“TJ2- 10/Z

A Fault Tolerant PASO for LANSs
(Extended Abstract)

Eric Freeman David Gelernter Jeffery Westbrook Lenore Zuck

Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

We describe a fault-tolerant distributed storage system for local area networks. Our
system implements Persistent, Associative, Shared Object (PASO) memory. A PASO memory
stores a set of data objects that can be accessed by associative search queries from all nodes in
an ensemble of machines. This approach to distributed memory has appeared in a number
of systems, and provides a convenient and useful mechanism for parallel and distributed
applications. PASO memory is very amenable to adaptive implementations that relocate data
objects in response to changing network configurations and access patterns, and so makes
a good candidate as an efficient, fault-tolerant storage system. We define the semantics
of PASO memory; give a basic design strategy; present one implementation and prove its
correctness; and discuss potential techniques for improving efficiency.

Contact author: Lenore Zuck, Department of Computer Science, Yale Station 2158, New
Haven, CT 06520-2158. E-address: zuck@cs.yale.edu, telephone: 1-203-432-1236, fax: 1-203-432-
0593.

1 Introduction

This paper discusses the design of fault-tolerant storage based on Persistent, Associative, Shared
Object (PASO) memory. A PASO memory stores a set of data objects that can be accessed by
associative search queries from all nodes in an ensemble of machines. The design is targeted at
local area networks connected by a bus such as an Ethernet.

An object in a PASO is a tuple of values drawn from ground sets of basic data types.
The memory contains a collection of objects, each of which has an arbitrary number of fields.
Programs manipulate the PASO memory through three atomic operations: insert, read, and
read&del. A PASO memory is associative in the sense that objects are accessed by pattern-
matching. A read takes an object template (search criterion) specifying acceptable values for
each field, and returns any one object matching that template. Both read and read&del are
blocking, i.e., they cannot return until they succeed in finding a matching object. There is
no modify operation; modifying a field is logically equivalent to destroying the old object and
creating a new one. There is no loss of generality, since a mutable distributed data structure
can be built out of collections of immutable atomic objects. The memory is “shared” in the
sense that any object can be read or deleted by any participating process. It is “persistent” in
the sense that once an object is inserted into the memory, it remains there until it is deleted,
irrespective of whether its creating process is still alive.

The local area network consists of n machines, each of which has local memory and supports
a set of processes. A process may be either a compute process or a memory server. A compute
process executes a user program that generates requests for access to the PASO memory by means
of the basic PASO operations. A memory server manages some collection of PASO objects stored
in the local memory of the machine. It is responsible for serving the PASO requests generated by
compute processes. The primary type of fault we consider is fail-stop errors, in which a machine
crashes and all processes on that machine are killed. We assume a communication system
that handles communication faults such as message loss and corruption; such communication
systems have been studied extensively in previous research. The restriction to local area networks
connected by a bus eliminates the possibility of network partitions caused by communication
link failures.

The PASO model is a hybrid of the message passing and the shared address space approaches
to inter-process communication. Like a shared address space, a PASO memory hides the physical
location of data. A programmer simply manipulates an abstract data space. A PASO memory
also preserves some of the efficiency of message passing, allowing the programmer to distinguish
local computations from potentially expensive communication/coordination actions. Shared
memories that qualify informally as PASOs have been used as coordination languages in a variety
of parallel programming systems, e.g., in the context of C [7], Scheme [16], Prolog [6], distributed
object-oriented systems [19], Modula-2 [17], program visualization systems [12], math libraries
[10], and as part of other coordination mechanisms [1, 18]. They have proven to be an effective
basis for parallel computations, distributed databases, groupware and related software systems[7,
8]. The fact that informal PASO memories are a pragmatic success makes them good candidates
for formal, algorithmic, and theoretical research that aims at improving them.

As observed in [3], one can separate the problem of fault-tolerant computation into two issues.
The first is the design of parallel programs that are fault-tolerant given the assumption of a
stable storage. This area is well studied and there are many approaches based on checkpointing,
message logging, and rollback recovery (e.g., see [15]). The second issue is the design of the

stable storage. It is on this second issue that we focus. We take some predefined constant
A < n and assume that at any given time at most A machines can simultaneously fail. The
PASO memory is reliable if throughout any series of faults the abstract object space remains
unchanged and all active processes have a consistent view of the object memory.

Current PASO-like systems either provide no fault-tolerance or provide basic fault tolerance
at the cost of substantial overhead (see, e.g., [3, 7, 22]). One argument against fault-tolerance
is that the obvious benefits of preserving data in the face of failures are outweighed by the loss
of efficiency when errors are infrequent. Our thesis is that both goals of fault-tolerance and
efficiency can be achieved. The requirement of fault tolerance implies that data will need to be
adaptively replicated in response to machine failures. But since we are forced to relocate data,
we may as well commit to inherently adaptive data management schemes and take advantage
of the potential optimizations that adaptive schemes offer.

A PASO memory that is able to tolerate many rapidly occurring failures is especially useful
in designing parallel algorithms that adapt to changing availability of computational resources—
adaptive parallelism [13]. Today’s ubiquitous workstation networks are huge reservoirs of power
and wasted potential, reservoirs that can be tapped by adaptive parallel programs designed
to gain or lose processing units during the computation. Our fault-tolerant techniques will
allow a distributed memory to retire gracefully from workstations that are being reclaimed for
personal use, and expand onto nodes that become available. We believe that adaptive-parallel
programs executing on networked multiprocessors will be one of the most important arenas for
high-performance computing over the next decade. For more details on the Yale PASO project
see [14].

Section 2 provides an overview of the semantics of PASO memories. Section 3 describes the
physical model, communication model, and fault model. Section 4 describes the basic strategy
for memory management. Section 5 describes a particular correct implementation of a PASO
system. Section 6 discusses strategies for improving efficiency. We conclude in Section 7 with
summary and description of present and future work.

2 The PASO Semantics

We give an overview of the semantics of PASO memories. A detailed discussion is in [23].

The set of objects is denoted by O. Each object has a “life”. It is initially prenatal. If
inserted, the object becomes live. If read&deled, the object becomes dead. Search criteria,
used as arguments in read and read&del commands, are predicates over). We also assume a
set P of processes, each executing some program. The programs are “standard” programs (e.g.,
() augmented with the special PASO primitives: insert, read, and read&del.

A global state of a PASO system consists of the local states of each of the processes and the
state of the object space. We assume some set ® of propositions and an evaluation function
that determines whether each proposition is true or false in each of the global states. Of special
importance to us are the propositions pre(o), live(o), and dead(o), for every o € O, denoting
whether o is prenatal, alive, or dead. With each global state we associate a partition of () into
three sets, PRE, LIVE, and DEAD according to the state of the objects in the global state. An
initial state is a global state where all objects are prenatal (i.e., PRE = 0) and all processes are
at their initial local states. The value of the local variables of each process is as indicated by
the program code.

All non-PASO commands are assumed to be atomic. Each PASO command is associated

with two atomic commands, its issuing, demoted by &, and its return, denoted by p. For
read and read&del commands, we sometimes abuse notation and use two arguments for p,
the first denoting the terminating command, and the second denoting the result. For example,
p(read&del(sc), o) is the return of a read&del with search criterion sc, whose result is o.

A joint transition is defined by a set of (possibly null) atomic commands for each of the
system’s processes. FEach joint transition defines a (global) state-to-(global) state successor
function. For the non-PASO commands in the joint transition, this successor function is the
obvious one.

A run of a PASO system is a sequence r = so, 79, s1, . . . of alternating global states and joint
transitions, starting with a state, and, if finite, ending with a state, such that so is an initial
state and every state s;41 is the successor of s; under the successor function of T;.

Properties (A1)-(A3) below are some of the properties that should be satisfied by every
run r of a PASO system. Property Al describes the life cycle of an object in . Property A2
describes what in r determines an object’s life. Property A3 describes the processes in 7.

A1l A prenatal object may remain so forever or become alive. A live object may live forever
or die. A dead object remains dead. An object may become alive at most once, and
may die at most once.

A2 An object 0o may become alive only after a transition includes t(insert(o)). It may
later die after, and only after, a transition which includes p(read&del(sc), o).

A3 The individual run of each process as determined by r is indeed plausible run of the
process. In particular, for every process p, if 7, denotes p’s run as determined by
7, then every p in 7, is the immediate successor of the corresponding ¢ in r,. Also,
every ((insert) in 7, is immediately followed by a corresponding p. Obviously, a PASO
command of p blocks when its ¢ is the last element in 7.

It remains to describe the rules of each of the PASO commands. We require that an object
becomes alive at some time after its insert is issued. The rules of read commands are somewhat
more complicated since they describe both the correctness of objects returned by read and
the conditions under which read commands may and may not block. We require that a read
command returns an object that satisfies the search criterion and is alive at some time in between
the issue and the return of the read. A read should not block if there is an object that satisfies
the search criterion and is alive from some time onward. It may block in all other cases. The
rules of the read&del command are similar to the rules of the read command. We do require,
however, that an object that is returned from a read&del eventually dies.

3 The Physical Model

As described in Section 1, a local area network consists of n machines, each of which has local
memory and each supports a set of processes. A process is either a compute process or a memory
server. A memory server manages some collection of PASO objects stored in the local memory
of the machine. For simplicity we assume that each machine hosts exactly one memory server.
Machines may crash and leave the system, and then be fixed and re-join the system. When
a machine crashed, the memory server hosted by it also crashes. We assume that a crashing
memory server leave the system and never return. When the hosting machine re-joins the

system, the hosted memory server is treated as if it is a new memory server. The set of memory
servers is therefore dynamic. Assume some universal set of memory servers. At any point, we
assume that M denotes the subset of memory servers that are active (i.e., hosted by operational
machine) at that point.

3.1 Communication Mechanism

All communication occurs by means of a simple primitive, gcast. The gcast primitive is derived
from the ISIS system for robust distributed communication [5], which we are using as a basis
for experimental implementations of PASO memory.

A gcast broadcasts a message to all members of a specified group, a construct roughly anal-
ogous to a mailing list. At any time, a given process may join or leave a group. The operation
gcast(name, msg, resp-type, resp) broadcasts a message msg to each process currently subscrib-
ing to the group identified by name. The flag resp-type is either a or s. If it is a then control
returns to the issuing process only after all the group subscribers respond to the broadcast. If
it is s then control returns to the issuing process as soon as one group member responds. In
this latter case, while the process receives only one response, the response is sent only after all
group members are ready to send. Hence, response type s is used when the process needs only
one copy of the response; we use this form to to minimize contention as not all responses need
to be sent. Responses are stored in the local variable resp.

Let Names be the (finite) set of group names. For any point in every run, let group: Names —
2M be a mapping such that group(name) is the set of memory servers belonging to group
name. The communication subsystem that implements gcast is responsible for maintaining this
mapping. The use of group names thus provides a simplifying level of indirection for the compute
and memory servers.

The gcast primitive is assumed to be reliable. Namely, it eventually delivers the designated
message to all group members. Moreover, the messages are delivered to all group members in
the same order. Finally, all gcasts from the same process to the same group reach the group’s
members in the order they are sent. We assume that the groups are always in a stable state
when receiving a gcast—memory servers cannot join or leave a group during a gcast to the group.
(The broadcast primitives of ISIS provide for all of these properties.)

In the formal model, we refine the notion of runs (see Section 2) to account for the groups
membership and gcast primitive in the obvious way. Details are deferred to the full version of
the paper.

3.2 Fault Model

We expect our system to tolerate up to A simultaneous fail-stop crashes of machines where
A < n is some fixed constant. When a machine crashes, all its local memory is erased, and,
consequently, the memory server that is associated with it fails. Failed memory servers are
assumed to leave the system and never return. Similarly, memory servers that join the system
are assumed to be new.

Once a faulty machine re-joins the system, the memory server performs an initialization
phase. During the initialization phase, the server obtains copies of the objects that it should
store (see Section 4). Hence, this phase is expected to be rather lengthy. We consider a machine
in its initialization phase faulty, since it cannot answer all queries correctly. We assume that at
any time, there are at least n — XA non-faulty machines in the system.

4 Memory Management

In order to determine where objects are stored and how they are searched for, we partition the
object space and the search criteria space into classes. Each class of objects is associated with
a write group—a set of servers each of which stores every live object that belongs to the class.
All requests to insert and remove particular objects are therefore made to the write group that
is responsible for the class that contains the object. Similarly, every class of search criteria is
associated with a read group—a set of servers that contains at least one server from every class
that may hold an object satisfying the search criteria in the class. Hence, search requests are
directed to the read classes, and update requests are directed to the write classes.

The set () is partitioned into a set of object classes C by a function obj-cls: @ — C. We place
no restrictions on the number of object classes, nor on the function obj-cls. The function may or
may not be known to memory servers. It can be predetermined during compilation or generated
at run-time. It can be a dynamic function, changing over time. At each point in a run, the live
objects in every class ' € C are replicated across some group of memory servers that is said to
support C' and is called the write group of C'. The write group of C is denoted w-grp(C). The
write group of a class is dynamic.

The set of search criteria, SC, is also partitioned into a set of search classes S, by a function
srch-cls: SC — S. Again this function may or may not be known in advance to memory servers,
and it may be modified at runtime. Like object classes, each search class is also supported by a
group of servers, called the called the read group for search class S, and denoted r-grp(5).

A given memory server may support multiple read and write groups. In addition, the mem-
bership of read and write groups can change over time. Memory servers may fail and recover,
joining different write groups. In addition, it may be useful to reassign servers among write
groups in order to optimize communication. For example, if compute processes on a machine
are frequently accessing a given class C, it may be advantageous for the memory server on
that machine to begin supporting C'. Then read requests can be handled locally, without using
communication. Although read and write groups can change, at all times they must satisfy the
intersection condition:

For every search class S € S and object class C € C, if sc N C # 0 for some search
criterion sc € S, then r-grp(.5) N w-grp(C) # 0.

That is, if some o € C satisfies some sc € S, then there is at least one memory server that
is in both the write group of C' and the read group of $. In addition, the write groups must
satisfy the fault tolerance condition:

Let A be the fault-tolerance parameter. In every run, in every point in the run, if there
are k < A memory servers that have failed, then for all C € C, |w-grp(C)| > X — k.

Lemma 1 In any implementation that correctly tolerates up to A simultaneous memory server
failures, the write groups must satisfy the fault tolerance condition

Proof The proof follows immediately from the observation that when k memory servers fail,
at most A — k additional memory servers can fail at the next point. Hence, when k servers fail,
there is at least one correct (non-failing) server in each write group. "

5 Algorithms

We now describe a correct implementation of a PASO system that can tolerate up to A simulta-
neous faults. The algorithms described here consist of a correct fault-tolerant (up to A faults)
implementation of PASO memory for any read and write groups that satisfy the intersection
condition and the fault tolerance condition. The only assumption taken here is that the rate of
faults is such that each process can eventually execute part of its code while the system does
not experience new faults. Since recovery is assumed to take some time (see Section 3), this
assumption is reasonable in our model.

The implementation below makes no assumption about the ratio of inserting and removing
objects into the system, the size of the read and write groups, or the nature of the search
criteria. Any prior knowledge about one or more of these parameters may imply a different,
possibly more efficient, implementation. For instance, many existing PASO-like systems assume
that for a given class C, the w-grp(C') = r-grp(C). In this case our read and read&del algorithms
can be substantially more efficient.

Our implementation uses the gcast primitive to the write groups whenever an object is
inserted or removed. In the full version of the paper we show that our assumption about the
system and the properties of gcast guarantee that for every object class C, it is always the case
that all the servers that support C' have the same view of C', and other servers do not have any
view of (.

5.1 Memory Servers

Each memory server M is defined by an abstract data type. A formal definition of the memory
servers will be given in the full version of this paper.

Every M € M supports four atomic operations: storeps takes an object and stores it in the
memory. Roughly speaking, objects are stored in the order in which the stores occur. searchy,
takes a search criterion sc and returns an object class identifier C if there is an C-object in M
that satisfies sc and fail otherwise. If there is more than one C-object then searchys returns
the oldest such object. mem-readys is similar to searchyy, only it returns an object satisfying
sc instead of a class identifier. removeps takes a search criterion sc and an object class C. It
returns the oldest ("-object in M satisfying sc and removes it from M if such an object exists,
and fail otherwise. For the purpose of this paper we assume that each memory server can store
infinitely many objects.

5.2 Insert

When a process wants to insert an object o in memory, it issues an insert(o) command. When
an insert(o) is issued, the process uses obj-cls to determine the class C' that o belongs to, and
then w-grp to determine the current write group of C. It then issues a gcast to the relevant
memory servers with a request to write o onto them.
Figure 1 describes the code that is generated when a process p issues a insert(o) command.
In the full version of the paper we prove:

Lemma 2 The insert routine in Figure I is correct. That is, it satisfies the semantics of the
PASO insert operation.

% Macro expansion for insert(o) % Macro expansion for lookup(sc)

begin || begin
geast(w-grp(obj-cls(0)), “store(0)”, s) found := false
end while —found
begin

gcast(r-grp(sc), “search(sc)”, a, resp)
r := {set of non-fail responses}
if 7 # 0 then found := true
end
{r is all classes containing some o € scr}
return(r)
end

Figure 1: The insert and lookup macro expansions

5.3 Read

To read an object based on a search criterion, a process may broadcast a read request to the
appropriate read group. If there are many servers that contain a matching object (i.e., if the
criterion covers objects in many object classes), objects are rather large, and communication
cost grows fast with the message length, then the cost of the answers may be prohibitively
expensive.

We therefore decided to request servers in the read group to give only some minimal infor-
mation that would help in finding objects that satisfy the search criterion. N amely, servers are
only requested to supply the process with a list of classes the support and that have a live ob ject
satisfying the search criterion. This is accomplished by means of the routine lookup, described
in Figure 1.

Given the set of class identifiers returned, the process then successively broadcasts to the
servers in each write-group(name) a request to read a C-object satisfying sc. If such a C-ob ject
exists in w-grp(("), one such object is returned. Otherwise, the next class is tried. If all classes
returned by lookup fail to have an object that satisfies the search criteria then the process goes
back to lookup. The read expansion is presented in Figure 2.

Obviously, if the read returns, it returns an object the satisfies the search criterion and is
alive at some point during the execution of the read. From the code of read and the assumption
that search returns the class with the oldest object satisfying sc, it can be shown that the read
doesn’t block unless no object remain in the system long enough.

In the full version of the paper we formally prove:

Lemma 3 The read routine in Figure 2 is correct. That is, it satisfies the semantics of the
PASO read operation.

Both lookup and read routines use busy-wait to block. This is potentially inefficient if
many processes are blocking for long periods of time, and may end up flooding the network with
messages. On the other hand, if most requests are expected to be satisfied, and blocking is rare,
then the overhead is small. An alternative to busy-waiting is to leave read-message markers
at nodes supporting each class. Then, whenever a new object is created, the supporting nodes

% Macro expansion for read(sc)
begin
while true
begin
C := lookup(sc)
foreach C' € C
begin
geast(w-grp(C'),
“mem-read(sc, ()", ss,T)
if 7 # fail then return(r)
{r is some existing o € sc}
end
end
end

% Macro expansion for read&del(sc)
begin
while true
begin
:= lookup(sc)
foreach C € C
begin
geast(w-grp(C),
“remove(sc,(')”,s,r)
if 7 # fail then return(r)
{r is some existing o € sc}
end
end
end

Figure 2: The read and read&del macro expansions

check to see if it matches any pending search request. In this case, however, additional effort is
needed to guarantee that the request markers are not lost in node failures. An appealing hybrid
of these schemes is to have each message marker expire after some time period A, and have
waiting reads send a fresh set of read requests every A time units.

5.4 Read&Delete

The read&del routine is similar to the read routine. The only difference is that in the read
routine, after lookup returns a set of classes that contain an object satisfying the search criterion,
a process requests each write group to mem-read one such object, while in the read&del routine,
the process requests the write group to remove such an object.

The read&del expansion is presented in Figure 2.

Note that, similar to the read algorithm, read&del also uses busy-waiting and suffers from
the drawbacks discussed above.

In the full version of the paper we prove:

Lemma 4 The read&del routine in Figure 2 is correct. That is, it satisfies the semantics of
the PASO read&del operation.

From Lemmata 2, 3, and 4, we formally prove in the full paper:
Theorem 1 For any read and write groups that satisfy the intersection and the fault tolerant

conditions, the implementation described here satisfies the PASO semantics and can tolerate up
to A failures.

6 Managing the Read and Write Groups

The basic framework of read and write groups is very flexible both in the number of groups and
the assignment of memory servers within them. The organization of the groups can be tailored

8

for specific kinds of application, so that the types of searches occurring in the application can
be performed efficiently.
Any implementation must provide

1. A description of the read and write classes.

2. An algorithm for assigning processors to read and write groups such the intersection con-
dition is satisfied and the fault tolerance condition is satisfied.

3. An algorithm to compute the mapping from objects to write groups and the mapping from
search criteria to read groups.

We now describe an implementation called “Load Balancing.” The primary goal of load
balancing is to evenly distribute the set of tuples across write groups. The scheme is intended
for situations where the search criteria are arbitrary predicates that may be satisfied by objects
from almost any object class. Recall that n is the number of machines. Let m = én, where
0<é<1land1/é > A+ 1. The parameter § can be tuned as desired for efficiency. We assume
m is an integer. Note that A < n/m = 1/6.

Let h,, be a hash function mapping O to [1..m], chosen uniformly at random from a universal
family of hash functions [9]. Similarly, let h, be a hash function mapping SC to [1..1/6], also
drawn at random from a universal family. Use h,, to partition O into object classes Cy,Cy,. .., cm
so that obj-cls(o) = C' (o). Similarly, use h, to partition SC into search classes Sy, Sa,.. ., S1/6
so that srch-cls(sc) = 5), (5¢). (This assumes that search criteria are encoded in a standard way.)

At time ¢, let live(t) be the set of all alive objects. Then by applying standard results on
universal hash functions, we have that the expected size of class C; is live(t)/m. Furthermore,
the expected size of the largest class is ||ive(t)|ﬁﬁa, under the assumption that the hash
function achieves uniform random hashing [9]. Similarly, if S; is the set of active searches at
time ¢, the expected number occurring in read group r; is |S4|é.

Next we consider the assignment of servers to read and write groups. In the simplest ap-
proach, processor p; is always assigned to support object class i mod m. Should p; fail and then
recover, it will be reassigned to the same write group. The support of a class can decrease
to 1, but no less, hence the fault-tolerance condition is met. At any time, the set of servers
assigned to write group ¢ are also assigned to all 1/6 read groups, so that the read groups are
evenly distributed over the servers. Specifically, if there are k servers in the write group 7, then
each server belongs to O(1/6k) read groups. If p; fails, then the remaining processors in write
group j mod m join the read groups to which p; formerly belonged. Similarly, if p; returns,
then it joins some read groups currently supported by other processors in class j mod m, and
those other processors resign from those read groups. There are various on-line load-balancing
algorithms that can be used to determine which processors join what groups while guaranteeing
that the maximum load is O(1/6k) (See, e.g., [20]).

An insert of object o is done by broadcasting an insertion instruction to all members of
the write group Cj,(,)- A read on search criterion sc is done by a broadcast to the read
group Sy, (sc), waiting for responses from the processors in the group. A read&del is done by a
broadcast to a read group to find a matching object, followed by a broadcast to a write group
to delete the object. This are easily done with gcast’s by associating each write group with a
mailing list name.

Let us assume that the bulk of the running time can be ascribed to computations within
local memory, i.e., that communication overhead can be ignored. In the case of very general

9

search queries, this assumption is not unwarranted. Consider the time spent managing the local
memories. We make a simplifying assumption: if a local memory contains ¢ objects, then the
time to insert or delete an object o is O(f(¢)) for some f independent of the size of 0, and that
the time to search the local memory using search criterion sc is O(g(€)), for some function g
independent of sc. The functions f and g depend on the nature of the searches being performed
and the data structure used to store the objects. We assume that f and g are at worst linear in
{. Since a search criterion and an object can be compared in constant time, a simple linked list
implementation will run in time O(€) per operation.

Suppose W insert operations are performed. The write groups can perform insertions in
parallel. Given uniform hashing, the expected number of objects assigned to class 1 < ¢ < m is
W/m, expected time per local insertion or deletion is O(f(W/m)), and the expected time per
local search is O(g(W/m)). The total parallel time required to insert all objects is determined
by the maximum size of a class. As discussed above, the expected value of the maximum size is

2
W1 1
O(;,—L—E—g%%ﬁ), implying that the total parallel time is O (% (rﬁ%l) f(%) .

Suppose R read operations occur. In the absence of faults, the expected number of read
requests assigned to class 1 < j < 1/§ is éR. Using the bound on the expected maximum
number of requests to any one read group, we conclude that the expected total parallel time for

2
all reads is O (6Rg(W) (—bﬁl‘—)

m loglogn

If faults occur, then in the worst case, all but one of the machines in a given write group
fails permanently. Then any read requests satisfied by objects in that class must be satisfied
by that one processor. This increases the total read time by a factor of 1/6. If faults occur
uniformly at random, however, with each processor being equally likely to fail, then at any time
the expected number of processors per write group is (1/8) — (A/m). For A = O(m*®),0<e < 1,
the probability of one failure in a given write group is O(1/ m!'~¢), and the expected running
time per read remains of the same order as in the no failure case. A random distribution of
failures can be guaranteed by initially randomly permuting the labels on processors.

Note that if the function g is linear in the size of the local memory, then the value of § does
not affect the expected time for serving requests, since m = dn. In this situation, the total write
time is minimized by maximizing §, subject to the fault tolerance condition. If g is sublinear,
however, than minimizing é reduces read time, and there is a tradeoff in the choice of § between
read and write times.

7 Conclusion

PASO memory offers a simple and flexible model of distributed data storage. It offers many
avenues for improvement in efficiency. The implementation described in this paper is intended
to handle very general search criteria. In the case of data that can be aggregated into classes
subject to simple search based on predetermined key fields (i.e., a distributed data file), adaptive
algorithms for “file allocation” [2, 4, 11, 21] may be used dynamically change the support groups
for a given class. This would allow processors that are frequently accessing information in a given
file to support that file locally, thereby reducing communication overhead. We are currently
implementing a PASO system on a testbed network of 150 nodes.

10

References

[1] G. Agha and C. Callsen. Actorspaces: An open distributed programming paradigm. In
Proc. 4th ACM SIPLAN Symp. on Principles and Practice of Parallel Programming, San
Diego, May 1993.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation. In Proc. 25th
ACM Symposium on Theory of Computing, pages 164-173, 1993.

(3] D. E. Bakken and R. D. Schlichting. Tolerating failures in the bag-of-tasks programming
paradigm. In Proc. /1th IEEE Int. Symp. Fault Tolerant Computing, pages 248-255, 1991.

(4] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data manage-
ment. In Proc. ACM Symp. on Theory of Computing, pages 39-50, 1992.

[5] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpanguo, K.Kane, F. Schmuck, and
M. Wood. The ISIS system manual, version 2.1. Systems User Manual, Sept. 1990.

[6] A. Brogi and P. Ciancarini. The concurrent language Shared Prolog. ACM Trans. on
Programming Languages and Systems, 13(1):99-123, 1991.

[7] N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32(4):444-458, April
198&9.

[8] N. Carriero and D. Gelernter. How to write parallel programs: A first course. MIT Press,
Cambridge, 1990.

[9] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill, New
York, NY, 1990.

[10] C. C. Douglas. A tupleware approach to domain decomposition methods. Applied Numerical
Mathematics, 8:353-373, 1991.

[11] B. Gavish and O. R. L. Sheng. Dynamic file migration in distributed computer systems.
Commun. ACM, 33(2):177-189, 1990.

[12] C.D. W. G.C. Roman, K.C. Cox and J. Plun. Pavane: a system for declarative visualization
of concurrent computations. J. Visual Languages and Computing, 3:161-193, 1992.

(13] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage: Preliminary
experience with piranha. In Proc. 1992 ACM Int. Conf. Supercomputing, July 1992.

[14] D. Gelernter, J. Westbrook, and L. Zuck. Towards an efficient fault tolerant PASO memory
system. Technical Report YALEU/DCS/TR-1000, Yale University, Dec. 1993.

(15] J. N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzulo, and

I. Traiger. The recovery manager of the system R database manager. ACM Computing
Surveys, 2(13):223-242, 1981.

[16] S. Jagannathan. TS/Scheme: Distributed data structures in Lisp. In Proc. 2nd Workshop
on Parallel Lisp: Languages, Applications and Systems. Springer-Verlag LNCS, Oct 1992.
Also published as: NEC Research Institute Tech Report: 93-042-3-0050-1.

11

(17] M. H. L. Borrman and A. Klein. Tuple space integrated into Modula-2, implementation
of the Linda concept on a hierarchical multiprocessor. In Jesshope and Reinartz, editors,
Proc. CONPAR ’88. Cambridge Univ. Press, 1988.

(18] B. Liskov. Position paper. The panel discussion at OLDA2, Vancouver, October 18 1992.

[19] S. Matsuoka and S. Kawai. Using tuple space communication in distributed ob Jject-oriented
languages. In Proc. OOPSLA ’88, pages 276-284, Nov 1988.

[20] J. Westbrook. On the power of preemption. Technical Report YALEU/DCS/TR-999, Yale
University, 1993.

[21] O. Wolfson and A. Milo. The multicast policy and its relationship to replicated data
placement. ACM Trans. Database Syst., 16(1):181-205, 1991.

[22] A.S. Xu and B. Liskov. A design for a fault-tolerant, distributed implementation of linda.
In Proc. 9th IEEE Int. Symp. Fault Tolerant Computing, pages 199-206, 1989.

[23] L. Zuck. The semantics of PASO systems. Unpulished manuscript, final version in prepa-
ration, Sept. 1993.

12

