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1 Introduction

A basic problem in data analysis is to measure the similarity between two functions on
some space of points. For example, two documents can be described by the relative fre-
quencies of a collection of keywords; in this case, a document is a probability distribution
over the space of words, and can be compared using one of the many of similarity mea-
sures in [1] defined for probability distributions. When the space on which the functions
are defined has an underlying geometry, it is prudent to exploit this in the definition of
the distance between the functions. In the document example, if we can measure the
similarity in meaning of two words, two documents should be close if the words they
contain are similar in meaning, even if the words themselves are distinct.

This basic premise informs the definition of the Earth Mover’s Distance (EMD),
a distance between probability measures widely used in machine learning. There are
various precise ways of formulating EMD; see, for example [2], where it is defined as a
distance between signatures. We will define it formally in Section 3 as a distance between
two probability measures; intuitively, it measures the minimal cost of transforming one
probability measure into another by moving mass, where the cost of moving a piece of
mass between two locations is specified a priori by the geometry on the underlying mea-
sure space, say by a metric. If one probability measure is a small distortion of the other,
the EMD between them will be small. EMD is therefore insensitive to perturbations,
which is often a desirable property of a metric.

Another property we might desire for a metric between functions is that it give
different weight to activity at different scales, for whatever notion of ‘scale’ one might
have for a given problem. In signal and image processing, for example, we might be
primarily interested in comparing the low frequencies of two signals, while filtering out
high frequency behavior which is often noise. On the other hand, we might not want to
completely discard the higher frequencies, if, say, we are comparing two textured images,
where the high frequency variations are what characterize the texture. More generally,
we seek distances that give higher weight to large-scale differences between functions,
while still retaining some sensitivity to their small-scale variations.

We introduce three metrics that formalize this intuition, where in our setting the
notion of ‘scale’ is captured by the size of folders in a hierarchical partition tree on the
data set Ω. Two of the metrics we define, labeled D2 and D4 and defined in Sections 4
and 6, respectively, measure the changes between scales, where differences in the behavior
across larger scales contribute more heavily to the distance. The metric D3 defined in
Section 5 on the other hand, simply measures the activity at each scale, again giving
weight to the larger scales.

We remark that, although we formulate our definitions as distances between prob-
ability distributions p1 and p2, all of the metrics depend only the difference p1 − p2;
furthermore, the proofs of equivalence between the metrics depend only the fact that
p1 − p2 has mean zero. Consequently, the four distances we define are really norms on
the space of mean zero L1 functions (or mean zero finite measures). However, because
the EMD ‘norm’ has such a natural interpretation when applied to the difference of two
probability measures, we will stick with the language of probability and measure the
distance between two probability distributions p1 and p2.
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2 Definitions, Notation, and Basic Results

2.1 Definitions and Notation for Hierarchical Partition Trees

Let Ω be a set with a hierarchical partition tree T , as in [3, 4]. We impose the critical
assumption, found in that paper, that there are constants BU , BL such that

0 < BL <
|child|
|parent|

< BU < 1. (1)

where child is a subfolder of parent.
We assume we are given a measure on Ω, and that |Ω| = 1. Let {ψ} denote a

Haar-like basis on the tree. These functions, together with the constant function, are an
orthonormal basis for L2(Ω). For any two points x, y ∈ Ω we define the tree metric

d(x, y) = inf{|X| : X ∈ T , x, y ∈ X}.

Given a function f on Ω, define the Hölder seminorm by

CH(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)α

.

In all that follows, we fix a parameter α, 0 < α ≤ 1. Whenever we say that a function
is ‘Hölder’ we mean with exponent α.

For a function f on Ω and a subset I ⊂ Ω, let

m(f, I) =
1

|I|

∫
I
f(x)dx

denote the average value of f on I. Let Pl denote the set of folders at level l. For each
l ≥ 0, define the expectation operator El by

Elf(x) =
∑
I∈Pl

m(f, I)χI(x) (2)

that is, Elf is constant on each of the folders in partition l, with value there equal to
the average value of f over that folder.

We also define the operators ∆l by

∆lf(x) = El+1f(x)− Elf(x) (3)

for l ≥ 0.

2.2 General Facts about Haar Functions

The results of this section are essentially found in the paper Wavelets on Trees, Graphs,
and High Dimensional Data; however, we derive tighter estimates here.

2



Theorem 1. Suppose f : Ω → R is a function with Hölder constant CH(f). Then

|〈f, ψ〉| ≤ CH(f)|I(ψ)|α+ 1
2 for all ψ.

Proof. If f has Hölder constant C, then for all Haar functions ψ, if I = I(ψ)

|〈f, ψ〉| =
∣∣∣∣ ∫

I
f(x)ψ(x)dx

∣∣∣∣ =

∣∣∣∣ ∫
I

{
f(x)− 1

|I|

∫
I
f(y)dy

}
ψ(x)dx

∣∣∣∣
=

∣∣∣∣ ∫
I

(
1

|I|

∫
I
(f(x)− f(y))dy

)
ψ(x)dx

∣∣∣∣
≤
{∫

I

(
1

|I|

∫
I
(f(x)− f(y))dy

)2

dx

}1/2

||ψ||2

(by Cauchy-Schwarz)

≤
{∫

I

(
1

|I|

∫
I
|f(x)− f(y)|dy

)2

dx

}1/2

(since ψ has L2 norm 1)

≤
{∫

I

(
1

|I|

∫
I
C|I|αdy

)2

dx

}1/2

(since f has Hölder constant C and d(x, y) ≤ |I|)
= C|I|α+1/2.

Theorem 2. If f is a function on Ω with |〈f, ψ〉| ≤ C|I(ψ)|α+ 1
2 for some C > 0 and

for all ψ, then f has Hölder constant CH(f) ≤ C 2(1−BL)
BL(1−BαU ) .

The proof of this theorem requires some preliminary lemmas. For a folder I at level
l, let sub(I) denote the set of its subfolders at level l + 1.

Lemma 1. Assuming the balance condition (1), |sub(I)| ≤ 1
BL

.

Proof. If sub(I) = {I1, . . . , In}, then by the balance condition (1), |Ii| ≥ BL|I|. Summing
over all i gives |I| =

∑n
i=1 |Ii| ≥ BLn|I|, from which it follows |sub(I)| = n ≤ 1/BL, as

claimed.

Lemma 2. Let I be any folder of the tree. For a Haar function ψ, denote by I(ψ) the
folder supporting ψ. Then for all x ∈ I∑

ψ:I(ψ)=I

|ψ(x)| ≤
(

1

BL
− 1

)
1

|I|1/2
.

Proof. Suppose I has n subfolders, I1, . . . , In. Let ψ1, . . . , ψn−1 denote the n − 1 Haar
functions supported on I. Each ψj is constant on the folders Ii; let ψj(Ii) denote its
values. The orthogonality gives us:

n∑
i=1

ψj(Ii)ψk(Ii)|Ii| = δjk.
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Furthermore, the functions ψj are orthogonal to the constant function on I. It follows
that if we define the matrix W by

W =


|I|−1/2 |I|−1/2 · · · |I|−1/2

ψ1(I1) ψ1(I2) · · · ψ1(In)
...

...
. . .

...
ψn−1(I1) ψn−1(I2) · · · ψn−1(In)


and the diagonal matrix D by

D =


|I1|

|I2|
. . .

|In|


then WDW T = id. This implies DW TW = id, and so W TW = D−1. This last equality
implies that for each folder Ii,

1

|I|
+
n−1∑
j=1

ψj(Ii)
2 =

1

|Ii|

from which it follows that( n−1∑
j=1

|ψj(Ii)|
)2

≤ (n− 1)

n−1∑
j=1

ψj(Ii)
2 ≤ (n− 1)

(
1

|Ii|
− 1

|I|

)
.

By Lemma 1, n ≤ 1/|BL|; and the balance condition (1) implies 1/|Ii| ≤ 1/(BL|I|).
Consequently,

n−1∑
j=1

|ψj(Ii)| ≤
√
n− 1

√
1

BL

1

|I|
− 1

|I|
≤
(

1

BL
− 1

)
1

|I|1/2
,

as claimed.

Proof of Theorem 2. For each l ≥ 0 and each x ∈ Ω, let Jl,x denote the unique folder
at level l containing x. Suppose without loss of generality that C = 1, i.e. |〈f, ψ〉| ≤
|I(ψ)|α+1/2 for all ψ. Take any x, y ∈ Ω, and suppose I is the smallest folder containing
both points, and I is at level L. So d(x, y) = |I|, and all Haar functions supported on
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folders at levels l < L have the same value on x and y. Consequently,

|f(x)− f(y)| =
∣∣∣∣∑
l≥0

∑
ψ:I(ψ)=Jl,x

〈f, ψ〉ψ(x)−
∑
l≥0

∑
ψ:I(ψ)=Jl,y

〈f, ψ〉ψ(y)

∣∣∣∣
=

∣∣∣∣∑
l≥L

∑
ψ:I(ψ)=Jl,x

〈f, ψ〉ψ(x)−
∑
l≥L

∑
ψ:I(ψ)=Jl,x

〈f, ψ〉ψ(y)

∣∣∣∣
≤
∑
l≥L
|Jl,x|α+1/2

∑
ψ:I(ψ)=J

|ψ(x)|+
∑
l≥L
|Jl,Y |α+1/2

∑
ψ:I(ψ)=J

|ψ(x)|

≤
(

1

BL
− 1

)(∑
l≥L
|Jl,x|α+1/2 1

|Jl,x|1/2
+
∑
l≥L
|Jl,Y |α+1/2 1

|Jl,y|1/2

)

≤
(

1

BL
− 1

)
2
∑
l≥L

B
(l−L)α
U |I|α

=
2(1−BL)

BL(1−Bα
U )
d(x, y)α

as desired.

We derive an upper bound on the L∞ norm of the Haar functions that will be useful
later.

Lemma 3. If ψ is a Haar function supported on a folder F of the tree, then

||ψ||∞ ≤
√

1−BL√
BL|F |

.

Proof. Suppose F = ItJ , where I is the subfolder of F on which ψ attains its maximum
value; call this maximum value c, so that |c| = ||ψ||∞ (note that J is not necessarily a
subfolder of F ; it is the union of all the subfolders of F , excluding I). Because ψ has L2

norm 1

1 = c2|I|+
∫
J
ψ(x)2dx.

Since
∫
F ψ(x)dx = 0, we get ∫

J
ψ(x)dx = −c|I|.

From this follows easily the algebraic identity∫
J

(
ψ(x) + c

|I|
|J |

)2

dx =

∫
J
ψ(x)2dx− c2 |I|2

|J |
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and combining this with the above gives:

1 = c2|I|+
∫
J

(
ψ(x) + c

|I|
|J |

)2

dx+ c2 |I|2

|J |

= c2|I|
(

1 +
|I|
|J |

)
+

∫
J

(
ψ(x) + c

|I|
|J |

)2

dx

≥ c2|I|
(

1 +
|I|
|J |

)
from which it follows

|c| ≤
√

1−A
A

1√
|F |

where A = |I|/|F |. Since
√

1−A
A is decreasing as a function of A ∈ (0, 1), and the

smallest value A can assume is BL, and |c| = ||ψ||∞, we get

||ψ||∞ ≤
√

1−BL
BL

1√
|F |

which is the desired result.

Note that the result is tight, since we could take ψ(x) =
√

1−BL
BL

1√
|F |
≡ c on a

subfolder I of size BL|F |, and equal to −c |I||F\I| on F \ I; this will have L2 norm 1 and
be mean zero.

2.3 General Facts about El and ∆l

Lemma 4. If f has Hölder constant 1 (with exponent α), then for each folder J ∈ Pl,

sup
x∈J
|∆lf(x)| ≤ |J |α.

Proof. Let J ∈ Pl, and let I ∈ sub(J) be any subfolder of J . On I, Elf ≡ 1
|J |
∫
J f(x)dx

and El+1f ≡ 1
|I|
∫
I f(x)dx. Therefore

|∆lf(I)| =
∣∣∣∣ 1

|I|

∫
I
f(x)dx− 1

|J |

∫
J
f(y)dy

∣∣∣∣
=

∣∣∣∣ 1

|J |

∫
J

1

|I|

∫
I
f(x)dxdy − 1

|I|

∫
I

1

|J |

∫
J
f(y)dydx

∣∣∣∣
=

∣∣∣∣ 1

|I||J |

∫
I

∫
J
(f(x)− f(y))dydx

∣∣∣∣
≤ 1

|I||J |

∫
I

∫
J
|f(x)− f(y)|dydx

≤ 1

|I||J |

∫
I

∫
J
|J |αdydx
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(since f is Hölder)

= |J |α

as claimed.

In fact the converse to this result is also true, that is, we can fully characterize
Hölder functions by the size of ∆lf on level l folders. The proof is nearly identical to
the characterization of Hölder functions by the decay of their wavelet coefficients given
earlier, and as we do not need it, we will not present it here.

It is easy to check the identity ElEk = Emin(k,l), from which it follows

∆2
l = ∆l. (4)

Furthermore, El, and hence ∆l, is self-adjoint. In fact, the operator El is given by the
symmetric kernel

al(x, y) =

{
|I|−1, if x, y ∈ I, I ∈ Pl
0, otherwise.

Lemma 5. For any J ∈ Pl,∫
J
|∆lf(x)|dx =

∑
I∈sub(J)

|I||m(f, I)−m(f, J)| (5)

Proof. El+1f and Elf are constant on each I ∈ sub(J), with values m(f, I), m(f, J)
there, respectively; so∫

J
|∆lf(x)|dx =

∑
I∈sub(J)

∫
I
|∆lf(x)|dx =

∑
I∈sub(J)

∫
I
|El+1f(x)− Elf(x)|dx

=
∑

I∈sub(J)

∫
I
|m(f, I)−m(f, J)|dx

=
∑

I∈sub(J)

|I||m(f, I)−m(f, J)|dx

as desired.

3 First Metric: Earth Mover’s Distance

Given two probability densities p1 and p2 on Ω, we define the Earth Mover’s Distance

D1(p1, p2) = inf
π

∫
Ω

∫
Ω
d(x, y)αdπ(x, y)

where the infimum is over all non-negative measures π on Ω× Ω satisfying

π(E × Ω)− π(Ω× E) =

∫
E
p1(x)dx−

∫
E
p2(x)dx for measurable subsets E ⊆ Ω. (6)
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The interpretation of this metric as as follows. Suppose p1 and p2 describe two
mounds of equal mass sitting on Ω, and our goal is to start with the mound given by
p1 and move mass around to reshape it into p2. We are allowed to dig holes (i.e. take
more mass out of a location than is there to begin with), just so long as whatever deficit
we create sending mass out is made up by the mass coming in. Then the measure π
describes the mass transfer, that is, if A,B ⊂ Ω, then π(A × B) is the amount of mass
sent out from A and arriving in B. The difference of marginals constraint (6) expresses
the fact that for any set E ⊂ Ω, the net change in mass must be the amount of mass we
start with, namely

∫
E p1(x)dx, minus the amount of mass we end up with,

∫
E p2(x)dx.

If d(x, y)α is the cost of moving a unit of mass from x to y, then
∫ ∫

d(x, y)αdπ(x, y)
is the total cost of moving all the mass using the transport described by the measure π.
So the metric D1(p1, p2) is the minimal cost over all rearrangements of p1 to p2.

There is another expression for the earth mover’s distance which we will find conve-
nient. We have the following well-known theorem:

Theorem 3 (Kantorovich-Rubinstein). The earth mover’s distance is equal to the fol-
lowing:

D1(p1, p2) = sup
{∫

Ω
f(x)(p1(x)− p2(x))dx : f s.t. CH(f) < 1

}
The proof of a very general version of this result can be found in, among other places,

[8]. In the case where Ω is finite, the proof follows easily from the duality theorem of
linear programming.

4 Second Metric: Weighted L1 Norm of Haar Coefficients

We define another metric D2 between p1 and p2, which we will prove is equivalent to
the earth mover’s distance D1. The definition and the proof of equivalence are inspired
by the paper Approximate earth mover’s distance in linear time by Sameer Shirdhonkar
and David W. Jacobs. Consider the expansion of p1 − p2 in the Haar-like basis:

p(x) =
∑
ψ

〈p1 − p2, ψ〉ψ(x).

(Note that we don’t have to include the constant function in this expansion, since p1−p2

has mean zero.) Then we define

D2(p1, p2) =
∑
ψ

|I(ψ)|α+ 1
2 |〈p1 − p2, ψ〉|

where I(ψ) is the folder supporting ψ.
We state some trivial facts, without proof:

Lemma 6. For c > 0,

cD1(p1, p2) = sup
{∫

Ω
f(x)(p1(x)− p2(x))dx : CH(f) < c

}
.
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Lemma 7. The metric D2 can be expressed as

D2(p1, p2) = sup
{∑

ψ

〈p1 − p2, ψ〉〈f, ψ〉 : f s.t. |〈f, ψ〉| ≤ |I(ψ)|α+ 1
2

}
= sup

{∫
Ω

(p1(x)− p2(x))f(x)dx : f s.t. |〈f, ψ〉| ≤ |I(ψ)|α+ 1
2

}
where f(x) =

∑
ψ〈f, ψ〉ψ(x) is the expansion of f in the basis {ψ}.

(The second equality above holds because the Haar-like basis is orthonormal, hence
preserves inner products).

Lemma 8. For c > 0,

cD2(p1, p2) = sup
{∫

Ω
(p1(x)− p2(x))f(x)dx : f s.t. |〈f, ψ〉| ≤ c|I(ψ)|α+ 1

2

}
By Lemma 7 and Theorem 3, both D1(p1, p2) and D2(p1, p2) are obtained by max-

imizing the inner product 〈p1 − p2, f〉 over some collection of f : to get D1(p1, p2) we
restrict f to have Hölder norm not exceeding 1; and to get D2(p1, p2) we restrict f to

have wavelet coefficients with a certain decay rate, namely |〈f, ψ〉| ≤ |I(ψ)|α+ 1
2 . How-

ever, Theorems 1 and 2 tell us that these constraints are nearly the same. Using the
equivalence given by these theorems between the regularity of a function and the decay
of its wavelet coefficients, we show the equivalence of the metrics D1 and D2.

We have:

D1(p1, p2) = sup
{
〈p1 − p2, f〉 : CH(f) < 1

}
≤ sup

{
〈p1 − p2, f〉 : |〈f, ψ〉| ≤ |I(ψ)|α+ 1

2 ∀ψ
}

= D2(p1, p2).

The first line follows from Theorem 3, the second from Theorem 1, and the third from
Lemma 7.

For the reverse we have, using Theorem 2:

D2(p1, p2) = sup
{∫

Ω
(p1(x)− p2(x))f(x)dx : f s.t. |〈f, ψ〉| ≤ |I(ψ)|α+ 1

2

}
≤ sup

{∫
Ω

(p1(x)− p2(x))f(x)dx : f s.t. CH(f) <
2(1−BL)

BL(1−Bα
U )

}
=

2(1−BL)

BL(1−Bα
U )
D1(p1, p2).

We have shown:

Theorem 4. The metrics D1 and D2 are equivalent; more specifically,

BL(1−Bα
U )

2(1−BL)
D2(p1, p2) ≤ D1(p1, p2) ≤ D2(p1, p2).
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Note that if Ω has N points, there is anO(N) algorithm analogous to the classical fast
Haar transform for computing all the wavelet coefficients of a function f . Consequently,
the distance D(p1, p2) can be computed in linear time.

5 Third Metric: Averages on Each Folder

We now define the third metric D3 by

D3(p1, p2) =
∑
I∈T
|I|α+1|m(p1 − p2, I)| =

∑
l≥0

∑
I∈Pl

|I|α
∫
I
|El(p1 − p2)|. (7)

In the case of a perfectly balanced M−ary tree, where each folder has M subfolders
of the same size (so in particular, the size of each folder at level l is M−l), we can write
D3 as a weighted sum L1 norms of the expectations of p1 − p2 at each level:

D3(p1, p2) =
∑
l≥0

∑
I∈Pl

|I|α
∫
I
|El(p1 − p2)| =

∑
l≥0

M−lα
∑
I∈Pl

∫
I
|El(p1 − p2)|

=
∑
l≥0

M−lα||El(p1 − p2)||1. (8)

In this special case, D3 is similar to the approximate EMD introduced in [9]; however,
D3 is defined in the more abstract setting of hierarchical partition trees, and furthermore
will be shown to be equivalent to EMD with constants of equivalence not dependent on
the number of points in Ω. In particular, in our case the ratio of the distances between
any two pairs of points can be arbitrarily large, whereas the constants in [9] depend
logarithmically on the ratio of the diameter of the space to the minimum distance.

For the metric D3 given by (7) on any tree, we will prove:

Theorem 5. The metric D3 is equivalent to the metrics D1 and D2.

We introduce some constructions that will be used in the proof of Theorem 5. For
each level l of the tree, define the pseudo-metric

dl(x, y) =

{
|I|α + |J |α if x ∈ I, y ∈ J , and I 6= J are in level l partition

0 if x, y are in same level l folder

Though we will not use the fact in the proof of Theorem 5, we show that each dl is a
pseudo-metric.

Lemma 9. dl(x, y) is a pseudo-metric (that is, it satisfies all axioms of a metric except
dl(x, y) = 0⇒ x = y)

Proof. Non-negativity and symmetry are obvious, as is x = y ⇒ dl(x, y) = 0. As for the
triangle inequality, take three points x, y, z. We want to show dl(x, z) ≤ dl(x, y)+dl(y, z).
This is trivial if x, z are in the same level l folder (since the left side is zero), so suppose
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otherwise. If y is in the same folder as x, then dl(x, y) = 0 and dl(y, z) = dl(x, z),
so there is equality. Similarly if y is in the same folder as z. If all three points are
in separate folders I1, I2, I3, then the left side is |I1|α + |I3|α, while the right side is
|I1|α + 2|I2|α + |I3|α, which is bigger.

We then define the metric

ρα(x, y) =
∞∑
l=1

dl(x, y).

Lemma 10. Let d(x, y) denote the usual tree metric. Then the metrics ρα(x, y) and
d(x, y)α are equivalent.

Proof. For each x, y let l be the first level at which x and y are in different folders, and
let I ∈ Pl−1 be the folder in the previous partition containing both x and y. Then by
definition d(x, y)α = |I|α; furthermore, for every l′ ≥ l, if Ix and Iy are the level l′ folders
containing x and y, respectively, then dl′(x, y) = |Ix|α+ |Iy|α; the tree balance condition
(1) gives us that

2B
α(l′−l+1)
L |I|α ≤ |Ix|α + |Iy|α ≤ 2B

α(l′−l+1)
U |I|α

i.e.
2B

α(l′−l+1)
L |I|α ≤ dl′(x, y) ≤ 2B

α(l′−l+1)
U |I|α.

Furthermore, dl′(x, y) = 0 if l′ < l. Consequently, we have

ρα(x, y) =
∑
l′≥l

dl′(x, y) ≥
∑
l′≥l

2B
α(l′−l+1)
L |I|α

= |I|α2
∞∑
l′=1

Bαl′
L = |I|α

2Bα
L

1−Bα
L

=
2Bα

L

1−Bα
L

d(x, y)α

and similarly

ρα(x, y) ≤
2Bα

U

1−Bα
U

d(x, y)α.

Next, suppose we fix a level l of the tree and take any probability distribution π on
Ω×Ω with difference of marginals p1−p2, as in condition (6). We then define probability
mass functions π̃ on Pl × Pl, and p̃1 and p̃2 on Pl, by

π̃(I, J) = π(I × J)

p̃1(I) =

∫
I
p1(x)dx

p̃2(I) =

∫
I
p2(x)dx

11



for all I, J ∈ Pl.
Then π̃ satisfies the difference of marginals condition with p̃1 and p̃2, since for each

I ∈ Pl, ∑
J

(π̃(I, J)− π̃(J, I)) = π(I × Ω)− π(Ω× I) (9)

=

∫
I
p1(x)dx−

∫
I
p2(x)dx

= p̃1(I)− p̃1(I)

where the second equality follows from the difference of marginals condition (6) that π
is assumed to satisfy.

Also define the metric d̃l on Pl by

d̃l(I, J) = |I|α + |J |α;

the proof that this is a metric on Pl is identical to the proof that dl is a pseudo-metric
on Ω. We then have:∫

Ω

∫
Ω
dl(x, y)dπ(x, y) =

∑
I

∑
J

∫
I×J

dl(x, y)dπ(x, y)

=
∑
I 6=J

∫
I×J

(|I|α + |J |α)dπ(x, y)

=
∑
I 6=J

π̃(I, J)(|I|α + |J |α)

=
∑
I

∑
J

π̃(I, J)d̃l(I, J).

Furthermore, using the difference of marginals condition satisfied by π̃ we have the
inequality:∑

I∈Pl

|I|α|p̃1(I)− p̃2(I)| =
∑
I∈Pl

|I|α
∣∣∣∣∑
J

π̃(I, J)−
∑
J

π̃(J, I)

∣∣∣∣
=
∑
I∈Pl

|I|α
∣∣∣∣∑
J 6=I

π̃(I, J)−
∑
J 6=I

π̃(J, I)

∣∣∣∣
(since the terms with π̃(I, I) cancel from both sums)

≤
∑
I∈Pl

|I|α
∑
J 6=I

π̃(I, J) +
∑
I∈Pl

|I|α
∑
J 6=I

π̃(J, I)

=
∑
I∈Pl

|I|α
∑
J 6=I

π̃(I, J) +
∑
J∈Pl

|J |α
∑
I 6=J

π̃(I, J)

12



(by a change of variable)

=
∑
I∈Pl

|I|α
∑
J 6=I

π̃(I, J) +
∑
I∈Pl

|J |α
∑
J 6=I

π̃(I, J)

=
∑
I 6=J

π̃(I, J)(|I|α + |J |α)

=
∑
I∈Pl

∑
J∈Pl

π̃(I, J)d̃l(I, J).

Consequently, we have

inf

{∫
Ω

∫
Ω
dl(x, y)dπ(x, y) : π satisfying (6)

}
≥ inf

{∑
I∈Pl

∑
J∈Pl

π̃(I, J)d̃l(I, J) : π̃ satisfying (9)

}
≥
∑
I∈Pl

|I|α|p̃1(I)− p̃2(I)|

=
∑
I∈Pl

|I|α+1|m(p1 − p2, I)|.

Now sum each side over all l ≥ 1. Using the equivalence of the metrics ρα and dα,
we get, ignoring constant factors:

D1(p1, p2) = inf

{∫
Ω

∫
Ω
d(x, y)αdπ(x, y) : π satisfying (6)

}

& inf

{∫
Ω

∫
Ω
ρα(x, y)dπ(x, y) : π satisfying (6)

}

= inf

{∫
Ω

∫
Ω

∞∑
l=1

dl(x, y)dπ(x, y) : π satisfying (6)

}

≥
∞∑
l=1

inf

{∫
Ω

∫
Ω
dl(x, y)dπ(x, y) : π satisfying (6)

}

≥
∞∑
l=1

∑
I∈Pl

|I|α+1|m(p1 − p2, I)|

=
∑
I∈T
|I|α+1|m(p1 − p2, I)|

= D3(p1, p2)

(note we can start exclude the term I = Ω since m(p1 − p2,Ω) = 0). So we have shown
D3(p1, p2) . D1(p1, p2).
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For the reverse direction, we will prove D2(p1, p2) . D3(p1, p2); since Theorem 4 tells
us D1 and D2 are equivalent, this will show all three metrics are equivalent.

For a folder J ∈ Pl−1, denote by sub(J) the set of folders I ⊂ J contained in Pl, i.e.
the set of J ’s children. With this notation:∑

I∈Pl

|I|α+1|m(p1 − p2, I)| =
∑

J∈Pl−1

∑
I∈sub(J)

|I|α+1|m(p1 − p2, I)|

≥
∑

J∈Pl−1

Bα
L|J |α

∑
I∈sub(J)

|I||m(p1 − p2, I)|

Furthermore, we have∫
J

∣∣El(p1)− El(p2)
∣∣ =

∑
I∈sub(J)

∫
I

∣∣El(p1)− El(p2)
∣∣

=
∑

I∈sub(J)

∫
I

∣∣∣∣ 1

|I|

∫
I
p1(x)dx− 1

|I|

∫
I
p2(x)dx

∣∣∣∣dx′
=

∑
I∈sub(J)

∣∣∣∣ ∫
I
p1 −

∫
I
p2

∣∣∣∣
=

∑
I∈sub(J)

|I||m(p1 − p2, I)|

and so ∑
I∈Pl

|I|α+1|m(p1 − p2, I)| ≥
∑

J∈Pl−1

Bα
L|J |α

∫
J

∣∣El(p1)− El(p2)
∣∣. (10)

Recall that I(ψ) denotes the folder supporting the wavelet ψ; if J ∈ Pl−1 and I(ψ) =
J , then ψ is constant on each subfolder of J , and it is easy to see that for any function
f , 〈Elf, ψ〉 = 〈f, ψ〉; we therefore have∑

ψ:I(ψ)=J

∣∣〈p1 − p2, ψ〉
∣∣ =

∑
ψ:I(ψ)=J

∣∣〈El(p1)− El(p2), ψ〉
∣∣

≤
∑

ψ:I(ψ)=J

||ψ||∞
∫
J

∣∣El(p1)− El(p2)
∣∣

. |J |−1/2

∫
J

∣∣El(p1)− El(p2)
∣∣

where the last inequality (in which we have suppressed the constant) follows from the
L∞ bounds for the wavelets and the fact that the number of wavelets supported on J
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is no more than 1/BL − 1. Multiplying the inequality by |J |α+1/2, summing over all
J ∈ Pl, and using (10) then yields∑

J∈Pl−1

|J |α+1/2
∑

ψ:I(ψ)=J

∣∣〈p1 − p2, ψ〉
∣∣ . ∑

J∈Pl−1

|J |α
∫
J

∣∣El(p1)− El(p2)
∣∣

.
∑
I∈Pl

|I|α+1|m(p1 − p2, I)|.

Now we sum this inequality over all l ≥ 1 to get

D2(p1, p2) =
∑
ψ

|I(ψ)|α+ 1
2 |〈p1 − p2, ψ〉| =

∞∑
l=1

∑
J∈Pl−1

|J |α+1/2
∑

ψ:I(ψ)=J

|〈p1 − p2, ψ〉|

.
∞∑
l=1

∑
I∈Pl

|I|α+1|m(p1 − p2, I)| = D3(p1, p2)

completing the proof.
Like D2, the metric D3 is extremely simple to compute in practice; simply take the

average of p1 − p2 on each folder I, multiply by |I|α+1, and add up over the folders.
Furthermore, if #Ω = N , it is easy to see that computing all the averages requires only
O(N) operations (the constant factor depends on the balance constants of the tree), as
to get the average of p1 − p2 on a folder I, one only needs to take a weighted average of
the averages on the subfolders of I (where the weight on subfolder J ∈ sub(I) is |J |/|I|).

6 Fourth Metric: Difference of Averages on Each Folder

We now introduce another metric equivalent to the three already introduced. Recall
that m(f, I) denotes the average of a function f over the set I, and for a folder I ∈ T ,
sub(I) denotes the set of its immediate subfolders. We then define

D4(p1, p2) =
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, I)−m(p1 − p2, J)| (11)

We first note that in the case of perfectly balanced binary trees, i.e. trees where BU =
BL = 1/2, this metric is equal to exactly twice the wavelet metric D2. To see this, we will
write the unique Haar function supported on folder I as hI(x) = 1

|I|1/2 (χI+(x)−χI−(x)),

where I+ and I− are the two subfolders of I (the choice of sign makes no difference to
the definition of the metric D2). For any function f , we have∫

I
f(x)dx− 2

∫
I+

f(x)dx =

∫
I+

f(x)dx+

∫
I−

f(x)dx− 2

∫
I+

f(x)dx

=

∫
I−

f(x)dx−
∫
I+

f(x)dx

= −|I|1/2〈f, hI〉
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and similarly ∫
I
f(x)dx− 2

∫
I−

f(x)dx = |I|1/2〈f, hI〉.

Consequently, in this case we have

D4(p1, p2) =
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, I)−m(p1 − p2, J)|

=
∞∑
l=0

2−l(α+1)
∑
I∈Pl

(∣∣∣∣ 1

|I|

∫
I
p1(x)− p2(x)dx− 1

|I+|

∫
I+

p1(x)− p2(x)dx

∣∣∣∣+
+

∣∣∣∣ 1

|I|

∫
I
p1(x)− p2(x)dx− 1

|I−|

∫
I−

p1(x)− p2(x)dx

∣∣∣∣)
=

∞∑
l=0

2−lα
∑
I∈Pl

(∣∣∣∣ ∫
I
p1(x)− p2(x)dx− 2

∫
I+

p1(x)− p2(x)dx

∣∣∣∣+
+

∣∣∣∣ ∫
I
p1(x)− p2(x)dx− 2

∫
I−

p1(x)− p2(x)dx

∣∣∣∣)
(since each folder I at level l has size 2−l)

=
∞∑
l=0

2−lα
∑
I∈Pl

2|I|1/2|〈p1 − p2, hI〉|

(by the computation above)

= 2

∞∑
l=0

∑
I∈Pl

|I|α+1/2|〈p1 − p2, hI〉|

= 2D2(p1, p2).

Furthermore, for any perfectly balanced M−ary tree, i.e. any tree with BU = BL =
1/M , we can derive another expression for D4 in terms of the martingale difference
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operators ∆l. Let p(x) = p1(x)− p2(x). We then have

D4(p1, p2) =
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, I)−m(p1 − p2, J)|

=
∞∑
l=0

M−l(α+1)
∑
I∈Pl

∑
J∈sub(I)

|∆lp(J)|

= M
∞∑
l=0

M−lα
∑
I∈Pl

∑
J∈sub(I)

|J ||∆lp(J)|

= M

∞∑
l=0

M−lα
∑
I∈Pl

∑
J∈sub(I)

∫
J
|∆lp|

= M
∞∑
l=0

M−lα
∑
I∈Pl

∫
I
|∆lp|

= M
∞∑
l=0

M−lα||∆l(p1 − p2)||1.

Compare this expression to expression (8) for D3 in the case of M−ary trees.
In the case of a general tree, we will prove

Theorem 6. The metric D4 is equivalent to the metrics D1, D2, and D3.

Showing D4 . D3 is straightforward. We have

D4(p1, p2) =
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, I)−m(p1 − p2, J)|

≤
∑
I∈T
|I|α+1

∑
J∈sub(I)

(|m(p1 − p2, I)|+ |m(p1 − p2, J)|)

=
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, I)|+
∑
I∈T
|I|α+1

∑
J∈sub(I)

|m(p1 − p2, J)|

≤ 1

BL

∑
I∈T
|I|α+1|m(p1 − p2, I)|+ 1

Bα+1
L

∑
I∈T

∑
J∈sub(I)

|J |α+1|m(p1 − p2, J)|

(since the maximum number of subfolders of any folder is 1
BL

.)

≤
(

1

BL
+

1

Bα+1
L

)∑
I∈T
|I|α+1|m(p1 − p2, I)|

=

(
1

BL
+

1

Bα+1
L

)
D3(p1, p2)

Take any f that has Hölder constant 1. We can write f as a telescopic series

f(x)−
∫

Ω
f =

∞∑
l=0

∆lf(x)
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Let p(x) = p2(x)− p1(x). It follows from the aforementioned properties of ∆l that∫
Ω
f(x)p(x)dx =

∫
Ω

(f(x)− ∫ f)p(x)dx =
∞∑
l=0

∫
Ω

∆lf(x)p(x)dx

=
∞∑
l=0

∫
Ω

∆2
l f(x)p(x)dx =

∞∑
l=0

∫
Ω

∆lf(x)∆lp(x)dx

(using the identity ∆2 = ∆ and the self-adjointness of ∆)

≤
∞∑
l=0

∑
J∈Pl

|J |α
∫
J
|∆lp(x)|dx

=

∞∑
l=0

∑
J∈Pl

|J |α
∑

I∈sub(J)

|I||m(p, I)−m(p, J)|

(from Lemma 5)

≤ Bα
U

∞∑
l=0

∑
J∈Pl

|J |α+1
∑

I∈sub(J)

|m(p, I)−m(p, J)|

= Bα
UD4(p1, p2).

Using the Kantorovich-Rubinstein Theorem (Theorem 3), it follows that

D1(p1, p2) = sup

{∫
Ω
f(x)p(x)dx : f with Hölder constant 1

}
≤ Bα

UD4(p1, p2)

completing the proof that D4 is equivalent to the other three metrics.
As with D2 and D3, the metric D4 can be computed in time O(N) if Ω is a finite set

with N elements.

7 Construction of a Near-Optimal Transport

We return to the metric D1 defined as the minimal transport cost, when transforming
the probability measure p1 into p2. We show how to construct a non-negative function
π on Ω× Ω whose cost is within a constant factor of the minimal cost. In fact, we will
show

cost(π) . D4(p1, p2)

where

cost(π) =

∫
Ω

∫
Ω
d(x, y)απ(x, y)dxdy.

The key building block of the construction are measures on Ω×Ω that we will denote
πF , where F ∈ T is a folder. These measures describe the movement of mass between
the subfolders of F . These can be defined in any number of ways, so long as they satisfy
the following two conditions:
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• Let p = p1 − p2. For any folder F , divide the set sub(F ) of subfolders of F

into two sets: {I(F )
1 , . . . , I

(F )
m }, the folders on which ∆lp is nonnegative; and

{J (F )
1 , . . . , J

(F )
n }, the folders on which ∆lp is negative (since ∆lp is constant on

the level l + 1 folders, this decomposition is well-defined). Then we require that

πF be supported on the union of the I
(F )
i ×J (F )

j , and constant on each I
(F )
i ×J (F )

j .
In particular, πF is supported on F × F .

• For all x ∈ F ,
∫

Ω πF (x, y)dy −
∫

Ω πF (y, x)dy = ∆lp(x).

We construct a particular choice of πF , where F ∈ Pl, by the formula

πF (I
(F )
i × J (F )

j ) =
(∆lp)(J

(F )
j )∑

j′(∆lp)(J
(F )
j′ )|J (F )

j′ |
(∆lp)(I

(F )
i ) =

−(∆lp)(I
(F )
i )∑

i′(∆lp)(I
(F )
i′ )|I(F )

i′ |
(∆lp)(J

(F )
j )

(12)

where (∆lp)(I
(F )
i ) is the unique value ∆lp takes on folder Ii, and similarly for J

(F )
j . For

pairs of points taken from other pairs of folders, set πF to be zero. The equality of the
two definitions follows from the following lemma:

Lemma 11. For any function f on Ω, if F ∈ Pl, then
∫
F ∆lf(x)dx = 0.

Proof. By definition ∆lf = El+1f − Elf . Both El+1f and Elf are constant on the
subfolders I ∈ sub(F ), with values 1

|I|
∫
I f and 1

|F |
∫
F f , respectively. Therefore∫

F
∆lf(x)dx =

∑
I∈sub(F )

∫
I

(
1

|I|

∫
I
f − 1

|F |

∫
F
f

)
dx =

∑
I∈sub(F )

(∫
I
f − |I|
|F |

∫
F
f

)

=

∫
F
f −

∑
I∈sub(F )

|I|
|F |

∫
F
f = 0.

Corollary 1. For any folder F ∈ Pl,∑
j

(∆lf)(J
(F )
j )|J (F )

j | = −
∑
i

(∆lf)(I
(F )
i )|I(F )

i |.

Proof. Every subfolder of F is either one of the I
(F )
i or one of the J

(F )
j . Consequently

0 =

∫
F

∆lf(x)dx =
∑
i

∫
I
(F )
i

∆lf(x)dx+
∑
j

∫
J
(F )
j

∆lf(x)dx

=
∑
i

(∆lf)(I
(F )
i )|I(F )

i |+
∑
j

(∆lf)(J
(F )
j )|J (F )

j |.
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We check that our choice of πF satisfies the two conditions given above. The first
condition is true by definition. For the second condition, suppose x ∈ F , where F ∈ Pl
is a folder at level l. If x ∈ I(F )

i , then π(y, x) = 0 for all y, and∫
Ω
πF (x, y)dy −

∫
Ω
πF (y, x)dy =

∑
j

∫
J
(F )
j

πF (x, y)dy

=
∑
j

∫
J
(F )
j

(∆lp)(J
(F )
j )∑

j′(∆lp)(J
(F )
j′ )|J (F )

j′ |
(∆lp)(I

(F )
i )dy

= (∆lp)(I
(F )
i )

∑
j

(∆lp)(J
(F )
j )∑

j′(∆lp)(J
(F )
j′ )|J (F )

j′ |
|J (F )
j′ |

= (∆lp)(I
(F )
i ) = ∆lp(x).

A nearly identical proof holds if x ∈ J (F )
j .

With πF defined for each folder F ∈ T , we define the transport π by

π(x, y) =
∑
F∈T

πF (x, y). (13)

We check that π satisfies the difference of marginals condition (6), and upper bound
its cost by D4(p1, p2).

Take any x ∈ Ω and suppose x ∈ F , where F ∈ Pl is a folder at level l. Then
πF ′(x, y) = πF ′(y, x) = 0 for all y if F ′ 6= F , F ′ ∈ Pl. Consequently,∑

F ′∈Pl

(∫
πF ′(x, y)dy −

∫
πF ′(y, x)dy

)
=

∫
πF (x, y)dy −

∫
πF (y, x)dy = ∆lp(x)

from which it follows∫
Ω
π(x, y)dy −

∫
Ω
π(y, x)dy =

∑
l≥0

∆lp(x) = p1(x)− p2(x).

As for the cost of π, for each folder F , πF (x, y) is only non-zero if x ∈ I(F )
i and y ∈ J (F )

j ,
and consequently in this case d(x, y) = |F | by definition of the tree distance (since

F is the smallest folder containing both x and y). Furthermore, for every x ∈ I
(F )
i ,

πF (y, x) = 0 for all y; consequently, the second defining condition of πF gives that∫
πF (x, y)dy = ∆lp(x)

and so ∫
I
(F )
i

∫
Ω
π(x, y)dxdy = ∆lp(I

(F )
i )|I(F )

i | = |∆lp(I
(F )
i )||I(F )

i |.
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Figure 1: Pairwise comparisons of the metrics on random probability distributions, with
α = 1. From left to right, the metrics D1 to D3, D2 to D3, and D1 to D2

It follows that for each F∫
Ω

∫
Ω
πF (x, y)dxdy =

∑
i

∫
I
(F )
i

∫
Ω
πF (x, y)dxdy

=
∑
i

|∆lp(I
(F )
i )||I(F )

i |

=
1

2

∑
I∈sub(F )

|I||∆lp(I)|

where we have used Corollary 1 for the last line. Consequently

cost(π) =

∫
Ω

∫
Ω
d(x, y)απF (x, y)dxdy =

∑
F∈T

∫
Ω

∫
Ω
d(x, y)απF (x, y)dxdy

=
∑
F∈T
|F |α

∫
Ω

∫
Ω
πF (x, y)dxdy =

∑
F∈T
|F |α 1

2

∑
I∈sub(F )

|I||∆lp(I)|

≤
Bα
U

2

∑
F∈T
|F |α+1

∑
I∈sub(F )

|∆lp(I)|

=
Bα
U

2

∑
F∈T
|F |α+1

∑
I∈sub(F )

|m(p1 − p2, I)−m(p1 − p2, F )|

=
Bα
U

2
D4(p1, p2).

8 Experimental Results

8.1 Dyadic Tree

We ran the following experiment to see how the metrics compare in practice. We take
Ω to be a set with 32 points, and the tree T to be a perfectly balanced binary tree. Our
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Figure 2: Pairwise comparisons of the metrics on random probability distributions, with
α = .75. From left to right, the metrics D1 to D3, D2 to D3, and D1 to D2
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Figure 3: Pairwise comparisons of the metrics on random probability distributions, with
α = .5. From left to right, the metrics D1 to D3, D2 to D3, and D1 to D2
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Figure 4: Pairwise comparisons of the metrics on random probability distributions, with
α = .25. From left to right, the metrics D1 to D3, D2 to D3, and D1 to D2
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measure is normalized counting measure. It is easy to see that any probability measure
on Ω can be written as a product of the form

p(x) =
∏
I∈T

(1 + aIHI(x))

where HI is the L∞ normalized Haar function on I, that is,

HI(x) = χI+(x)− χI−(x)

and
−1 ≤ aI ≤ 1.

See, for example, the paper [11].
We generated a collection of probability measures by randomly choosing the coeffi-

cients aI uniformly from [−1, 1] in the product above and computing their distance to a
fixed source random measure p1 under the metrics D1, D2 and D3 (note that in this case,
D4 and D2 are equal, up to a constant multiple, as we showed earlier). We repeated
this experiment for several values of α. In the case of binary trees, the Haar functions in
the definition of D2 are unique up to sign, which does not change the definition of the
metric. In the graphs, shown in Figures 1 to 4, we show scatterplots of the values of all
three pairs of metrics for the different values of α.

We make several superficial observations based on the graphs. First, it appears that
for α = 1, the metrics D1, the EMD, and the metric D3 are nearly identical. Indeed
for all values of α, these two metrics appear to be closer than any of the other pairs.
However, all pairs of metrics for all values of α appear to be highly correlated, as our
theory suggests they should be.

Second, the constants of equivalence get larger as α shrinks to zero, which is consis-
tent with the bounds we derive above. For example, with the metrics D1 (the EMD)
and D2, it follows from Theorem 4 that when BL = BU = 1/2

D1(p1, p2) ≤ D2(p1, p2) ≤ 2

1− 2−α
D1(p1, p2).

Since 2
1−2−α approaches ∞ as α goes to 0, for small α we expect the metrics to display

weaker correlation.

8.2 Matrix Organization

An application area for the theory of tree hierarchical partition trees is ‘coherent matrix
organization’ [5]. Here, the goal is to build trees on a data set so that certain functions
we wish to predict or compress are as smooth as possible with respect to the tree metric.
This is often done by simultaneously organizing the rows and columns of a matrix.
Several heuristic methods are proposed in [5] for performing this organization. We do
not go into details here as to our approach; we plan to present more complete results
and analysis in forthcoming work. The basic idea, however, is as follows.
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Figure 5: Snapshot of software displaying diffusion embedding of people based on re-
sponses to psychological questionnaire. The organization is derived from an affinity built
using an EMD-like metric.
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We suppose we are given a matrix M with an initial tree on its columns, which is
either given a priori or built using a generic method. We then use this tree to organize
the rows of M by viewing each row as a function on the columns, and measuring the
distance between rows with an EMD-like metric. We use the distances on the rows to
define affinities between the rows, which in turn are used to define a diffusion process
on the rows, along the lines of [6]. The diffusion process can be used to define a tree on
the rows. We then flip rows and columns and repeat the process.

We applied this process to a matrix of 1’s and -1’s whose entries represent yes/no
responses of people (columns) to a list questions (rows) on a psychological questionnaire.
In Figure 5 we show the diffusion embedding of the people after several iterations. It
is apparent that an extraordinarily simple geometry is uncovered, and preliminary tests
indicate that the people are positioned in this geometry according to their score on
psychiatric evaluations.

9 Additional Theoretical Results

9.1 Averaging Over Trees

Suppose we have a family of trees T , each with tree metric dT (x, y). Consider the metric
dT (x, y)α. We can define a new metric as the average over all choices of tree of these
metrics, i.e. define

d(α)
ave(x, y) =

∫
T
dT (x, y)α.

The reason for averaging over many trees is to decrease the impact that the artificial
boundaries imposed by any one tree will have on the distance between two points. We
trust a tree metric only when it tells us two points are close, i.e. when dT (x, y) is small.
However, if most tree metrics in a suitable family tells us that two points are far away,
we will believe they are far away. Thus, we suppose that if there is a metric ρ(x, y)
which represents the ‘true’ distance between the points x and y, that there are constants
A1, A2 > 0 such that ρ(x, y) is bounded above by A2dT (x, y)α for every tree T , and

bounded below by A1d
(α)
aveT (x, y) for every T ; i.e. we suppose that for all T ,

A1d
(α)
aveT (x, y) ≤ ρ(x, y) ≤ A2dT (x, y)α. (14)

One can show that this holds for the family of shifted dyadic trees on the circle, where
ρ(x, y) = |x− y|α.

We define the earth mover’s distance Dρ with respect to the metric ρ the same way
as before, but with ρ in place of the original d = dT . We can think of Dρ as the ‘true’
EMD, since it employs the ‘true’ distance ρ as the cost function. Denote by DT (p1, p2)
the earth mover’s distance with respect to the tree DT (since we were only considering
a single tree earlier, we suppressed the dependence of the metric on T ). We can also
consider the averaging metric

Dave(p1, p2) =

∫
T
DT (p1, p2).
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Under condition (14) above, the two metrics Dρ and Dave are equivalent.

Theorem 7. The metrics Dρ and Dave are equivalent.

Proof. By definition, DT (p1, p2) ≤
∫

Ω

∫
Ω dT (x, y)αdπ(x, y) for all probability measures

π on Ω× Ω with difference of marginals p1 − p2, as in formula (6). Hence,

Dave(p1, p2) =

∫
T
DT (p1, p2) ≤

∫
T

∫
Ω

∫
Ω
dT (x, y)αdπ(x, y)

=

∫
Ω

∫
Ω

∫
T
dT (x, y)αdπ(x, y) ≤

∫
Ω

∫
Ω

1

A1
ρ(x, y)dπ(x, y)

=
1

A1

∫
Ω

∫
Ω
ρ(x, y)dπ(x, y).

Since this is true for all suitable π, taking the infimum we have

Dave(p1, p2) ≤ 1

A1
Dρ(p1, p2).

For the other direction, since ρ(x, y) ≤ A2dT (x, y)α for every tree T and all points
x, y ∈ Ω, for every joint distribution π(x, y) satisfying (6)∫

Ω

∫
Ω
ρ(x, y)dπ(x, y) ≤ A2

∫
Ω

∫
Ω
dT (x, y)αdπ(x, y).

Taking infimums over all appropriate π yields

Dρ(p1, p2) ≤ A2DT (p1, p2)

and then averaging over all T gives the inequality

Dρ(p1, p2) ≤ A2Dave(p1, p2).

Putting this together with the other direction gives the full equivalence:

1

A2
Dρ(p1, p2) ≤ Dave(p1, p2) ≤ 1

A1
Dρ(p1, p2).

9.2 Wavelet Norm as Dual Norm to Space of Smooth Functions

Let H be the space of Hölder(α) functions on Ω, equipped with the semi-norm

||f ||H = sup
x 6=y

|f(x)− f(y)|
d(x, y)α

.

By either restricting to mean zero functions, or declaring two functions equivalent if
their difference is constant, we can regard || · ||H as a norm on H.
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It can be easily shown, using results above, that this semi-norm is equivalent to the
semi-norm

|||f ||| = sup
ψ
|I(ψ)|−(α+1/2)|〈f, ψ〉|.

Consider the subspace S of H defined by the condition

lim
l→∞

sup
ψ:I(ψ)∈Pl

|I(ψ)|(α+1/2)|〈f, ψ〉| = 0.

Let S∗ denote the dual space of S, that is, the space of continuous linear functionals on
S. We claim that the operator norm of a functional µ ∈ S∗, where we equip S with the
norm ||| · |||, is given by

|||µ|||op =
∑
ψ

|I(ψ)|α+1/2|µ(ψ)|.

To prove this: first, pick any L ≥ 1 and define

fL(x) =

L∑
l=1

∑
ψ:I(ψ)∈Pl

|I(ψ)|α+1/2sgn(µ(ψ))ψ(x).

It is easy to check that f ∈ S, and that |||f ||| = 1. We have

|||µ|||op ≥ µ(f) =
L∑
l=1

∑
ψ:I(ψ)∈Pl

|I(ψ)|α+1/2sgn(µ(ψ))µ(ψ)

=

L∑
l=1

∑
ψ:I(ψ)∈Pl

|I(ψ)|α+1/2|µ(ψ)|.

Taking L→∞ proves |||µ|||op ≥
∑

ψ |I(ψ)|α+1/2|µ(ψ)|.
For the reverse inequality: take any f ∈ S. Write f as

f(x) =

L∑
l=1

∑
ψ:I(ψ)∈Pl

〈f, ψ〉ψ(x) +

∞∑
l=L+1

∑
ψ:I(ψ)∈Pl

〈f, ψ〉ψ(x)

=

L∑
l=1

∑
ψ:I(ψ)∈Pl

〈f, ψ〉ψ(x) +RL(x)

where L is chosen large enough so that supψ:I(ψ)∈Pl |I(ψ)|(α+1/2)|〈f, ψ, 〉| ≤ ε for all
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l ≥ L+ 1, for arbitrary ε > 0; such L exists by definition of S. |||RL||| ≤ ε, and we have

|µ(f)| =
∣∣∣∣ L∑
l=1

∑
ψ:I(ψ)∈Pl

〈f, ψ〉µ(ψ) + µ(RL)

∣∣∣∣ ≤ L∑
l=1

∑
ψ:I(ψ)∈Pl

|〈f, ψ〉µ(ψ)|+ |µ(RL)|

=

L∑
l=1

∑
ψ:I(ψ)∈Pl

|I(ψ)|−(α+1/2)|〈f, ψ〉||I(ψ)|α+1/2|µ(ψ)|+ |µ(RL)|

≤
(

sup
ψ

{
|I(ψ)|−(α+1/2)|〈f, ψ〉|

})∑
ψ

|I(ψ)|α+1/2|µ(ψ)|+ ε|||µ|||op

= |||f |||
∑
ψ

|I(ψ)|α+1/2|µ(ψ)|+ ε|||µ|||op

which, since ε is arbitrary, implies that

|µ(f)| ≤ |||f |||
∑
ψ

|I(ψ)|α+1/2|µ(ψ)|

and consequently that

|||µ|||op ≤
∑
ψ

|I(ψ)|α+1/2|µ(ψ)|

which proves

|||µ|||op =
∑
ψ

|I(ψ)|α+1/2|µ(ψ)|.
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