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Abstract

We study the problem of protecting sensitive data in a two dimensional table of integer
statistics when non-sensitive data and row and column sums are made public. We give a linear
time algorithm which, given the complete table, identifies semsitive data that is exactly
determinable from the non-sensitive data; we give a fast algorithm which, given only the non-
sensitive data, identifies sensitive data that is exactly determinable from the non-semsitive data;
for the case that all data are positive, we give a fast algorithm to determine the fewest number of
additional non-semsitive data cells to withhold in order that no withheld data is determinable
from the released data; we discuss the same problem in the case that the semsitive data is
positive, but some non-sensitive data can be zero; we show how to use simple (no costs) network
flow to compute the tightest upper and lower bounds on any withheld data, given the released
data; we discuss computing tightest upper and lower bounds in the special case that only the row
and column sums are released - we show that trivial methods suffice in that case, and in fact,
that the lower bounds can be computed with O(n+m) arithmetic and comparison operations in
an nxm table. o

This work was partially funded by the National Science Foundation under
grant numbers MCS-81/05894.




Teble of Contents

3 Determining if D is protected. . . . . . . .. ... ...
31GraphCG . . . . . . . . .. e e

3.2 Solving the adversary problema’. . . . ... ...

4 Optimizing Complementary Suppressions . . . . . . . . .
4.1 Special Case: D Strictly Positive . . . . ... ...
4.1.1 Unlabelled graph augmentation. . . . . . . .

4.1.2 Labelled augmentation: modifying ET. . . . .

4.1.3 Labelled augmentation when CG is a forest . .

4.1.4 Labelled augmentation whenr+b <c . . . .

ooooooooooo

ooooooooooo

-----------

ooooooooooo

ooooooooooo

...........

ooooooooooo

...........

ooooooooooo

4.1.5 Labelled augmentation and necessary conditions for protection . . .

4.2 Special case: X strictly positive. . . . . ... ...
43Caveat. . . . . . . . e e e .

§ Interval Estimation: Tlghtest general upper and lower bounds
5.1 Computing the minimum C(i,j). . . .. ... ...
§.2 Computing the maximum L(x,;) ..........

ooooooooooo

ooooooooooo

oooooooooooo

6 Tightest upper and lower bounds in a totally suppressed table . . ... .... .

7 Open Questions and Future Research. . . . . ... ...
8 Acknowledgement. . . . . . .. ... ... ... ...
OReferences . . . . . . . . . ... e

ooooooooooo

ooooooooooo



1. Introduction

In this paper we study the problem of protecting sensitive data in a two dimensional table of
statistics when the non-sensitive data is made public. Work in this area was begun by Cox and
Sande [COX75], [COX77], [COX78], [COX80] and reported in Denning [DEN]. The general
problem is motivated by concerns for privacy and security. For a more complete discussion of

background and motivation see [DEN].

1.1. Problem Statements, Definitions and Main Results

The basic setting for the paper is that one party (the census bureau, say) has a two-
dimensional table, D, of cross tabulated integer statistics; each entry D(i,j) is a non-negative
integer in cell (i,j) of D; R(i) is the sum of the cell values in the i'th row of D, and C(j) is the sum
of the cell values in the j'th column of D. We assume that D has at least two rows and at least
two columns, and that each R(i) and C(j) is strictly positive. All the row and column sums are to
be made public (disclosed) along with some of the cell values, but the remaining cell values,
called ecnsitive values, are to be suppressed (not disclosed). Unless care is taken, however, the
disclosure of the non-sensitive values might allow an adversary to deduce the ezact value of one
or more of the sensitive values. Hence to avoid disclosing the exact value of any sensitive cell,
the values of some non-sensitive cells may also need to be suppressed; these suppressions are
called complementary suppressions. In a table D, the set of suppressed cells consists of the

sensitive cells along with any complementary suppressed cells.

Given a table with suppressions, a suppressed cell is called protected if its exact value is not
decterminable from knowledge of only the row and column totals, and the values of the
unsuppressed cells. To make this precise, let X be the set of all suppressed cells and for cell (i)
€ X, let x(i,j) be a variable denoting the value of the cell. For each row i and column j, let R*(i)

and C*(j) be respectively the sum of the undisclosed values in row i of D, and the sum of the



undisclosed values in column j of D.

Definition 1.1: We define a legal solution of D as a non-negative integer solution to the

following system of linear equalities:

For each fixed i, T x(i,j) = R*(i)
J Suath

and G.jlex

for each fixed j, Z x(i,j) = C*(j).
i Suik 0ot
iry) éx
Definition 1.2: A cell (i,j) in X is protected if and only if there exists two legal solutions x, and

Xy, where x,(i,j) 7 x,(i)-

Definition 1.3: A table with suppressions is protected if and only if all of its suppressed cells

are protected.

Notice that this definition of protection essentially implies that side information such as
correlations between cell values or special bounds on cell values etc. is unknown to the adversary,
or at least does not restrict the set of legal solutions. The results in this paper can easily be
extended to the cases when given upper and lower bounds on the values of individual cells are
known to the adversary (provided that the census bureau knows what bounds the adversary is
assuming). Notice also that the assumption that each R(i) and C(j) is strictly positive is

reasonable, since there is no way to protect the (all zero) entries in such a row or column.
In this paper we discuss four problems:

a) (Census Bureau problem) Given the complete table, D, and a set of cells, X, determine
whether table D with cells X suppressed is protected. We give an algorithm that identifies all

unprotected cells and runs in linear time in the size of X.



problem b) by trial and error, iteratively using the upper and lower bounds computed by ¢), and
problem 2a) also by computing upper and lower bounds and checking for equality. Hence this
paper provides substantial theoretical and practical improvements for problems a), b) and d), and

a moderate theoretical but perhaps not practical improvement in problem c).

We will discuss the four problems in order, but first present a graphical framework that will be

used throughout the paper.

2. A Network Flow Framework

It will be useful to represent the table D as a directed bipartite graph, H, and a legal solution
of D as a flow in the related network G. We use the notation <i,j> to refer to a directed edge
from node i to node j, and we use the notation (i,j) to refer to an undirected edge connecting

nodes i and j.

Definition 2.1: Graph H is a directed bipartite graph with node set R on one side representing
the rows of D, and node set C on the other side representing the columns of D. A directed edge

extends from node i on R to node j on C if and only if cell (i,j) is suppressed in D.

Definition 2.2: Network G is constructed from graph H as follows: add a node s to H and a
directed edge from s to each node of R, and add a node t to H and a directed edge from each
node of C to t. In G, the capacity of each edge <s,i> is set to R*(i); the capacity of each edge
<j,t> is set to C*(j); and the capacity of every edge in H is set to infinity. Let T be the sum of

the capacities of the edges out of s (T is also the sum of the edge capacities of the edges into t).

Definition 2.3: A flow function F is an assignment of a non-negative real number, F(i,j), to
each directed edge <i,j> of G such that F(i,j) is less than or equal to the capacity of edge
<i,j> and so that for every node i 5 st ZF(i,j) = ZF(j,i). The quantity X' F(s,i) is called the

value of the flow, and it equals £ F(it). A flow is called a mazimum Slow if its value is



maximum over all flows in G. A flow is called integral if F(i,j) is an integer for every edge
<i,j>.
The example in Figure 1 illustrates the above definitions.

It is known [FF] that a maximum integral flow exists if the capacities on all the edges are

integers. The following fact is immediate.

Fact 2.1: Let D and G be as above and let x be any legal solution of D. Then the assignment
F(i,j) <= x(i,j) is an integral maximum flow in G of value T, i.e. F is an integral flow that
saturates all edges out of s, and these edges form an s-t cut in G. Conversely, any integral
maximum flow in G (of value T) defines a solution to D in the analogous way: x(i,j) <- F(i,j).
Hence a suppressed cell (i,j) in D is protected if and only if there exists two integral flows F, and

F,, each of value T, such that F(i,j) % Fy(i,j).

In the following sections we will use this fact in the solution to problems a), a’), ¢) and d), and

in our approach to problem b).

Definition 2.4: For an edge <u,v> in G let C(u,v) denote the (upper) capacity of edge <u,v>

and let L{u,v) denote its lower capacity.

In definition 2.2, C(s,i) and C(j,t) are respectively R*(i) and C*(j), C(i,j) = oo for <i,j> in H,

and L{u,v) = 0 for each edge <u,v> in G.

To demonstrate the utility of this framework, we recast problem c) in terms of network flow.
If we think of C(i,j) and L(i,j) as variable parameters, then the best lower bound on the value of
cell (i,j) is the minimum value that C(i,j) can take on (while all other edges in G have their
original capacities as given in definition 2.2) so that there is a flow of value T; similarly, the best

upper bound is the maximum value L(i,j) can take on so that there is a flow of value T.In



section 5 we will solve each of these parametric problems using a single network flow

computation.

3. Determining if D is protected

In this section we give a linear time algorithm to determine if D is protected.

Definition 3.1: Let F be a flow of value T in G, and let F* be the following graph derived
from H and F: F* is a directed graph on the same node set as H; for any pairi € R and j € C,
F* contains a directed edge <i,j> of infinite capacity, and F* contains a directed edge <j,i> of

capacity F(i,j) provided that F(i,j) > 0.

Given a particular flow F in G, a suppressed cell (i,j) in D is clearly protected if either edge
<ijj> or <j,i> (if <j,i> exists) is in a simple directed cycle SC of length four or more in F*.
In that case, simply augment one or more units of flow around SC, obtaining another flow of
value T in which F(i,j) is integral but different from its previous value: if <i,j> is on SC then
F(i,j) increases and if <j,i> is on SC, then F(i,j) decreases. Notice that a cycle of length two in

F* merely implies that F(i,j) > 0, and augmentation around that cycle has no affect on the flow.

On the other hand, what if neither of the edges <i,j> or <j,;i> are in an appropriate cycle in

a particular F*? Does it automatically follow that cell (i,§) is unprotected?

Theorem 1: Let D and G be as above, and let F be any integral maximum flow in G, with the
associated derived graph F*. Then a suppressed cell (i,j) in D is protected if and only if at least
one of the edges <i,j> or <j,i> is contained in a simple directed cycle of length four or more in

F*.

Proof: The sufficiency was noted above. To prove necessity, suppose cell (i,j) is protected and

let F* be another maximum integral flow in G such that F(i,j) ¢ F’(i,j). Define FF(i,j) =



F’(ij) - F(i,j), for each <i,j> in H. We represent FF as a weighted bipartite graph, FF*,
containing directed edge <i,j> with weight FF(i,j), if FF(i,j) > 0, and containing edge <ji,i>
with weight FF(i,j), if FF(i,j) < 0. It is easy to see that FF* contains at most one edge of either
<i,j> or <j,i>, and that FF* is a subgraph of F‘.‘ We will suppose that FF* contains edge
<i,j> and show that <i,j> is contained in a simple directed cycle (of length four or more) in

FF*, and hence <i,j> is in the same cycle in F*.

First, note that for any fixed node i in FF*, the weights of all the edges incident with i sum to
zero. Hence any node i in FF* that is incident with at least one edge is incident with at least one
edge directed into i and one directed out of i; we call this the balance property. It follows easily
from this fact that there exists a directed cycle, SC, in FF*. Since FF* is bipartit:e and never
contains both edges <i,j> and <j,i>, SC must contain a simple cycle of length four or more.
We assume, wlog, that SC itself is such a cycle. Let f be the minimum absolute value of the
weights of the edges on SC. We subtract f from each positive weight on SC, add f to each
negative weight on SC, and remove any edges with resulting weight zero (there is at least one);
the result is another subgraph of F* which again has the balance property. We can therefore
continue finding directed cycles in FF*, changing weights and removing edges each time, until

there are no more edges left. Edge <i,j> must be in at least one of these cycles. O

We will now transform F* into more convenient form. Suppose F(i,j) > 0 so that both <i,j>
and <j.i> appear in F*. By Theorem 1, cell (i,j) is protected if and only if at least one of these
edges are in an appropriate directed cycle. This fact permits the convenient transformation of F*
from a directed graph into a mized graph (one with both directed and undirected edges): replace
every pair of directed edges <i,j> and <j,i> in F* Py a single undirected edge (i,j). We
assume from here on that F* is such a mixed graph. Notice that in the transformed F* there are

now no cycles of length less than four, hence any edge on any cycle in F* is on a simple cycle of




length at least four. For the purposes of determining if D is protected, we can also ignore the
actual capacities on F*, since it is clear from Theorem 1 that only the directions of the edges in
F* matter. This means that the only distinction that matters (in determining protection) is
whether D(i,j) is zero or not. Notice that the question of protection is also answered without

needing to explicitly know R*(i) or C*(j). Figure 2 shows F* for F given in figure 1b.

Definition 3.2: Where the distinction does not matter, we will use the term “edge” and the

notation (i,j) to refer to either the undirected edge (i,j) or the directed edge <i,j>.

Definition 3.3: A cycle in a mixed graph is called traversable if it is possible to walk around it
without ever going opposite to the direction of any of the directed edges on it. An edge is called

traversable if and only if it is contained on some traversable cycle.
In this terminology Theorem 1 becomes

Theorem 1°: Let F be any integral maximum flow in G, and let F* be the associated derived

graph. A suppressed cell (i,j) is protected if and only if edge (i,J) in F* is traversable.

3.1. Graph CG

By theorem 1° problem a) can be solved by determining which (if any) of the edges of F* are
in mo traversable cycles in F*. We solve this problem with a linear time algorithm that
constructs the mixed graph CG; the edges of CG are exactly those edges of F* that are in no
traversable cycles in CG. Graph CG ‘will also be central in solving the problem of minimizing the
number of complementary suppressions. The construction of CG uses the graph theoretic objects
of bridges and strong components. Definitions of these objects and algorithms to find them are

fully developed in a number of texts, such as [AHU] and [EVE].




Construction of graph CG

1. Find the strongly connected components of F* (undirected edges in F* are treated as two
oppositely directed edges). Let A be the set of edges running between these components. Clearly

all the edges of A are directed edges in F*.

2. Consider each of the strong components as a separate undirected graph, ignoring the
directions on any directed edges. Find all (if any) bridges in each of the separate graphs, and let

B be the set of bridges found. It is easily proved that any edge in B is an undirected edge in F*.

3. Let K be the graph induced by the edges of F* minus A U B, and let K(1),...4 K(r) be the
connected components of K. Graph CG is formed by condensing each K(i) in F*. -Hence each

node in CG is in 1-1 correspondence with some K(i), and the edges of CG are exactly A U B.

In Figure 3, graph CG is constructed from F* shown in Figure 2.
Theorem 2: Edge (i,j) is in no traversable cycle in F* if and only if (i,j) is in A U B. That is,

cell (i,j) is unprotected if and only if nodes i and j are ir different components of K.

Proof: First any edge which is in a traversable cycle in F* is in some strong component of F* ,
and so no edge in set A is in a traversable cycle. Second, any directed edge <u,v> in a strong
component is traversable, since, by definition of strong component, there must be a traversable
path P from v to u in F*. So edge <u,v> followed by path P is a traversable cycle in F*.
Hence A exactly contains the directed edges that are on no traversable cycles. Now we consider
which undirected edges of F* are traversable. Since no edge in A is in a traversable cycle, we can
delete set A from F* without affecting which undirected edges are traversable. Any bridges in
the resulting graph are clearly non-traversable, so all edges in B are non-traversable. What
remains to be shown is that any undirected edge not in B is in some traversable cycle in F*.

Since (u,v) is not a bridge in the strong component it is contained in, there must be a path P in
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F* connecting (ignoring the directions of the edges on P) node u and node v. If P is traversable in
either direction, we are done. If P is not traversable, let <x,y> be the first directed edge on P
such that the walk from u to v on P goes in the wrong direction, i.e. from Y to x. Now <x,y> is
Dot in set A and so it is on some traversable cycle in F*, and so there is a traversable path, P’,
from y to x in F*. Now the path consisting of P to y, P’ to x, and P to v is a path from u to v
which traverses in the wrbng direction one less edge than does P. Hence by/ repeating this
argument, a traversable path in F* from u to v can be found, and hence (u,v) is in a traversable

cyclein F*. O

Hence problem 2) can be solved in time linear in the size of X if we use the flow F determined
by D, since then CG can be built from D in time linear in the size of X. It is well known [AHU)
|[EVE] that strong components and bridges can be found in time linear in the number of edges in

the graph.

Figure 3 shows that cells (1,4), (3,2), (3,3) and (3,5) of table D (Figure 1) are unprotected.

3.2. Solving the adversary problem a*
Theorem 3: Let F, and F, be any two maximum integral flows in G, and let CG, and CG, be

the associated condensed graphs as defined above. Then CG, = CG,.
Proof: This follows by combining Theorems 1 and 2. O

Hence the céndensed graph CG is'a function of G alone and not of F*. This leads to the
solution of problem a’. Given table D with suppressions the adversary forms G, computes any
maximum integral flow F in G and then forms CG. Any cells associated with edges in sets A or
B are unprotectedé the cells of set A have exact value zero and those of set B have values given
by F.Note that problem a) is solved in linear time while problem a’ first requires the

computation of a network flow. These two solutions are essentially the same, but in problem a),
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the census bureau has the advantage that it knows 3 particular maximum flow for free, namely

the one corresponding to D itself.

4. Optimizing Complementary Suppressions
In this section, we will use F* and CG to represent and help determine the optimal
complementary suppressions in D; we will see that this problem can be cast as a graph

augmentation problem on CG.

Let F be any integral maximum flow in G and let F* be the associated derived graph. Each
complementary suppression in D changes G, F and F*: if cell (1,j) is suppressed then the directed
edge <i,j> is added to G, the capacities of edges <s,i> and <j,t> in G are both increased by
D(i,j), and a new maximum integral flow is obtained by setting F(i,j) equal to D(i,j) and leaving
all the other flow assignments as they are in the previous flow. Hence, if D(i,j) is zero then edge
<i,j> is added to F*, and if D(i,j) > O then the undirected edge (i,j) is added to F*. This direct
correspondence between cell suppressions in D and edge additions in F*, combined with Theorem
1’, implies that the complementary suppression problem can be solved by taking any F* and
adding the fewest number of edges corresponding to complementary suppressions in D, so that
every edge in the resulting graph is in some traversable cycle. Problems of this type are called

graph augmentation problems.

It is easy to see (and prove) that the complementary suppression problem can be solved using
CG in place of F*, i.e. the smallest set of edges needed to add to CG so that every edge is
traversable is optimal for F* and visa versa. What makes this augmentation problem difficult is
that only those edges corresponding to unsuppressed cells in D can be added to CG, and if (i,j) is
an unsuppressed cell where D(i,j) = 0, then the edge corresponding to cell (i,j) is the directed

edge <i,j>.
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In general we do not know the status of the above graph augmentation problem, but CG is still
useful, since one can see quickly the effect of any proposed complementary suppressions. This
leads to efficient implementation of heuristics (such as those suggested in [COX80]) based on hill
climbing and incremental optimization, i.e. incrementally selecting a suppression that makes the

most edges traversable, updating CG, and repeating until every edge is in some traversable cycle.

Although we don’t know a solution to the general complementary suppression problem, there
are useful special cases that can be efficiently solved. In the following section, we solve the case
when D(i,j) > 0 for every cell in D, and then apply this to the case when D(i,j) > O for every

sensitive cell, but where other cells in D may have zero value.

4.1. Special Case: D Strictly Positive

In this section we optimally and efficiently solve the complimentary suppression problem under
the assumption that D(i,j) > 0 for every cell in D. We present a simple O(]X|2) time method
based on a related problem and solution studied by Eswaren and Tarjan [ET). In [G] we examine
a more general class of graph augmentation problems (containing the special case discussed here)
and give a solution to those problems that solves the special case in O(JX|]) time. The faster

solution is more involved than the one given here.

4.1.1. Unlabelled graph aﬁgmentation

In [ET] the following problem is solved: Given a forest, FG, of undirected trees, add the fewest
number of undirected edges to FG so that every edge is in a simple cycle (bence of length at least
three), where it is permitted to add an edge between any pair of nodes in FG. In our
applications, we wiu only need the solution to this problem when FG is a single tree and contains
at least three leaves (isolated nodes never arise in our applications, and the complementary

suppression problem for two leaves is easy to solve directly). We sketch the solution of the
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unlabelled graph augmentation problem given in [ET], for the case of FG a single tree.
Algorithm ET
1. Number the leaves of CG in pre-order, i.e. traversing the tree by depth-first search, the

leaves are numbered in the order that they are reached. Let v(i) be the i'th leaf reached.

2. Suppose FG has p leaves and k =l.p/g. Add an edge between leaves v(i) and v(k+i), for i
= 1 through k. If p is odd (p = 2k+1), then add an edge between v(p) and any other leaf in FG.
For a proof that this solution is correct, see [ET]. Note that algorithm ET clearly runs in time

linear in the number of edges of FG.

4.1.2. Labelled augmentation: modifying ET

When table D is strictly positive, CG is an forest of undirected trees. If we take CG in place of
\ FG and use algorithm ET (addingfp/ﬂedges and yielding graph CG*) we may not end up with a
solution to the coﬁplimentaw suppression problem since ‘illegal” edges (those not corresponding
to unsuppressed cells in D) may have been added. We give here an O(JX?) time algorithm that
takes CG* and transforms it to obtain an optimal solution to the suppression problem. We first

need some definitions and observations.

Definition 4.1: In CG we give a node the label of R if it is a node on the R side of G, we give
it the label C if it is on the C side of G, and we give it the label B if it is a condensed node and
therefore contains nodes of G from both R and C. Let r,c and b be the number of leaves of CG

labelled R, C and B respectively.

Given this notation, the complementary suppression problem for the case that D is strictly
positive is a graph augmentation problem on CG with the constraint that no (R,R) edges or
(C,C) edges may be added. We will refer to this graph augmentation problem as the labelled

augmentation problem.
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Fact 4.1: Assuming r < ¢, a simple lower bound on the size of the optimal solution of the

labelled augmentation problem is ¢ if r + b < ¢, and isﬁr +c+ b)/a otherwise. We will see

that this bound can be exactly met.

Assumption: We will assume that CG has p = r+b+c > 2 leaves, that p is even, that r <cg,
and until section 4.1.3, that r+b > c. The complimentary suppression problem is trivial when p
= 2. When p is odd, we reduce the analysis to the even case as follows: If r+b > ¢ and p odd,
it follows that r+b > c, and we remove from CG a B leaf and the unique path from it to a node
of degree three of more, creating a forest with an even number of leaves with r+b > c. The
solution to the labelled augmentation problem when p is odd is then obtained by taking the
solution to the reduced case (p even) and adding an edge from the deleted B leaf to any other

leaf. In section 4.1.3 we will briefly discuss the case that r+b < ¢.

CG a single tree
To explain the general idea of transforming the solution given by algorithm ET into a solution
of the labelled augmentation problem, we first assume that CG is a single tree; later we discuss

h‘ow to handle the case of CG a forest.

Definition 4.2: Let E* initially be the set of edges added to CG by algorithm ET, and let CG*

be the graph resulting from adding E* to CG.
We note the following

Fact 4.3: When CG is a single tree, every edge in CG is in a cycle in CG* containing exactly
one edge of E*. That is, let C(e) be the unique cycle created by adding an edge e of E* to CG,
and let CC be the set of all such cycles, then every edge in CG is contained in at least one cycle

of CC. When edge e’ of CG is in C(e), we say that edge e covers edgee’.

Theorem 4: E* can be transformed into an optimal solution to the labelled augmentation
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problem in time O(|X|?).

_Proof: If E* is a solution to the labelled augmentation problem, then it is an optimal solution,
since |E*| = p/2 = (r+c+b)/2. If E* contains no (R,R) edge or (C,C) edge then it is a solution
to the labelled augmentation problem. However, if there is an (R,R) edge, ¢, in E*, then since r
< ¢, there must also be either a (C,C) edge or a (C,B) edge in E*. Suppose there is a (C,C) edge,
e’ in E*; the case of (C,B) is similar. Let S be the unique smallest subgraph of CG that connects
the endpoints of e and e’. These four endpoints are leaves of S, and the topology of S is one of
the three cases shown in Figure 4. In each of the three cases there is a way to add two (R,C)
edges between the endpoints of e and e’ so that every edge of S is in a cycle consisting of edges
of S plus exactly one of the two new edges, i.e. every edge in S is covered by one‘ of the new
edges. For example, in the first case we add an edge between the upper left C and lower right R,
and an edge between the upper right C and the lower left R. Now in CG*, all edges covered by e
and e’ are in S, and so by fact 4.3, every edge in CG not in S is covered by some edge of E* - {e,
e’}. Hence we can delete e and e’ from E*, and add the appropriate two new (R,C) edges to E*,
so that every edge in CG is again covered by som; edge in E*. Note also that E* remains
disjoint from the edges of CG. We call such a set of edge deletions and insertions an edge
ezchange. It is clear that by successive edge exchanges we can find a set of edges, E*, containing

no (R,R) edges, such that every edge in CG is covered by an edge in E*.

Suppose now that E* contains no (R,R) edges; we will remove all the (C,C) edges in E* using
edge exchanges similar to those above. If there is a (C,C) edge in E*, but no (R,R) edge, then
there must be either an (R,B) or a (B,B) edge in E* (this follows by arithmetic from the
assumptions that r < ¢ and r+b > c). We can again do an edge exchange to replace a (C,C)
and, say, a (B,B) edge with two appropriate (C,B) edges, maintaining the property that every

edge of CG is covered by an edge of E*. We repeat until E* contain no (R,R) or (C,C) edges,
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and note that E* has throughout been disjoint from the edges of CG. Hence we have an optimal

solution to the labelled augmentation problem.

To analyze the time needed for the transformation, note that at at mos%t (r4c)/2 edge
exchanges are needed, and the cost of each is bounded by the number of edges in CG. Both
(r+c) and the number of edges in CG are bounded by [X|, hence O(|X|?) time suffices. Note that
this could be reduced to O(|X]) time if in every edge exchange both of the possible pairs of edge
additions maintain the cover of the edges of S. However, as shown in the first case of Figure 4,

this is not true. [

4.1.3. Labelled augmenfation when CG is a forest

In general, G may not be connected and so CG will not be a single tree; We now solve the
labelled augmentation problem in the case that CG is a forest. The idea is that we will first add
a set of node disjoint edges (i.e. no node is incident with more than one edge in this set) between
leaves to connect the trees of CG into a single tree, T*, and then solve the problem as before.
However, we must be careful in the way that we add edges to form T*. We call the first edge
additions (forming T*) phase one, and the next edge additions (dome by algcrit;hm ET) phase
two, which is then followed by any needed edge exchanges. We let E* now start with only those
edges added in phase two. We must be careful about which edges are added in phase one,
because when CG is a forest, Fact 4.3 is no longer true, i.e. it is not true that in CG* every edge
of CG is in some cycle containing only one edge of CG* - CG (see Figure 5). Theréfore the edge
exchange operation and argument become much more complicated if we ever remove edges added
in phase one. To get around this problem, we want to be sure that the edges added in phase one
can appear together in an optimal solution to the labelled augmentation problem. If so, then
these edges become fixed after phase one, and the remaining problem is exactly the labelled

augmentation problem for the single tree T*.
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Theorem 5: The trees of CG can be connected (forming T*) by node disjoint (phase one) edges
such that these phase one edges can appear together in an optimal solution of the labelled

augmentation problem for the forest CG.

Proof: We first arbitrarily relabel (b+c-r)/2 of the B leaves in CG to be R leaves, and relabel
the remaining (b+r-c)/2 B leaves to be C leaves. The effect is that CG now contains an equal
number of R and C leaves and no B leaves. We now claim that it is possible to connect CG into
a single tree, T*, using a set of node disjoint (R,C) edges. In fact, this can be done myopicly: as
long as CG is not connected there must exist a two components in CG such that one contains an
R leaf and one contains a C leaf. To see this suppose that CG is not connected, and let CC be a
component containing an R leaf. Now the number of R and C leaves are equal before any phase
one edge additions and this property is maintained with each edge addition, so there must also be
}emaining C leaves. If any of these C leaves are in a different component than CC, then an edge
can be added between an R leaf in CC and a C leaf out of CC. Every component must have at
least one leaf, hence if all C leaves are in CC then an edge can be added between a C leaf in (o]

and an R leaf out of CC.

After T* is formed, the number of R and C leaves are still equal, hence the number of (R,R)
edges added by algorithm ET (in solving the unlabeled augmentation problem on T*) must equal
the number of (C,C) edges added. Edge exchanges strictly between these (phase two) edges can
then be done to form a legal and optimal solution to the labelled augmentation problem for CG.

O

Theorem 5 gives one way to connect CG so that the phase one edges can appear together in an
optimal labelled augmentation of G. In the next section it will be useful to have other ways to do
this. Lemma 4.1 below gives a sufficient condition to guarantee that a set of phase one edges has

this property.
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Definition 4.3: Let r*, ¢* and b* denote the number of R, C and B leaves in T*.

Definition 4.4: Let PE denote the set of (R,C), (R,B) (C,B) and (B,B) edges running between

leaves of CG.

Lemma 4.1: If the trees of CG can be connected (forming T*) by node disjoint (phase one)
edges from PE such that r* < ¢* and r* + b* > c*, or such that ¢* < r* and ¢* + b* > r*,
then these phase one edges can appear together in an optimal solution of the labelled

augmentation problem for the forest CG.

Proof: If r*, ¢* and b* are as given in the hypothesis above, then b&' Theorem 4, the labelled
augmentation problem on T* can be solved optimally using (r*+c*+b*)/2 edges from PE. Since
the phase one edges are node disjoint and selected from PE, they can be added to the
(r*+c*+b*)/2 edges of the optimal solution of labelled augmentation problem on T*, to form a
labelled augmentation of CG using exactly (r+c+b)/2 edges from PE. We know that (r+c+b)/2
is 3 lower bound on the number of edges needed to augment CG, hence this augmentation is

optimal. O

4.1.4. Labelled augmentation when r4b < ¢

We briefly discuss the labelled augmentation problem in the case when r+b < ¢. We assume
that r+b > 1 since the complementary suppression problem is simple to solve directly when CG
only has C leaves. When r+b < ¢, at least ¢ additional edges must be added. If CG is a single
tree, we can achieve this bound by taking the solution given by ET (which contains p/2 edges)
and make edge exchanges until the only edges in E* are (R,C) (C,B) and (C,/C) edges. This can
always be done since r+b < ¢. At this point we can arbitrarily pick an R or B node, v, in CG;
we delete all (C,C) edges from E* and attach each exposed C ieaf to v (there are other ways to

do this). In the case that CG is a forest, a similar argument to those above shows a way to
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connect the forest with phase one edges which have the property that they can be together in an
optimal solution. As before, the problem then reduces to the case of a single tree. Unlike the
previous case, however, the phase one edges need not all be node disjoint, since even in the case
of a single tree, as many as c-(r+b) edges may touch nodes that are touched by other edges of

the augmentation.

Figure 6 shows a complete example of complementary suppression when D is strictly positive.
Since any cycles in F* are traversable when D is strictly positive, we only indicate which cells

have been suppressed, and can ignore all numerical values.

4.1.5. Labelled augmentation and necessary conditions for protection

Cox in [Cox80] discusses the utility of using simple necessary conditions for protection in
bheuristic methods for complementary suppression. In particular, he discusses the necessary
condition that every row or column containing a sensitive cell must contain at least two
suppressed cells. This is just the condition that G contain no leaves. A stronger necessary
condition that subsumes this is that G contains no bridges (ignoring directions of edges), i.e. that
every edge in G (or F*) is in a simple cycle (ignoring the directions of the edges) in G (or F*).
When D is strictly positive, every cycle in F* is traversable, and so the necessary condition is also
sufficient. In the general case this is not true, but the above labelled augmentation methodology
can still be used to add the fewest number of complementary suppressions to satisfy the necessary
condition that every edge in G be in a simple cycle (ignoring directions). Hence this stronger
necessary condition can be efficiently and optimally imposed, and therefore may be useful in

practice.
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4.2. Special case: X strictly positive

Above we solved the complimentary suppression problem when D is assumed to be strictly
positive. A less restrictive and more useful assumption is that the original .;sensitive cells are
strictly positive (no zero valued data is sensitive), but other cells in D may have zero value. We
do not know how to solve this problem efficiently, but under the assumption that the zero valued
cells are not extremely dense, the above methodology may often be used to Vefﬁciently produce

optimal solutions, or near optimal solutions.

* For this discussion we assume again that, in CG, r < c and r+b > c. Recall that suppressing a
non-zero cell corresponds to adding an undirected edge to CG, and that suppressing a zero valued
cell corresponds to adding a directed edge to CG. The key observation for the case ‘of X strictly
positive is that if undirected edges can be found to connect CG (forming T*) then the resulting
labelled augmentation problem on T* can be solved optimally, i.e. no problem is caused if E*
icontains directed edges. To see this, recall that no edges of T* are dt;,leted by edge exchanges,
and that each edge in T* is in some cycle with exactly one edge of E*. If T* contains only
ﬁndirected edges then every such cycle is traversable since it contains at most one directed edge.
Hence to optimally solve complementary suppression when X is positive, we want to connect CG
(formiﬁg T*) using edges which can be added to the optimal labelled augmentation of T*, to
form an optimal labelled augmentation of CG. Lemma 4.1 gives a sufficient condition on the
selection of phase one edges which does this; Theorem 5 gives one specific way to satisfy the
sufficient condition, but there are otl;er ways as well. Since there is a fair amount of flexibility in
the selection of phase one edges, if zero valued cells are not dense, then it may often be possible
in practice to find a set of phase one edges that satisfy the sufficient condition, and in which case

the complementary suppression problem for X positive can be solved efficiently and optimally.

If there doesn't exist a set of phase one edges satisfying the sufficient condition, or such a set is
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hard to find, CG can be connected by undirected edges between leaves and interior nodes, or
between two interior nodes. In the first case the resulting solution will be off the optimal by at
most one plus the integer part of half the number of such edges used; in the second case the
resulting solution will be off by at most the number of such edges used. With such phase one

edges, the suppression problem for X positive may often be solved near optimally in practice.

In [G] we present an alternative solution to the labelled augmentation problem which has the
property that when CG is a forest, the set of phase one edges are less constrained than in the
solution here. In particular, we do not need to add phase one edges until CG is connected, rather
we only need to add edges until a certain property holds, and this property holds if CG is
connected. The most general form of the property is difficult to present here; we will‘only state a

fairly weak sufficient condition for the property.

For the case of X positive, if CG has the property that in every component of CG there are
both R and C leaves, then the labelled augmentation problem on CG can be solved optimally and
efficiently. If this property does not hold in CG, then we can either add undirected phase one
edges from PE, or relabel B leaves to be R or C leaves, so that in the resulting graph, G*, every
component does contain both an R and a C leaf. The labelled augmentation problem on CG*
can then be optimally and efficiently solved by the techniques in [G]. In applying these two
operations (relabelling and adding phase one edges) the goal is to create CG* such that the
optimal labelled augmentation of CG* can be added to the phase one edges to obtain an optimal
or near optimal labelled augmentation of CG. If we define r*, c¢* and b* as the number of R,C
and B leaves in CG*, Lemma 4.1 again gives a sufficient condition on r*, ¢* and b* so that an

optimal labelled augmentation of CG is obtained in this two step manner.
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4.3. Caveat

We defined a legal solution as any non-negative integer solution of the system of equalities
given in Definition 1.1, and said that a suppressed cell (i,j) is protected if x(i,j) can take on two
different non-negative integer values. Hence (i,j) is protected even if zero and one are the only
two possible non-negative integer values that x(i,j) can take on. Now in the section above, we
assumed that there were special constraints on D. If the adversary knows §hese constraints, then
the definition of protection may not be relevant since the adversary may be able to use the
additional information. For example in the case above, if the adversary knows that D(i,j) > 0,

then the adversary can deduce that D(i,j) = 1.

The point to keep in mind is that the census bureau may use the above‘ suppression
methodology in the special cases, provided the adversary cannot know when each such case
arises. The adversary may compute the possible values for cell (i,j) with the assumption that it,
or other cells, are non-zero, but with the given problem set-up, the adversary doesn’t know if this
is a correct assumption or not. The definition of protection is relevant as long as the adversary
has to work in the space of non-negative integers, even though the census bureau may sometimes

make more restrictive assumptions.

If there are publicly known bounds on individual cell values, then the model and the results in
this paper can be appropriately modified. For example, if it is publicly known that D is strictly
positive, then the definition of a legal solution must enforce the constraint that x(i,j) > 0;
problems a) and a”) are solved virtually as before, and the solvable special case of complimentary

suppression becomes the case that D(i,j) > 1 for all cells.
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5. Interval Estimation: Tightest general upper and lower bounds

Recall that T is the value of the maximum flow in G. As mentioned earlier, the tightest lower
and upper bounds on the value of a suppressed cell (i,j) are given by the minimum C(i,j) and
maximum L(i,j) that permit a flow of value T in G. In this section we show how to compute

these minimum and maximum values.

5.1. Computing the minimum C(i,j)

If we let C(i,j) be a parameter, we can express the value of the maximum st flow in Gasa
function of C(i,j), assuming that all other capacities are fixed as given in definition 2.2. Letting
T, J(O) and Ti,j(oo) be respectively the maximum flow values when C(ij) is set to zero and to
infinity, it is known [FF| that the maximum flow, as a function of C(i,j), exactly equals

Min[T, j(O) + C(i,j), T, j(c:o)]. However, T, 'j(oo) clearly equals T, and so

Theorem 6: The tightest lower bound on the value of cell (i,j)is T - T, j(0), ie. T-T, j(0‘) units
are needed on edge <i,j> and there exists a flow of value T in which edge <i,j> has exactly

T-T; ;(0) units.

This result is simple, yet it leads (in worst case analysis) to a computational improvement over
earlier suggested methods based on minimum cost network flow or linear programming. The
point is that while there does exist a flow of value T in which <i,j> has flow T - Ti,j(o)’ we
don't need to find such a flow; we only need to compute Ti,j(o)' Previous approaches found the
minimum permitted F(i,j) by using minimum cost flow or linear programming to obtain a
maximum flow in which the minimum F(i,j) is achieved. These methods are more complex than
simple network flow used to compute Ti,j(o)' Notice that we can't generally construct a flow of ‘
value T by taking the flow used to compute Ti'j(O), and then adding T - T, J(O) units along the

path s-i-j-t, since adding these units might result in a violation of the capacity constraint of
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either of the edges <s,i> or <j,t>. However, once Ti’j(O) is known, we can find a maximum
flow in G in which F(i,j) is at its minimum value, using only one additional maximum flow
computation: simply delete <i,j> from G, reduce both C(s,i) and C(j,t) by T - Ti,j(O), and find
a maximum flow in the resulting graph; a flow of T in which F(i,j) is at its minimum is then

obtained by adding T - T, j(0) units along the s-i-j-t path.

We note that the above lower bound calculations are needed for at most n+m-1 cells. From
the theory of linear programming it is known that in any “basic” maximum flow F in G, at most
n+m-1 of the center edges have non-zero flow. A basic maximum flow can be found by one of
many methods that are fast in practice [MUR], and such a flow identifies at least nm-n-m+1 cells

with tight lower bounds of zero.

5.2. Computing the maximum L(i,j)

To find the tightest upper bound on the value of cell (i,j) we consider L(i,j) as a parameter and
compute the maximum value L(i,j) can take on such that a flow in G of value T is still possible.
Equivalently we consider the graph G* resulting from deleting edge <i,j> from G and replacing
the capacities of edges <s,i> and <jt> with the parameterized capacities of C(s,i) - L(i,j) and

C(j,t) - L(i,j), where C(s,i) and C(j,t) are fixed, and L(i,j) is variable.

Definition 5.1: Define the function F[L(i,j)], for values of L(i,j) between zero and Min[R*(i),

C*(i)], to be the value of the maximum flow in G* as a function of L(i,j).
Then, the following is immediate.

Lemma §5.1: For any value of L(i,j), there exists a flow of value T in G in which F(i,j) =

L(i,j), if and only if there exists a flow of value T - L(i,j) in G*, i.e. FIL(i,j)] = T - L(i,j).

It will be convenient to work with G’ instead of G. We want to find the maximum value of
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L(i,j) such that F[L(i,j)] = T - L(i,j); by lemma 5.1 that is the maximum value of L(i,j) such that
there is a flow in G of T and F(i,j) = L(i,j), and hence it is the tightest upper bound on the

value of cell (i,j). We make the following claims.
Lemma 5.2: F[L(i,j)] is a piecewise linear function with slopes 0, -1 or -2.

Proof: As a function of L(i,j), the capacity of every s-t cut in G’ is a straight line with slope
of either 0, -1 or -2 (depending on the number of edges with parameterized capacities that cross
the cut), and for any value of L(i,j), F[L(i,j)] equals the minimum value of all the s-t cuts in G".

O

Lemma §.3: F[L(i,j)] < T - L(i,j) for all values of L(i,j) and equality holds for- L(ij) =T

- T, 0).

Proof: First, F[L(i,j)] € T - L{(i,), since otherwise there would be a value of L(i,j) permitting a
flow in G of value greater than T. Second, from Theorem 6 we know that there exists a flow Fin
G of value T in which F(i,j) = T - Ti,j(o)’ hence there is a flow in G* of value T - (T - T, j(0)) =

Ti,j(o) when L(i,j) is set to T - Ti,j(o)' So F[L(i,j)] = T - L(i,j) when L(i,j) = T - Ti,j(o)' ]

Now by definition, F(0) = T;,,-(O): and so lemmas 5.2 and 5.3 imply that F[L(i,j)] has the shape

given in Figure 7.

Definition 5.2: Let L*(i,j) be the value of L(i,j) at the intersection of the line T - L(i,j) and the

line supporting the segment of F[L(i,j)] with slope -2 (see Figure 7).

Given the shape of F[L(i,j)], the tightest upper bound on the value of cell (i,j) is clearly
Min[L*(i,j), R*(i), C*(j)]- We can compute L*(i,j) if we know the equation of the line supporting
the segment of F[L(i,j)] with slope -2. That equation is obtained from the observation that the

cut associated with the line is simply the cut of least capacity that contains both edges <s,i>
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and <jt>. We can find this cut by deleting <s,i> and <jt> from G and computing the
minimum s-t cut in the resulting graph; let T, 5(0’0) denote the value of that cut. Then, as a
function of L(i,j), the least capacity cut in G’ containing <si> and <jt> has capacity

T, j(0,0) + R*(i) + C*(j) -2L(i,j), bence L*(i,j) = Ti’j(0,0) + R*(i) + C*(j)- T.
Summarizing the above, we get

Theorem 7: The tightest upper bound on the value of suppressed cell (i,j) is Min[R*(i), C*(j),

Ti,j(o,O) + R*(i) + C*(j)- T).

The computational import of this theorem is that one network flow computétion suffices to
compute Ti'j(0,0) and hence to compute the tightest upper bound on the value of (i,j). As in the
case of the lower bound, we do not need to actually find a flow of value T in which the
maximum flow in edge <i,j> is achieved, although such a flow could be found with one

additional maximum flow computation.

Figure 8 illustrates the above estimation methodology.

8. Tightest upper and lower bounds in a totally suppressed table

In [COX80] the case of a totally suppressed table (all cell values are suppressed, but row and
column totals are disclosed) is discussed, and it is suggested that algorithms for the
transportation problem can be used for this case. We show here that, in this case, trivial

methods suffice to compute the tightest upper and lower bounds on the cell values.

Theorem 8: In a totally suppressed table the tightest upper bound on the value of cell (i,j) is

Min[R(i), C(j)).

This can be proved by specializing Theorem 7, but we prove it here using a lemma that will be

useful in the discussion of the lower bounds.
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Lemma 6.1: Let R(1),..,R(m) and C(1),...,C(n) be any non-negative integers such that 5 R(i.)
1
= X C(j). Then there exists a legal solution to the table D where all cells are suppressed and
4

R(i) is the i'th row total and C(j) is the j'th column total in D.

Proof: In the network flow interpretation of table D above, graph H is a complete bipartite
graph, and so in G any s-t cut must contain either all edges incident with s, or all edges incident
with t. Hence the minimum cut and maximum flow have value X R(i), and there is a legal

solution to D.

Proof of Theorem 8: Clearly Min[R(i), C(j)] is an upper bound on the value of cell (i,)-
Assume Min[R(i), C(j)] = R(i). To show that the bound can be met we must exhibit a solution
to D in which (i,j) is given value R(i). We simply give cell (i,j) the value R(i), and give all other
cells in row i the value 0; we then remove row i from D and set C(j) to C(j) - R(i). The row
totals still equal the column totals in the reduced table, and so by lemma 6.1, the reduced table

has a solution, and hence Min[R(i), C(j)] is an attainable value for (i,j). O
Now we examine the lower bound.

Theorem 9: In a totally suppressed table the tightest lower bound on the value of cell (i,j) is

Max|0, R(i) + C(j) - T).

Proof: We first show that the above is a lower bound. The cell values in row i must add up to
R(i), but without cell (i,j), the total that all other cells in row i can contribute is T - C(j). Hence
cell (i,j) must have value at least R(i) + C(j) - T. The same lower bound is obtained by doing
the analysis along column j. To show that this bound is tight, give cell (i,j) the ;ralue Max|[0, R(i)
+ C(j) - T], and assign values to the other cells in row i so that the total assigned in row i is
exactly R(i) (this is always possible). After deleting row i and reducing each C(k) by the amount

assigned to cell (i,k), the row and column totals are still equal, and so, by lemma 6.1, the reduced
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table has a solution, and the theorem is proved. O

Corollary 6.1: In a totally suppressed table of size n by m, cell (i,j) can have a non-zero lower

bound only if either R(i) > T/2 or C(j) > T/2; there are at most n+m-1 such cells.

Proof: Max[0, R(i) + C(j) - T] = 0 unless R(i) + C(j) > T, which can happen only if either

R(i) > T/2 or C(j) > T/2. Since ZR(i) = £C(j) = T, at most one R(i) and one C(j) can be
. B

greater than T/2. Hence any non-zero lower bounds are for cells contained in one specific row or

one specific column, and there are only n + m - 1 of such cells. [

Hence we need to compute ihe lower bound only for those (at most) n + m - 1 cells; all other
cells bave lower bound of zero. Therefore O(n+m) arithmetic operations and comparisons suffice
in this case, although the output is of size O(nm). Note that we already knew from the
discussion in section 5.1 that at most n + m - 1 lower bounds would be non-zero, but in the

general case it is more difficult to identify those cells.
Corollary 6.2: Any n by m totally suppressed table is protected, for nm > 1.

Proof: Cell (i,j) is protected if Min[R(i), C(j)] > Max[0, R(i) + C(j) - T]. We assumed that
every row and column sum was non-zero, so (i,j) is protected if Min[R(i), C(j)] > R(i) + C(j) - T.
Assume that R(i) < C(j). If R(i) = R(i) + C(j) - T then C(j) = T, but when n > 1 this is a

contradiction to the assumption that all column sums are non-zero. [

7. Open Questions and Future Research
There are many interesting open questions remaining. We believe that many of these questions

are solvable and hope that the ideas in this paper will be useful in iheir solution.

1. The computation of lower and upper bounds for the general two dimensional table involves

many successive maximum flow computations, each on a graph which differs from the other
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graphs by a small modification. Can this be exploited to compute all of the maximum flows

faster than computing them all from scratch?

2. Are there additional interesting special cases of the complimentary suppression problem that
can be efficiently and optimaly solved! Is the general problem efficiently solvable? Is it NP-
hard. What about bounded approximations? It is not hard to show that the general problem can

be approximated to within a factor of two of the optimal.

3. In [G] we examine the augmentation problem on mixed graphs; this is one step towards the
solution of the general complimentary suppression problem, however the problems solvable by the
methods in [G] do not include the general problem. Can these methods by pushed to solve

augmentation problems that are closer to the general complimentary suppression problem?

4. Generalize the approach in this paper to tables of three or more dimensions. Even the
totally suppressed case is open for three dimensions. For example, the three dimensional

analogues of theorems 8 and 9 don’t even hold (see Figure 9).

5. In this paper a cell was defined to be protected if the tightest upper and-lower bounds differ
by at least one. A more useful condition is that they should differ by some § > 1. Can we
efficiently (linear time) determine whether D is protected for a given § > 1 specfﬁed ahead of
time? What about for é given as input? What about the complementary suppression problem for

in these cases? These problems are the most tempting and promising of this list.

6. It may be realistic to assume bounds on the sums of a set of cell values, or correlations
between the values of certain cells. How can these be handled in the protection and suppression

and estimation problems?

4" In the special case of X strictly positive, can we efficiently form CG* using edges which

satisly the conditions of Lemma 4.1? If undirected edges are plentiful then in practice this will
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often be easily done, but what is the complexity of the exact optimization problem? What is the
complexity of the problem of adding node disjoint undirected edges (from a restricted set of

edges) between leaves to connect a set of trees?

9. The approach to the complementary suppression problem in this paper and also in [G] is to
modify and build on the two algorithms givep in ET for unlabeled (undirected and directed)
graph augmentation. There are surely other solutions to these unlabeled augmentation problems,
and each may have a different consequence for the complementary suppression problem, leading,
for example, to different solvable special cases or different heuristics. This is an area for future

research.
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Figure la:

The squared numbers indicate the sensitive cells.

Figure 1b:

Graph G derived from D.

A maximum flow F is indicated
on the center edges.
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Figure 2:
Graph F* derived from G and the flow F given in Figure 1.
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Figure 3:

Construction of graph CG from F*

Figure 3a shows the two strong componentsTYf(1l) and TM(2) of F*.
InT(l) the bridges are (R3, Cy) and (Rj3, C3). There are no
bridges inT(2). The edges of set A are (Ry, C,) and (R3, Cs).

Figure 3b shows graph CG.
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Cases for edge exchanges. Each line represents a path between
the endpoints.
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Figure 5:

CG is shown in solid andathe optimal augmentation is dashed.
No edge in CG is covered by just a single edge of the optimal
solution.



O
P

K
~
~

O | | *[*

Figure 6e:

Table D with complementary suppressions added.
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The general shape of F[i(i,jﬂ .
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Figure 6a:

Example of complimentary suppression. D is assumed strictly
positive; the cells with x's are suppressed.

Figure 6b:
Graph F* derived from D.
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Figure 6c:

Graph CG derived from F* with phase one an

d two edges (dashed
added. Edge (C3, B) is the phase one edge & ( e

Figure 6d:

Solution to the labelle

exchange. d augmentation problem after edge
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Example for interval estimation (taken from P. 363 of [Ded] ).
The cell with x's are suppressed. T = 58.
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Figure 8b:

Graph associated with table D. We compute the upper and

lower bounds on cell (2,2). Removing edge (R,, Cz), the
1

maximum flow is 51, so the best lower bound o2 (2,2)

n ce
is 58-51=7. Removing edges (s, RZ)’ (R,, CZ)' and (C,, t)

the maximum flow is 31, so the best upper bound on cell
(2,2) is 31+22+24-58=19,
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Figure 8c:

Mximum flow values for the graph in figure 8b, and upper and
lower bounds on the suppressed cell values of table D. 1In
each square the upper left entry is Ty J(0), the upper right
entry is T-Tj, §(0), the lower left entry is Ti,j (0,0), and
the lower rlght entry is Mln[R*(l), c*(3), TiJ(O 0) + R*(i)
+ C*(j) - T] The reader can check that these bounds agree
with those on p. 364 of [Den].
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Three dimensional table of size 2x2x2. The two numbers

in each cell below the triangle are the upper and lower
table entries respectively, i.e. cell (1,1,1) has entry 1,
cell (2,1,1) has value 4, cell (2,1,2) has value 1 etc.
The numbers in the triangles are the sums of the cells looking
downward. The numbers on the left side are upper and lower
sums of the cells looking horizontally along a line, and the
numbers on the bottom are upper and lower sums of the cells
looking vertically along a line. The minimum of the sums
constraining cell (2,1,1) is 5, and so the " analogue "

of Theorem 8 suggests that in the totally suppressed table
with these sums (2,1,1) could have value 5. But this is

not possible since then cell (2,2,1) would be forced to be
zero and then cell (1,2,1) would be forced to be 1, which
contradicts the fact that cell (1,2,1) is forced to be zero
by the zero in the triangle.’



Addendum 2/17/85

We note two responses to the open questions listed in section 7.

1. The method given in this i'eport for computing the tightest upper bound on the value of a
suppressed cell takes O(n®) time per cell. Hence, in an n by n table, if ©(n?) upper bounds were
to be computed, the best time guaranty based on the method in this report is O(n%). We show
here that this time bound can be reduced to O(n?), and that O(nlogn) maximum flow
computations suffice to find all the tightest upper bound values in any table. A consequence of
this approach is that in any table (even those with 6(n?) missing values), there are never more
than 2p-1 distinct upper bound values. These results are obtained by reducing the problem of
computing upper bounds to a problem discussed in a paper by Schnorr [sC].

We first give a different method for computing a single upper bound. Let x be a legal
assignment of values to suppressed cells in D (hence x defines a maximum flow F in the graph G
given in definition 2.2), and let G(F) be the augmentation graph [FF] defined by F and G, except
that the forward capacities of G(F) are set to be some large finite value M instead of infinity.
Let (i,j) be a suppressed cell in D, where i is an R node in G, 5ndj is a C node in G. Let x(i,j) be
the value of cell (i,j) in the assignment x, and let FG(i,j) be the value of the maximum total flow
from i to j in G(F), and let FG(j,i) be the value of the maximum total flow from j to i in G(F).
Then, FG(j,i) is the tightest upper bound on the value of cell (i,j) in D, and Max[0, x(i,j) - FG(i,j)
+ M] is the tightest lower bound on the value of cell (i,j) in D. It is not difficult to prove these
assertions, and we omit the proofs here.

The above new relations require one maximum flow computation per bound, and hence do not
immediately improve on the method presented in the report. To prepare for the improvement,
note two facts about this method. First, unlike the method in the report, the graph G(F) is
fixed, but the choice of source and sink nodes varies over all pairs (i,j) such that (i,j) is a
suppressed cell in D. Second, for every suppressed cell (i,j) in D, note that FG(i,j) > M > FG(j,i)
== tightest upper bound on the value of cell (i,j). Hence, in G(F), Min[FG(i,j), FG(j,i)] = tightest
upper bound on suppressed cell (i,j), for each suppressed cell (i,j). We would like an efficient
method to compute FG(i,j) for any pair of nodes i,j in G(F). Such a method is known for
undirected graphs [GH]; in that method, all f2n®) flow values can be computed with only n-1
flows in an n node undirected graph. However, for directed graphs, no such equivalent method is
known. What is known, however, is how to compute the (n?) values of Min[FG(i,j), FG(j,i)] for
all pairs of nodes in a directed graph using at most O(nlogn) maximum flows. Further, the total
time needed for all the flows together can be bounded by O(n*) [sC). Using this method on G(F),




all tightest upper bounds on the values of suppressed cells can be computed in O(n‘) time. Note
that for the lower bounds, this bound was already known to be attainable, since there can only
be 2p-1 non-zero lower bounds, and the cells where the non-zero bounds can appear can be
located quickly. Then a single flow per cell finds the value of the lower bounds. Hence O(n)
time suffices to find all tightest bounds in an n by n table. There is a easy reduction from the
maximum flow problem to the problem of computing a single bound, hence O(n®) seems the best

realistic target for the time needed to compute all the bounds.

We have shown that for any suppressed cell (i,j) the tightest upper bound on the value of cell
(i.j) is equal to B(i,j) = Min[FG(i,j), FG(j,i)] in G(F). It is known [SC] that there can never be
more than 2p-1 distinct values for B(i,j) in any directed graph with 2n nodes. Since the B values
define the tightest upper bounds in D, there can never be more than 2n-1 distinct tightest upper
bounds in D. This is easily verified on the table where all cells are suppressed, but holds in
general. We give a short proof of this below.

Lemma [SC]: In any directed graph G, let I be a subset of vertices arbitrarily labelled 1,2,...,2.
For any pair of nodes i < j in I, if B(i,j) = FG(i,j), then B(i,j) > Min[B(k,k+1), k = i,...,j-1].

Proof: Let (S,S°) be the minimum cut separating nodes i and j. Since i € S and j € S*, there
must exist a pair of nodes w and w+1 in I such that w € S and w+1 € S’, and hence
FG(w,w+1) < capacity of cut (5,S°). So Min[B(kk+1), k = i,..j-1] < B(w,w+1) <
FG(w,w+1) < FG(i,j) = B(i,j). O ‘

Theorem: Let H be a directed graph with 2n nodes. Then there can be at most 2n-1 distinct

values of B.

Proof: Consider a complete undirected graph G* with 2n nodes and weight B(i,j) on every
edge (i,j). Let T be a maximum weight spanning tree of G’. T has exactly 2n-1 edges. Now
consider any edge (i,j) of G’ that is not in T. Since T is a maximum weight spanning tree, B(i,j)
is less than or equal to every B value on the edges in the unique path between i and j in T. But
the lemma above says that B(i,j) must be greater or equal to the minimum of those values, hence
it must be equal to the minimum of those B values. Therefore, the B value of every edge not in

T is equal to the B value of some edge in T, and the theorem is proved. O

Combining the theorem with the fact that the tightest upper bounds of D are equal to the B
values in G(F) gives the following

Theorem: In any n by n table D, there are at most 2n-1 distinct tightest upper bounds on the



values of the suppressed cells in D.

2. The two problems listed in open problem 7 are both NP-hard. The Hamilton path problem

can be simply reduced to either of these problems.
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