e e e

S St et

pRn——

Performance Study on the Connection Machine
Min-You Wu and Wei Shu

YALEU/DCS/TR-717
June 1989

This work appeared in the proceeding of the International
Conference on Parallel Processing, 1989.

PERFORMANCE STUDY
ON THE CONNECTION MACHINE

Min-You Wu and Wei Shu
Department of Computer Science
Yale University
New Haven, CT 06520

wu-min-you@cs.yale.edu shu.wennie.wei@cs.yale.edu

Abstract. In this paper, we present a performance study on the Connection Machine.
Our study shows that communication overhead is so large that it dominates program per-
formance. The study is broken down into five different groups of tests. In the first group,
processor performance is measured. The second and third groups measure the performance
of communication. NEWS grid communication is tested in the fourth group. In the fifth
group, we test performance for virtual processors. We also present a method to estimate

program performance based on this study. A programming guide suggests many hints to

program the Connection Machine for better performance.

1. INTRODUCTION

’

Advances in VLSI technology have made it possible to make many reliable, inexpensive
processors in a single chip. The small power dissipation and size of these chips facilitates the
development of computers containing many processors working in parallel. The Connection
Machine is a fine-grained, massively parallel machine produced by Thinking Machines Corp.
This single instruction multiple data (SIMD) machine explores massively data parallelism
by its 64K data processors. See [Hil85], [TR88], [SS88], [McB88] for more information on

the architecture of the Connection Machine, benchmarking, and results for PDE problems.

Many researchers have concentrated on implementing various applications on the Con-
nection Machine. However, not many individuals have studied the performance of these
programs. In this paper, we present a performance study. The overall performance de-
pends on individual computation and communication operations, as well as interactions
between them. To achieve better performance, it is necessary to understand the impact of
communication on program performance, and be able to predict the approximate behavior
of the program. The performance measurement provides such possibilities. After briefly
introducing the background of the Connection Machine, five groups of tests are presented in
Section 3. These tests measure the performance of processors, communication between the
front-end and processors, communication among processors, NEWS grid communication,
and virtual processors. In section 4, a guideline is presented to program the Connection
Machine for better performance. In section 5, the measurement results are then used to

estimate program performance on the Connection Machine.

2. BACKGROUND

The architecture of the Connection Machine is shown in Figure 1. The front-end is a
conventional computer, such as a DEC VAX 8000 series or a Symbolics 3600 system. As
an SIMD machine, all instructions are issued from the front-end. All the other processors,
called data processors, carry out the same operation synchronously. Each processor can
access data from its 8K bytes memory at a rate of 5 megabits per second. There is a Weitek
floating-point processor chip for every 32 single-bit processors. A fully configured CM-2
has 2K Weitek chips and 64K single-bit data processors, that are packaged 16 per chip.

These processor chips are connected in a hypercube network.

Front-End

Memory bus

Instruction bus

0 1 2 65535

Router

Figure 1: The Connection Machine Architecture.

All instructions reside in the memory of the front-end. The serial instructions are
executed on the front-end. The parallel instructions are broadcasted through the instruction
bus to data processors. This bus may also broadcast data to processors. Another bus, the
memory bus, allows the front-end to read or write the memories of processors, one word

at a time. General communication between processors is handled by a router, so that all

processors can simultaneously store data into the local memories of other processors. On

the same hand, processors may also fetch data from the local memories of other processors.

In the Connection Machine, a processor is assigned to every data item. If the number of
data items exceeds the number of physical processors, virtual processors may be used. In
the virtual processor scheme, the system logically divides the memory of each processor into
n portions, and processes each directive n times, once for each portion, thereby timeslicing
the physical processor n-fold [Thi87a]. The ratio of the number of virtual processors to
physical processors is referred to as the VP ratio. The execution rate is higher than m

the rate of the physical processors because of the instruction sharing by virtual processors.

The programming languages currently supported for the Connection Machine system
include C* and *Lisp. Both have new data types extended and are pretty close to their
corresponding serial language specifications [Thi87a],[Thi88]. These languages can be com-
piled into a parallel instruction set, called Paris, which is used by the front-end computer

to direct the actions of data processors.

3. PERFORMANCE MEASUREMENT

In this section, we present a performance study of the Connection Machine. The study
is broken down into five different groups of tests. In the first group, processor performance
is measured for integer and floating-point operations. The second group measures the
performance of communication between the front-end and processors. The third group tests
processor-to-processor communication. In the fourth group, NEWS grid communication is
tested. For these four groups, the VP ratio of 1 is used. In the fifth group, we test the

performance of processors and communication for several different VP ratios.

It is important to note, that in each group of tests, we give both Real time and CM time.
Real time is the elapsed time of the front-end’s wallclock. CM time is the time it takes to
execute parallel instructions on the sequencer. The test is carried out on the CM-2 with
8K processors and operating under version 5.0 at a clock speed of 6.7 MHz. The front-end
is a Symbolics 3600 and the programming language is *LISP. If not mentioned elsewhere,

the length of all data is 32-bits.
Processors

One of the design principles of SIMD machines is that a large number of low-cost
processors work synchronously to exploit massively data parallelism. In the Connection
Machine, there are up to 64k data processors, each containing a simple one-bit ALU. Thus,
all integer arithmetic and logic operations are carried out in a bit-serial fashion [Thi87b].
In Figure 2, we show the completion time of integer Add and Multiply operations with
the different lengths of words (CM time only). The time to finish an operation increases
with the number of bits in a word. However, Multiply grows much faster than Add. In the
old version of the Connection Machine, floating-point operations were also performed in a
bit-serial fashion. Currently, Weitek floating-point chips exist in the Connection Machine,
and all floating-point operations taking place here are much faster than before. Each
Weitek chip is responsible for computing data from 32 data processors. Table 1 shows the
result of processor performance. Here, the integer number is 32-bits long and the floating-
point operation is with single precision. Note that an integer number is converted into
the floating-point format first, then a floating-point Divide operation is performed in the

Weitek chip to avoid extremely slow bit-serial Divide operation.

Time

(mS)
)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

-~ Add

—=— Multiply

—o

-

4 8 16 32
Figure 2: Completion Time for Different Word Lengths.

Table 1: Processor Operations (m.S)

Integer Floating-point
Real time | CM time || Real time | CM time
add 0.139 0.068 0.171 0.067
multiply 0.966 0.965 0.177 0.064
divide 0.722 0.582 0.301 0.154

Communication between the front-end and processors

Word length

Table 2 shows three different kinds of communication between the front-end and pro-

6

cessors: write, read, and broadcast. For communication between the front-end and one
specific processor, data is transferred through the memory bus, one word at a time. Note
that either read or write is one-to-one communication and a processor address always needs
to be specified. For one-to-many communications, the front-end can broadcast data to all
selected processors through the instruction bus without specifying the processor’s address.

With many-to-one communications, the contents of a parallel variable in all selected pro-

cessors can be reduced into a value on the front-end, such as reduction with sum, maz,
min, and, or, logand, and logior. The completion time of reduction varies with different
data types and operations. The results in Table 3 are for 32-bits integer numbers, except
that and and or are for boolean variables. Reduction with or is extremely fast because it

is carried out by using a global-or wire directly.

Table 2: Communication between the Front-End and Processors (m.S)

|| Real time | CM time

write 0.181 0.045
read 0.256 0.060
broadcasting 0.478 0.043

Table 3: Reduction from Processors to the Front-End (m.S)

|| Real time l CM time

sum 0.803 0.613
max,min 1.106 0.212
logand 0.596 0.133
logior 0.261 0.066
and 0.177 0.021
or 0.059 0.005

Communication among processors

Single data transfer, transferring a data item from one processor to another, can prove
to be faster than a multiple data transfer. The time for a single data transfer depends
on the distance of the two processors. The results of the single data transfer in Table 4
are the average time of different distances. Multiple data transfer is where data items are
simultaneously transferred between pairs of processors. Performance here depends on the

communication patterns. In Table 4, we use a uniform distribution pattern, in which all

7

processors issue the same amount of communication operations. Here it can be seen that

the store operation proves to be faster than the fetch operation.

Many parallel variables can be reduced into several values, named multiple reductions.
The reduction ratio is the number of parallel variables reduced into a value. Table 5
shows the measured results of min reduction of 32-bits integers. The behavior of multiple
reduction depends on the physical location of processors in the group, resulting in different
communication patterns, such as clustering and distributing. In the clustering pattern,
destination processors of reduction are allocated close to each other. In the distributing
pattern, destination processors are scattered over the entire network. Figure 3 shows the
comparison of multiple reductions for different communication patterns (CM time only).
The complete time for the clustering pattern is longer than that for the distributing pattern

because the former has more network contention.

Table 4: Simple Communication between Processors (mS)

Store Fetch
Real time | CM time || Real time | CM time
single data transfer 1.09 0.21 3.04 1.22
multiple data transfer 1.37 0.70 5.25 3.33

Multiple broadcasting means that every group of processors fetchs one variable in a
single processor at the same time. Many processors accessing the same place result in
collisions. There are three different modes to handle such collisions: collisions-allowed,
many-collisions and backward routing. With the collisions-allowed mode, at most 32 pro-
cessors can access a single processor. The time required to complete this operation is
proportional to collision ratio, that is, the number of processors accessing a single proces-

sor. This mode outperforms the many-collisions mode for a small number of collisions (less

Table 5: Multiple Reduction between Processors (mS)

Clustering Distributing
Reduction ratio || Real time | CM time || Real time | CM time
3 4.80 4.55 1.77 1.46
10 7.79 7.53 1.89 1.58
30 10.38 9.84 2.46 2.15
100 10.82 | 10.33 2.58 2.27
300 9.83 9.32 2.48 2.16
1000 4.36 4.11 2.46 2.15
Time
(mS)A - clustering
10 -= distributing
8
6
4
2 J =
0 >

3 10 30 100 300 1000 Reduction Ratio

Figure 3: Multiple Reduction between Processors.

Table 6: Multiple Broadcasting between Processors (m.S)

(collisions-allowed)

Clustering Distributing
Collision ratio || Real time | CM time || Real time | CM time
3 12.0 8.77 5.52 2.37
10 38.9 33.0 13.3 7.17
30 131.0 118.0 37.7 24.2

Table 7: Multiple Broadcasting between Processors (mS)

(many-collisions)

Clustering Distributing

Collision ratio || Real time | CM time | Real time | CM time
3 44.5 28.2 45.1 27.5

10 43.8 26.9 45.9 27.5

30 42.6 25.1 45.6 27.2

100 41.4 24.0 43.4 25.3

300 40.2 22.6 43.2 25.1

1000 39.9 22.1 41.8 23.0

Table 8: Multiple Broadcasting between Processors (m.S)

(backward routing

Clustering Distributing

Collision ratio | Real time | CM time || Real time | CM time
3 12.8 11.6 4.58 3.31

10 20.3 19.0 4.89 3.61

30 27.0 25.8 6.45 5.16

100 28.3 27.1 6.74 5.47

300 24.7 23.1 6.47 5.47

1000 11.7 10.4 6.43 5.16

Time

(mS)
A

100 -o- collisions-allowed
- many-collisions
80 -+ backward routing

60
40

20

3 10 30 100 300 1000 Collision Ratio

Figure 4: Multiple Broadcasting between Processors (clustering).

Time
(mS)A -e- collisions-allowed
-¢ . many-collisions
10 —= backward routing
0 >

3 10 30 100 300 1000 Collision Ratio
Figure 5: Multiple Broadcasting between Processors (distributing).

11

than 10 for clustering pattern and less than 30 for distributing pattern). When many pro-
cessors access a single processor, we prefer the many-collisions mode, which almost takes
constant time regardless of the collision ratio. Backward routing uses a large amount of
memory space to trade in the time to deal with collisions. It is faster than the other two
modes. However, backward routing can be used in limited cases because of memory space
demand. Results for the three different modes are shown in Tables 6, 7, and 8. They are
measured with the clustering and distributing communication patterns. Processors to be
accessed are allocated close to each other in the clustering pattern. And in the distributing
pattern, processors to be accessed are scattered over the entire network. The collision-
allowed mode is sensitive to different communication patterns, whereas, the completion
time for the many-collisions mode is almost invariant with the communication patterns.
Performance of backward routing for the clustering pattern is much worse than that for the
distributing pattern. Figures 4 and 5 show the comparison of multiple broadcasting for

different collision modes and communication patterns (CM time only).
NEWS grid communication

The Connection Machine supports the NEWS (north, east, west, and south) grid sys-
tem. Grid communication is faster than general interprocessor communication because of
regularly structured communication patterns. Version 5.0 supports n-dimensional NEWS
grids instead of only two-dimensional grids, where n is any positive integer less than 32.
Tables 9 and 10 show the performance of NEWS store and fetch operations for a two-
dimensional grid. Figure 6 is the comparison of NEWS store and fetch operations (CM
time only). The completion time is increased with the number of communication hops. For

example, CM time for NEWS fetch operations can be formulated as follows:

12

single transfer: 0.140 4+ 0.063 * h (mS)
multiple transfer: 0.147 + 0.063 * h (mS)

where h is the number of hops. The completion time for the multiple data transfer is
almost the same as that of the single data transfer because communication is well ar-
ranged to reduce or eliminate network contention. Notice that the NEWS store operation

is unreasonably slow here. It is caused by some implementation abnormality.

Multiple broadcasting and reduction can be carried out on a NEWS grid also. In
Table 11, data are broadcasted along the first dimension. Time increases with the number
of processors in this dimension. Table 12 shows the completion time for multiple reductions
with 32-bits integers. With multiple broadcasting and reduction available, the NEWS grid

can be used for those applications which also have some kinds of global communications.

Table 9: NEWS Store Operation (mS)

Single transfer Multiple transfer
Hops || Real time | CM time || Real time | CM time
1 5.564 0.620 5.814 0.639
2 5.811 0.829 6.040 0.850
3 6.017 1.040 6.303 1.060
4 6.345 1.251 6.568 1.271
5 6.609 1.461 6.834 1.481

Virtual Processors

The Connection Machine supports the virtual processor scheme. When the desired num-
ber of processors exceeds the number of physical processors, the memory in each physical

processor can be logically divided into n portions, and the system processes each directive

13

Table 10: NEWS Fetch Operation (mS)

Single transfer Multiple transfer
Hops || Real time | CM time || Real time | CM time
1 0.459 0.203 0.679 0.210
2 0.577 0.366 0.780 0.373
3 0.677 0.530 0.877 0.536
4 0.777 0.692 0.976 0.699
) 0.876 0.855 1.094 0.862
Time
(mS)
A
- multiple store
1.4 | -e- single store
-=. multiple fetch
1.2 } - single fetch
1.0
0.8
0.6
0.4
0.2
0 >

1 2 3 4 5 Hops

Figure 6: Communications between Processors through NEWS.

14

Table 11: Multiple Broadcasting on NEWS Grid (mS)

NEWS grid || Real time | CM time

(8,512) 1.866 0.779
(64,64) 2.236 0.897
(512,3) 2.426 0.960
(4096,1) 2.476 1.070

Table 12: Scan Operation on NEWS Grid (mS)

| Real time | CM time

copy 3.13 2.86
sum 1.68 1.62
max,min 1.54 1.49
logand 1.28 1.15
logior 1.19 1.10
and 1.18 0.29
or 1.15 0.29

15

n times, where n is the VP ratio. For such time-slicing, T,, the execution time with VP
ratio of n should be n times T}, the execution time with VP ratio of 1. However, T, is
usually shorter than nT; because the n portions share a single instruction. Figures 7, 8,

and 10 show this fact. However, in Figure 9, T), is longer than nT} because of collisions.

In Figure 7, the completion time of an integer Add operation for different VP ratios is
given. As the VP ratio increases, Real time increases slowly. When the VP ratio changes
from 1 to 4, Real time increases from 139 microseconds to 191 microseconds. This is due
to the fact that the front-end is not fast enough for the low VP ratio. After the VP ratio
of 4, Real time and CM time increases linearly with VP ratios. The sum reduction from
processors to the front-end shown in Figure 8 exhibits different behaviors. Real time and
CM time increase slowly when the VP ratio becomes higher. Multiple broadcasting with
the clustering pattern and the collision-allowed mode for different VP ratios is shown in
Figure 9. The network contention becomes serious in this case. Real time and CM time
increases fast because of very heavy contention to one physical processor at a high VP
ratio. Figure 10 is for NEWS multiple fetch operations (1 hop), and shows the similar

characteristics of Figure 7.

Now we compare the Connection Machine to another parallel system, the Intel’s iPSC/2
hypercube machine. We have mentioned before that the Connection Machine is an SIMD
machine, whereas the iPSC/2 is a multiple instruction multiple data (MIMD) machine.
The advantage of the Connection Machine is ease to write a code for application problems.
However, the Connection Machine is not so efficient as the iPSC/2. To illustrate that, the
Gaussian elimination algorithm is implemented on the Connection Machines in *LISP, and
on iPSC/2 in the C programming language. Table 13 compares the performance. From this

example, it can be seen that the 8K CM-2 is slower than a 16 processors iPSC/2 machine.

16

Time

(mS$)
A
3.00 .
0.30
- CM time
—-o- Real time
0.03 >
1 2 4 8 16 32 64 VP ratio
Figure 7: Integer Add for Different VP Ratios.
Time
(mS)
A
3.0
-=- CM time
—-o- Real time
1.0
0.3 >
1 2 4 8 16 32 64 VP ratio

Figure 8: Reduction for Different VP Ratios.

17

Time

(mS)
A
3000
300
- CM time
-0~ Real time
30 =

1 2 4 8 16 32 64 VP ratio
Figure 9: Multiple Broadcasting for Different VP Ratios.

Time
(mS)
A
10
1 -~ CM time
-0~ Real time
0.1 >

1 2 4 8 16 32 64 VP ratio
Figure 10: NEWS Multiple Fetch for Different VP Ratios.

18

We have also implemented the same algorithm in C* on CM-2, and the performance is not

as good as *LISP.

Table 13: Comparison of CM-2 and iPSC/2 (Gaussian Elimination)

(Seconds)
CM-2 iPSC/2
Matrix size || (8K processors) | (16 processors)
63*64 0.98 0.39
127*128 2.58 1.11
255%256 4.86 4.15

4. PERFORMANCE ANALYSIS

Programming on the Connection Machine involves computation and communication
operations. These individual operations, as well as interactions between them, determine
the overall performance of the Connection Machine. It will be helpful if we can understand
computation and communication properties, and predict the approximate behavior of the
program. The performance measurement conducted in the last section provides such pos-
sibilities. Based on this measurement, we now suggest some guidelines for programming

the Connection Machine.

(1) Communication carried out by busses is fast. Whenever a single element needs to be
sent from one processor to another, it is better to let the front-end read the data element
from the processor and then write it to the other processor. Directly sending the data
element through the router spends more time. The following two *LISP statements can be

mutually substituted:

19

> single fetch:

(*when (=!! (self-address!!) (!! d_addr))
(*set d_pvar!! (pref!! s_pvar!! (! s_addr))))
> read & write:
(xsetf (pref d_pvar!! d_addr) (pref s_pvar!! s_addr))

where d_addrand s_addr are source and destination processor addresses, respectively. Either
statement results in transferring the content of the parallel variable s_pvar!! from the source
processor to d_pvar!! at the destination processor. Here, read & write could be 6 times faster

than single fetch.

(2) For general communication, use the store operation instead of the fetch operation.
In the next two statements, each processor shifts the parallel variable pvar!! towards its
10th succeeding processor.

> fetch:

(*set pvdr!! (pref!! pvar!! (-!! (self-address!!) (!! 10))))
> store:

(*setf (pref!! pvar!! (+!! (self-address!!) (!! 10))) pvar!!)

Notice that if the distance between the source and destination processors is small, NEWS

grid communication is preferable.

20

(3) Use multiple broadcasting very carefully, and avoid to use it whenever possible since
it may lead to many collisions. If the memory space is not tight, backward routing could be
attempted. Otherwise, we can choose the other two modes. When the number of collisions
is small, it may take less time for multiple broadcasting by using the collisions-allowed
mode. However, in many cases, the number of collisions depends on the input data, and
cannot be determined before execution. The many-collisions mode has to be used for these
cases. Also, try to distribute collisions when the backward routing or collisions-allowed

mode is used.

An alternative of multiple broadcasting is to use NEWS spread!!, if we can possibly
organize processors in an n-dimensional grid and broadcast data along some dimensions.
In the following example, we have a two-dimensional array and try to‘broadcast the par-
allel variable common_pvar!! of each column’s first processor down to its corresponding
processors at the same column:

> multiple broadcasting

(xset pvar!! (pref!! common_pvar!! col Num!!))

> NEWS spread

(xset pvar!! (spread!! common_pvar!! 0 0))

where for a multiple broadcasting case, each processor fetches common_pvar!! according to
its own colNum!!. With NEWS grid, the first row of the matrix is simply spread along its

column direction. It could be about 10 times faster than the previous case.

(4) NEWS communication is efficient because it reduces network traffic and contention.
However, it can only be used for regular computation structure and regular communication

pattern. It also should not be used if the number of hops traveled is too large. In that case,

21

general communication must be applied. In the following, we give an example to show that
NEWS communication is faster. The first statement with NEWS fetch operation is more
than 3 times faster than the second with general fetch operation.

> NEWS fetch

(xset pvar!! (news!! pvar!! 0 1))

> multiple fetch
(*set pvar!! (pref!! pvar!! (+!! (self-address!!) (!! rowSize))))

In general, following these guidelines will allow the Connection Machine to be used
more efficiently. Next, we illustrate how to estimate the performance of a program by

using measurement results mentioned in the previous section.

5. PERFORMANCE ESTIMATION

In this section, a method of program performance estimation for the Connection Ma-
chine is introdued by an example, Gaussian elimination. The *LISP code in Figure 11 is
the major segment of a Gaussian elimination program with partial pivoting. This code
involves floating-point arithmetic operations, reduction from processors to the front-end,
spread operation on NEWS grid, and some processor selection statements. Table 14 is a
portion of the data from our performance measurement, which are collected for estimating
this algorithm particularly. The number marked at the end of lines in Figure 11 stands
for the corresponding operation in Table 14. Note that not all statements are counted
for this estimation because of their relative small impact. The Real time and CM time
of one iteration is calculated and listed in Table 14. The execution time of one iteration

must be multiplied by the number of iterations to obtain the estimated time. There are 62

22

)

; N is the matrix dimension

x!! holds the value of an N x (N+1) matrix
factor!!,tmp_pvar!! are defined as parallel floating-point variables
rowNum!!,colNum!! are defined as parallel integer variables
isActive!! is defined as parallel a boolean variable
pivot_value, pivot_index are defined as variables at the front-end
(*set rowNum!! (self-address-grid!! (!! 0)))
(¥set colNum!! (self-address-grid!! (!! 1)))

(*set isActive!! (and!! (<!! rowNum!! (!! N))
(<=!! colNum!! (!! N))))
(dotimes (i (1- N))

(*when isActive!! (6)
(*when (=!! colNum!! (!! i)) (6)
(setq pivot_value (*max (abs!! x!!))) (4)
(*when (=!! (abs!! x!!) (!! pivot_value)) (6)
(setq pivot_index (*min rowNum!!)))) (4)
(*set tmp_pvar!! (spread!! x!! 0 pivot_index)) (5)
(*when (=!! colNum!! (!! i)) (6)
(*¥set factor!! (/!! x!! tmp_pvar!!))) (3)
(*#set factor!! (spread!! factor!! 1 i)) (5)
(*when (=!! rowNum!! (!! pivot_index)) (6)
(*set isActive!! nil!!))
(*when isActive!! (6)
(*set x!! (-!! x!! (1)
(x1! factor!! tmp_pvar!!)))) (2)

) ;endof *when
) ;endof dotimes

Figure 11: Gaussian Elimination Code for Program Estimation.

23

iterations for matrix size of 63*64, 126 for matrix size of 127*128, and 254 for matrix size

of 255*256. This code is running on a CM-2 with 8K processors, and the measured results

are compared to the estimated results in Table 15. It is proven that the estimated and real

results are fairly close. Taking the advantages of such predictable characteristics, we can

be benefited when choosing algorithms and coding programs.

Table 14: Performance Estimation of Gaussian Elimination Code (mS)

Matrix size 63%64 127*%128 255*256
VP ratio 1 2 3
No. | Operation I Ct. || Real time | CM time || Real time | CM time || Real time [CM time
(1) -1 1 0.171 0.067 0.166 0.104 0.321 0.320
(2) * 1 0.177 0.064 0.165 0.095 0.284 0.283
(3) /! 1 0.031 0.154 0.284 0.266 1.021 1.020
(4) | *max, *min | 2 2x 0.384 | 2x 0.313 2x 0.552 | 2x 0.491 2x 1.524 | 2x 1.467
(5) spread!! 2 2x 2.244 | 2x 0.897 || 2x2.639 | 2x 1.317 | 2x 3.379 | 2x 2.238
(6) select 6 6x 1.765 | 6x 0.113 || 6x 1.765 | 6x 0.180 || 6x 1.765 | 6x 0.650
Time for each iteration 16.50 3.383 17.59 5.161 22.02 12.93

Table 15: Estimated and Measured Results for Gaussian Elimination Code (Seconds)

Matrix size

63*64

Real time l CM time

Estimated time
Measured time

1.02
0.98

0.21
0.20

3.29
2.66

127*128 255*256
Real time | CM time || Real time | CM time
2.22 0.65 5.59
2.58 0.88 4.86

24

6. CONCLUSION

The main problem in multiprocessing is not only how to build a system, but also
how to use it. That requires development of parallel algorithms and programs that can
be executed efficiently. The Connection Machine is a massively parallel system, which
potentially delivers high performance. However, it should be used in a prudent way to

obtain good performance.

In this paper, we have studied the performance of processors and communication on
the Connection Machine. We have shown that communication takes much more time than
computation. It has been shown that communication overhead can be reduced by following
several programming guidelines. Especially, NEWS grid communication which is efficient
should be used whenever possible. Our measurement results are useful to estimate the

performance of a program on the Connection Machine.
Acknowledgments
The authors wish to thank Paul E. Oppenheimer of the Thinking Machines Corp. for
technical support on the Connection Machine. We also thank Eileen]jaily for her editorial

efforts, and Michel Jacquemin and Hong Tam for their comments. The generous support of

the office of Naval Research under Contract N00014-86-K-0310 is gratefully acknowledged.

25

References

[Hil85] W. D. Hillis. The Connection Machine. MIT Press, 1985.

[McB88] O. A. McBryan. “The Connection Machine: PDE solution on 65536 processors”.
Parallel Computing, 9(1):1-24, December 1988. |

[SS88] R. K. Sato and P. N. Swarztrauber. “Benchmarking the Connection Machine 27.

In Proceedings Supercomputing ’88, pages 304-309, November 1988.

[Thi87a] C* Reference Manual. Thinking Machines Corp., version 4.0 edition, August
1987.

[Thi87b] Connection Machine Model CM-2 Technical Summary. Technical Report HA87-4,
Thinking Machines Corp., April 1987.

[Thi88] *Lisp Reference Manual. Thinking Machines Corp., version 5.0 edition, Septem-
ber 1988.

[TR88] L. W. Tucker and G. G. Robertson. “Architecture and applications of the Con-
nection Machine”. IEEE Computer, 21(8):26-38, August 1988.

26

