(s)ds. (89)

Finally, using inequality (78),

|ηnk | ≤ α−1
n

√
2√

log γ

∣

∣

∣

∣

1− 2

1 +
√
γ

∣

∣

∣

∣

k

. (90)

Remark 3.12. Lemma 3.11 can be generalized to the following bound for the coefficients of
the expansion of the left singular functions of the Truncated Laplace Transform La,b in the
nonstandard form; the proof is found in our report [11]. The coefficients ηnk in the expansion
of the left singular function vn of La,b are bounded in the sense that

|ηnk | ≤ α−1
n

√

2

log γ

∣

∣

∣

∣

∣

γsmax/2 − 1

γsmax/2 + 1

∣

∣

∣

∣

∣

k

, (91)

where

smax = max

(∣

∣

∣

∣

2
log 2a

log γ

∣

∣

∣

∣

,

∣

∣

∣

∣

2
log 2b

log γ

∣

∣

∣

∣

)

. (92)
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3.6 Integral of the function un

The following lemma describes the relation between the integral
∫ b
a un(t)dt, where un is the

right singular function (defined in (27)), and the expansion specified in (43). The expansion
(43) is associated with the right singular function un via (41) and (42) and it is studied in [12].

Lemma 3.13. Suppose that un be the n+ 1-th right singular function of La,b, then

∫ b

a
un(t)dt =

√
b− ahn0 . (93)

where hn0 is the first coefficient in the expansion (42) of the function ψn defined in (43) in the
basis of Legendre Polynomials.

Proof. By (42),

hn0 =

∫ 1

0
ψn(x)P ∗

0 (x)dx, (94)

Substituting (15) into (94) yields

hn0 =

∫ 1

0
ψn(x)dx. (95)

Now, substituting (41) into (94) with the change of variable t = a+ (b− a)x yield (93).

3.7 A relation between un, vn, and the singular value αn

The following lemma provides the relation between the coefficient hn0 (see (42)), the left singular
function vn, and the singular value αn.

Theorem 3.14. Suppose that un, vn and αn are the n + 1-th right singular function, left
singular function and singular value of La,b and suppose that hn0 is the first coefficient in the
expansion defined in (43). Then,

αn =
√
b− a

hn0
vn(0)

(96)

Proof. Evaluating both side of (27) at 0 yields

αnvn(0) = (La,b(un)) (0) = αnvn(0) =

∫ b

a
un(t)dt. (97)

Substituting 93 into (97),

αnvn(0) =
√
b− a hn0 . (98)
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4 Algorithms

4.1 Computing the left singular function vn

In this section we introduce an algorithm for the numerical evaluation of vn(ω), the n + 1-th
left singular function (defined in (27)) of La,b (the operator defined in (24)).

By Theorem 2.10, the function vn(ω) is an eigenfunction of the differential operator D̂ω

defined in (36); by Corollary 3.3, the expansion ηn = (ηn0 , η
n
1 , ...)

⊺ (defined in (49)) of vn in the
basis of Laguerre functions is an eigenvector of the matrix M̂ defined in (59).

Based on Lemma 3.5 and Lemma 3.6, it is sufficient to compute ṽn(ω), the n + 1-th left
singular function of the Truncated Laplace Transform in the standard form L 1

2
√

γ
,
√

γ

2

, where

γ = b/a; vn(t) is computed from ṽn(t) using (69). In this special case of the Truncated Laplace
Transform, the expansion ηn = (ηn0 , η

n
1 , ...)

⊺ of ṽn(ω) is an eigenvector of the matrix M̂ (s)

specified in (66).
Since the matrix M̂ (s) is five-diagonal, and is non-zero only in even rows of even columns,

and on odd rows of odd columns, an eigenvector of M̂ (s) must vanish at either the even or odd
positions.

Therefore, for any even n = 2m where m ≥ 0, equation (49) is reformulated as

ṽ2m(ω) =
∞
∑

k=0

ηeven,mk Φ2k(ω), (99)

where ηeven,m = (ηeven,m0 , ηeven,m1 , ...)⊺ is simply the even numbered elements of the vector η2m;
for all integer k ≥ 0:

η2m2k = ηeven,mk . (100)

In other words, ηeven,m is the m+1-th eigenvector of the tridiagonal matrix M̂ (s,even), obtained
by removing the odd numbered rows and columns of M̂ (s); the non-zero elements of M̂ (s,even)

are specified by the formula

M̂
(s,even)
k−1,k =

(γ − 1)2(2k − 1)k

8γ
,

M̂
(s,even)
k,k =

2
(

−γ2 − 6γ − 1
)

k(2k + 1)− γ2 − 2γ + 3

8γ
,

M̂
(s,even)
k+1,k =

(γ − 1)2(2k + 1)(k + 1)

8γ
.

(101)

Similarly, for any odd n = 2m+ 1 where m ≥ 0, equation (49) is reformulated as

ṽ2m+1(ω) =
∞
∑

k=0

ηodd,mk Φ2k+1(ω), (102)
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where ηodd,m = (ηodd,m0 , ηodd,m1 , ...)⊺ is simply the odd numbered elements of the vector η2m+1;
for all integer k ≥ 0:

η2m+1
2k+1 = ηodd,mk . (103)

In other words, ηodd,m is the m+ 1-th eigenvector of the tridiagonal matrix M̂ (s,odd), obtained
by removing the even numbered rows and columns of M̂ (s); the non-zero elements of M̂ (s,odd)

are specified by the formula

M̂
(s,odd)
k−1,k =

(γ − 1)2k(2k + 1)

8γ
,

M̂
(s,odd)
k,k =

2
(

−γ2 − 6γ − 1
)

(2k + 1)(k + 1)− γ2 − 2γ + 3

8γ
,

M̂
(s,odd)
k+1,k =

(γ − 1)2(k + 1)(2k + 3)

8γ
.

(104)

Therefore, the algorithm for computing the left singular function vn of the Truncated Laplace
Transform La,b, where n = 2m is an even number:

Step 1: Compute ηeven,n, the n+1-th eigenvector of the matrix M̂ (s,even), defined in (101).
Step 2: Compute the function ṽn from ηeven,n, using the expansion specified in (99).
Step 3: Obtain vn from ṽn using (41).

Similarly, the algorithm for computing the left singular function vn of the Truncated Laplace
Transform La,b, where n = 2m+ 1 is an odd number:

Step 1: Compute ηodd,n, the n+ 1-th eigenvector of the matrix M̂ (s,odd), defined in (104).
Step 2: Compute the function ṽn from ηodd,n, using the expansion specified in (102).
Step 3: Obtain vn from ṽn using (41).

Remark 4.1. For computations to precision ǫ, the vector ηn = (ηn0 , η
n
1 , ...)

⊤ is truncated at
K, such that |ηnk | ≪ ǫ for all k > K. By lemma 3.11 the coefficients ηnk decay rapidly as k
grows; since the vectors ηeven,n and ηodd,n, which contain only the even and odd elements of
ηnk , respectively, these vectors are truncated at approximately K/2 elements.

The actual position of the last significant coefficient of ηeven,n and ηodd,n, larger in magnitude
than ǫ, is given in Figure 6 and Table 4 in Section §5, for several combinations of γ and n.

4.2 Computing the singular value αn

Theorem 3.14 provides formula (96) for computing the singular value αn using the function vn
and the first coefficient of the vector hn (the vector associated with the right singular function
un via (41) and (42)). The function vn is computed using the algorithm in Section §4.1, and
the vector hn is the n+ 1-th eigenvector of the matrix M (defined in (44), see [12]).
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Remark 4.2. The numerical difficulty in this algorithm is that the first element hn0 of the
vector hn (see (42)) is of the order of αn, so that is decays exponentially as n grows. It has
been shown in [14] that in some band matrices, such as M , the first element of the eigenvector
hn can be computed to relative precision, not not just to absolute precision. Consequently, if
hn0 is computed as in [14], formula (96) yields αn with high relative precision.

5 Numerical results

In this section we present results of several numerical experiments. The algorithms for comput-
ing the left singular functions vn and singular values αn of La,b (the operator defined in (24))
were implemented in FORTRAN 77, using double precision arithmetic, and compiled using
GFORTRAN.

In Figures 1, 2 and 3 we present examples of left singular functions of the operator La,b,
where a = 1 and b = 1.1, b = 10 and b = 100000 respectively.

In Figure 4 and Table 1 we present the singular values αn of the operator La,b, for several
ratios γ = b/a; αn depends only on γ and n (see Lemma 3.5). In table 2 we present several
singular values smaller than 10−1000; the Fujitsu compiler with quadruple precision was used
in this experiment.

In Figure 5 and Table 3 we present the eigenvalues of the matrix M̂ (s) defined in (66).
In Figure 6 and Table 4 we present for several combinations of γ and n the position of

the last significant coefficient ηn in the expansion defined in (49), that is larger in magnitude
than ǫ = 10−16. In numerical computations, the vectors ηeven,m (defined in (100)) and ηodd,m

(defined in (103)) are truncated at about half this number (see Remark 4.1).
In figure 7 we present the CPU time required for the computation of the expansion of the

101-st right singular function v100 of L1,γ , for varying γ; The experiment was performed on a
ThinkPad X230 laptop with Intel Core i7-3520 CPU and 16GB RAM.
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Figure 1: Left singular functions of L1,1.1.
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Figure 2: Left singular functions of L1,10.
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Figure 3: Left singular functions of
L1,100000.
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Figure 4: Singular values αn of La,b, with
γ = b/a.
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Figure 5: Magnitude of the eigenvalues of
the matrix M̂ (s) defined in (66).
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Figure 7: CPU time required for computing the expansion of the 101-st left singular function
of L1,γ , as a function of γ. The experiment was performed on a ThinkPad X230 laptop with
an Intel Core i7-3520 CPU and 16GB RAM.

Table 1: Singular values αn of La,b

n γ =1.0E+01 γ =1.0E+04 γ =1.0E+07 γ =1.0E+10

0 1.02356E + 00 1.55687E + 00 1.67320E + 00 1.71595E + 00

1 3.09878E − 01 1.12288E + 00 1.43107E + 00 1.56644E + 00

2 8.39567E − 02 7.39927E − 01 1.14870E + 00 1.36792E + 00

3 2.23263E − 02 4.73173E − 01 8.92215E − 01 1.16064E + 00

4 5.90020E − 03 2.99697E − 01 6.82645E − 01 9.68344E − 01

10 1.94760E − 06 1.86336E − 02 1.28322E − 01 2.96456E − 01

20 3.00805E − 12 1.77967E − 04 7.70034E − 03 3.95113E − 02

40 7.11415E − 24 1.60942E − 08 2.74862E − 05 6.95389E − 04

100 9.34359E − 59 1.18179E − 20 1.24105E − 12 3.76350E − 09

200 6.81449E − 117 7.04566E − 41 7.08789E − 25 6.26325E − 18

300 4.19880E − 61 4.04637E − 37 1.04190E − 26

400 2.50198E − 81 2.30977E − 49 1.73305E − 35

500 1.49081E − 101 1.31842E − 61 2.88254E − 44

600 8.88291E − 122 7.52539E − 74 4.79437E − 53

700 5.29275E − 142 4.29536E − 86 7.97413E − 62

800 2.45170E − 98 1.32627E − 70

900 1.39937E − 110 2.20585E − 79

1000 7.98724E − 123 3.66878E − 88
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Table 2: Examples of singular values αn smaller than 10−1000

γ n αn

1.1E + 0 520 8.70727E − 1002

1.0E + 1 1721 3.66934E − 1001

1.0E + 2 2797 5.29961E − 1001

1.0E + 3 3872 5.71146E − 1001

1.0E + 4 4946 9.44191E − 1001

1.0E + 5 6021 8.89748E − 1001

Table 3: Eigenvalues of M̂ (s) defined in (66)

n γ =1.0E+01 γ =1.0E+04 γ =1.0E+07 γ =1.0E+10

0 −1.37081E + 00 −7.68147E + 02 −6.85667E + 05 −6.58542E + 08

1 −4.99310E + 00 −1.24392E + 03 −8.74386E + 05 −7.60836E + 08

2 −1.22170E + 01 −2.12394E + 03 −1.20506E + 06 −9.35829E + 08

3 −2.30561E + 01 −3.43924E + 03 −1.68901E + 06 −1.18769E + 09

4 −3.75087E + 01 −5.19520E + 03 −2.33192E + 06 −1.51947E + 09

10 −2.00102E + 02 −2.49694E + 04 −9.57538E + 06 −5.24213E + 09

20 −7.60147E + 02 −9.30877E + 04 −3.45384E + 07 −1.80759E + 10

40 −2.96419E + 03 −3.61167E + 05 −1.32782E + 08 −6.85869E + 10

100 −1.82480E + 04 −2.22014E + 06 −8.14047E + 08 −4.18853E + 11

200 −7.26265E + 04 −8.83424E + 06 −3.23793E + 09 −1.66507E + 12

300 −1.98431E + 07 −7.27238E + 09 −3.73934E + 12

400 −3.52467E + 07 −1.29174E + 10 −6.64167E + 12

500 −5.50450E + 07 −2.01729E + 10 −1.03720E + 13

600 −7.92381E + 07 −2.90390E + 10 −1.49305E + 13

700 −1.07826E + 08 −3.95157E + 10 −2.03170E + 13

800 −5.16029E + 10 −2.65315E + 13

900 −6.53007E + 10 −3.35741E + 13

1000 −8.06090E + 10 −4.14447E + 13
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Table 4: The position of the last significant coefficient larger in magnitude than 10−16.

n γ = 1.0E+01 γ = 1.0E+04 γ = 1.0E+07 γ = 1.0E+10

0 50 1502 43890 1282730

1 51 1547 45085 1318363

2 54 1580 45902 1341354

3 57 1611 46583 1359605

4 58 1638 47194 1375474

10 70 1788 50346 1453028

11 71 1813 50831 1464669

20 88 2016 54968 1562968

21 89 2037 55411 1573411

40 122 2438 63464 1762452

41 123 2459 63873 1772049

100 216 3602 86776 2306888

101 219 3621 87149 2315585

200 366 5402 122682 3143252

201 369 5419 123031 3151357

300 7124 156872 3937590

301 7141 157209 3945395

400 8804 190098 4707868

401 8821 190427 4715479

500 10458 222686 5462054

501 10475 223009 5469531

600 12092 254816 6204538

601 12107 255137 6211915

700 13710 286598 6938044

701 13727 286915 6945339

800 318102 7664390

801 318415 7671623

900 349378 8384872

901 349691 8392049

1000 380468 9100436

1001 380777 9107569
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6 Conclusions and generalizations

In this paper we introduced effective algorithms for the evaluation of the left singular functions
and singular values of the Truncated Laplace Transform La,b. Together with the algorithms
introduced in [12] for the computation of the right singular functions, these algorithms conclude
the construction of the SVD of the operators La,b.

As is evident from Remark 2.3 and the more detailed discussion in [20], the left singular
functions of La,b are an efficient basis for representing combinations of decaying exponentials
whose decay constants are in the interval [a, b].
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