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Abstract

In this paper we consider bounds on the VC dimension of a class,
T (C), that consists of unions of k concepts from class C' of VC dimen-
sion d. Blumer et al. [1] show that the VC dimension of Tj(C') cannot
exceed 2dk log, 3k. By considering grids of points and the class of line
segments, we show that it is possible for T;(C') to have VC dimension
%kd. We also demonstrate that our method cannot produce classes
that asymptotically match Blumer et al. upper bound, leaving the gap
open for future research.

1 Introduction

Given any concept class C' over X, we may form the class T} (C') consisting
of unions of k concepts from C, where T;,(C) = {UF_j¢; : ¢; € C,1 < i < k}.
We define f(k,d) to be the maximum value for the VC dimension of T} (C)
over all C' of VC dimension d > 1. We wish to find lower and upper bounds
on the asymptotic behavior of f(k,d) in terms of k and d. Understanding
the behavior of f(k,d) would give us greater theoretical understanding of
the VC dimension.

In [1], Blumer et al. bound the number of labelings T}, (C) can achieve
on set S of size m by a function ®4(|S|)*, where ®4(m) = Z?:o (") if
m > d and ®4(m) = 2™ otherwise. They argue that if ®;(m)* < 2™ S
cannot be shattered by T;(C') and the VC dimension of T} (C) < m. They
then show that ®4(m) < (2%)? for all m > d > 1. Since (22)% < 2™ for
m = 2dklog, 3k, they prove f(k,d) is bounded from above by 2kdlog,(3k).

The object of this paper is therefore to find lower bounds on f(k,d)
through geometric constructions. While we cannot asymptotically match
the upper-bound, in Section 2 we present constructions that generate a
lower found of %k‘d. Finally, in Section 3 we show the limitations of our
method and find that our constructions cannot yield lower bounds greater
than 2kd.

2 Lower Bounds on f(k,d)

Proposition 1. If 3C with VC dimension = d and Ty(C) > ckd, then
f(k,d) > ckd.

Proof. For any n, we can consider a new class C’ that contains n copies
of concepts from C each in a different “universe.” The VC dimension of
C’ = nd and the VC dimension of Tj(C’") = (n times the VC dimension of



Figure 2: 12 points that can be shattered by Ty (L)

Ti(C)). We can similarly scale results linearly with k. Hence, if the VC
dimension of Tj(C') > ckd, then this linear scaling shows that 3 infinitely
many d, k such that f(k,d) > ckd, giving a lower found on f(k,d). O

Proposition 2. f(k,d) > kd
Proof. Follows directly from Proposition 1. O
Proposition 3. f(k,d) > 2kd

Proof. Let L be the class of line segments. L has VC Dimension of 2. It
is easy to see that T5(L) shatters the 5 points arranged as in Figure 1. For
k = 2 and d = 2, this gives us a construction for the VC dimension of
Ti(C) > 2kd. By Proposition 1, f(k,d) > 2kd.

O

Proposition 4. f(k,d) > %k‘d

Proof. First, We will show that Ty(L) has VC dimension > 12 by showing
that Ty(L) can shatter the 12 points in Figure 2.

Accounting for symmetry, Figure 3 shows how Ty(L) can label all possible
labelings of the innermost with the outermost points being labeled positive.
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Figure 3: Accounting for symmetry, Ty(L) achieving all possible latelings of
the interior points with the exterior points labeled positive



Figure 4: 16 points arranged in a grid that can be shattered by T5(L)

For any labeling of the twelve points in Figure 2, we can find the cor-
responding line segment arrangement in Figure 3 by matching the labeling
of the interior points and then shortening any line segment to avoid any of
the exterior points labeled negative. Hence, these points are shattered by
T4(L), showing the VC dimension is at least 12.

For k = 4 and d = 2, this gives us a construction for the VC dimension
of T},(C)) > 3kd. By Proposition 1, f(k,d) > 3kd.

O

ops 8
Proposition 5. f(k,d) > £kd

Proof. We will show that T5(L) has VC dimension > 16 by showing that
T5(L) can shatter the 16 points in Figure 4.

We call “case n” to be a proof that T5(L) can achieve any labeling with
exactly n points labeled positive. To prove all 16 points are shattered, we
will present cases 0 through 16.

Case 16: Obvious (uses only 4 vertical or horizontal line segments).

Case 15: At worst, the negatively labeled vertex will split a line segment
from Case 16 into two, but Case 16 uses only 4 line segments, so we have
an extra line segment for the split.

Case 14: If one of the two negatively labeled vertices is a corner, we
shorten one of the 4 line segments from Case 16 and use the proof for Caselb.
If one of the two negatively labeled points is on an outside edge, we orient
our 4 line segments in such a way as to cover the positive points with 4
line segments and apply Case 15. If both negatively labeled points are in
the middle 4, if they are on the same horizontal or vertical line, then they
only split one of the 4 line segments (properly oriented) into 2, and case 15
applies. This leaves only 1 case, shown in Figure 5.

Case 13: If one of the three negatively labeled line segments is a corner,
we use Case 14 with shortened segments as needed to avoid the corner. If



Figure 6: A labeling of the 16 points by 75(L) for Case 13

only one is on an outside edge, we use Case 14 (with proper orientation) and
since every corner is covered by 2 segments (the bad case), we can shorten
any of the line segments to avoid the negatively labeled point on an outside
edge and still cover the corners. The same holds true if all three negative
points are in the middle: we can shorten the diagonal line in Figure 5 to
accommodate for the extra negative.

If all 3 negative points are on edges and any two are on the same edge,
we can cover them as shown in Figure 6 and shorten any line segment as
needed for the third negative point.

So, for the all negative points on edges case, we have the case left of each
negative point being on a different edge, as shown in Figure 7. Three of 7s
are negative, and three are positive. And we have 2 more edges to label the
positive 7 marks. Considering the graph where two points above share an
edge if and only if they can be connected by a line segment that does not
go through any other points, it can be easily seen that no three of the ?
points form an independent set. Hence, two more line segments can cover
any combination in Figure 7.

This leaves us with the case when 2 of the negative points are on an edge,
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Figure 8: A partial labeling of the 16 points by T5(L) for Case 13

and one is in the middle. If the two negative points are on the same edge,
then we can shorten two line segments and divide one for the middle point.
In fact, we can do this if the two negative points are on opposite edges and
are on the same vertical or horizontal line. Hence, the only cases left are:
two negatives near the same corner, Figure 8, two negatives on adjacent
sides but not near same corner and a negative middle point not next to to
either of the negatives (becuase of the “shortening argument”, Figure 9, and
two negatives on opposite sides, but not on the same horizontal or vartical
line (only 1 case without two adjacent negatives), Figure 10.

This finishes Case 13.

Case 12: We can again forget about the corners being negative since
any line segment covering them can be shortened.

If all 4 negatives are in the center, we can make a 4 line segment box
around the center. If all 4 negatives are on the sides, we can make an cross
through the middle and cover one of the sides containing a positive point
with a line segment. We left with the same situation as Figure 7, and we
can cover that.




Figure 9: A partial labeling of the 16 points by 75(L) for Case 13

Figure 10: A partial labeling of the 16 points by T5(L) for Case 13
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Figure 12: A partial labeling of the 16 points by T5(L) for Case 12

If three of the negatives are in the center, we can make a square around
the outside points and cover the positive center point with its own line
segment. Since every corner in a square is covered by two line segments,
any one can be shortened to make an edge point negative.

If only one of the negative points is in the center, we can see in Figure 12
that again since all corners are covered by two line segments, we can shorten
some line segment to avoid the 4th negative point.

This leaves the case of two negatives in the center and two on the sides,
which was covered in Figure 5. We have to advoid two more edge points,
and since each corner is covered twice, we can do this by shortening the
appropriate line segments. This leaves one last case, where both points to
avoid are near the same corner, which needs to still be covered. This is
handled in Figure 12 and finishes Case 12.

Cases 0 through 5: Obvious since we can use one line segment per
point.

Cases 6 and 7: We define the graph G to be the graph where verteces
represent the points in Figure 4 and edges connect any pair of points between
which a line can pass without crossing any other points. The maximum
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Figure 13: Maximum independent sets in G
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Figure 14: vertex degrees in G

independent set in G is of size 4. Both possibilities are shown in Figure 13.

In the graph represented by Figure 13 each point has edge to at least
two vertices in the independent set. Hence one or two more points can share
a line segment with one of the points in the independent set.

Case 8: We can see the in Figure 13, no two vertices only have edges to
the same points in the independent set. Hence, we can cover a third point
by a shared line segment, plus one more with its own.

Cases 9 and 10: If we consider the degrees of the vertices in G, in
Figure 14, we can see all vertices have degree > 3. In a graph for Case 10, 6
vertices are negative and are “removed,” so each vertex has degree at least
3. And there are at most only 4 such vertices. Since we can see it is not
true that each of the vertices labeled 9 (which will be the ones with degree
> 3 after the negative points are removed) have edges to only vertices in
the independent set in Figure 13, at least two will have edges to each other.
Hence, two pairs of those can be paired and the rest can be covered like in
Case 8. Case nine is easier since the last pair is just one vertex.

Case 11: All we have to show is that a line segment thats involved in
covering any of the 10 positively labeled vertices can extend to cover the
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Figure 15: A labeling of points with both positive coordinates positive and
the rest negative

eleventh. All we want to show is that in any choice of 11 points, three will
be collinear without in intervening negative point and thereby coverable by
a line segment of their own. This is easy to show since the four central
points and the four corners all participate in different sets of tree collinear
points, and at most 5 of the 6 points can be labeled negative since we are
in Case 11. The rest of the case follows from Case 10.

Hence, all cases are covered, so at least 16 points are shattered by a
union of 5 pairs of line segments, giving a %k‘d ratio for 75(L). This shows
by Proposition 1 that f(k,d) > Skd

O

3 Limitations of Grids for Tj(L)

These results start to give hope that as k increases, we can keep adding
points to an n by n grid, and the fraction preceeding the kd term in our
lower bounds will increase as well, giving us the logy(k) term that we find
in the upper bound. Unfortunately, this turns out not to be the case.

We can show that an n x n grid requires at least %(nz) unions of line
segments to shatter. In this grid, we can assign coordinates to the all points,
with (0,0) being the bottom left. Take the labeling of the points where
points with both even coordinates are positive and the rest are negative, as
shown in Figure 15. Imagine a line segment connecting two points, point
1: (x1,y1) and point 2: (x2,y2), each with both positive coordinates. This
line will have a slope of m = =% Before reducing the fraction, both the

xro—x1 "
top and bottom of the fraction are even. But, after the fraction is reduced,
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tom = g—z, either 0, or d, is odd (or both). Take the bottom-most of the

two points, say point 1. Then, the point (x; + 65, y1 + 6,) is on the line
segment and has at least one positive coordinate. Hence, any line segment
that passes through two points with both even coordinates must also pass
through a point with at least one odd coordinate. (The case when both
even-coordinate points are on one vertical or horizontal line is not covered
by the slope argument, but is easy to see) So achieve this labeling, we would
need as many line segments as positively labeled points, which is > %nQ.

This implies that to shatter a grid of n? points, we need a union of %nz
line segments. Therefore, this method of construction will give linear lower
bounds on f(k,d) with respect to k, at best 2kd.

4 Discussion

This leaves a log k asymptotic gap between the upper and lower bounds on
f(k,d). While we may still possible improve the lower bound from %kd to
2kd using grids of points like in this paper, if we want our lower bounds
to match the 2kdlogs(3k) upper bound, we would need another technique.
One possible approach to matching the upper bound would be to consider
grids in higher dimensions. Yet, we must also consider that the upper bound
may not be tight and the actual behavior of f(k,d) may linear with respect
to both k and d.
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