— R AU

Temporal Domain Parallelism: Does It Work?

Ashish Deshpande, Sachit Malhotra, Craig C. Douglas* and Martin H. Schultz!

Yale Center for Parallel Supercomputing
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract

Time dependent partial differential equations are often solved using algorithms which parallelize the solution
process in the spatial domain. However, as the number of processors increases, the parallel efficiency is limited
by the increasing communication/computation ratio. Recently, several researchers have proposed algorithms
incorporating temporal domain parallelism in order to increase efficiency. In this paper we discuss a class of

such algorithms and show that this approach is not normally useful.

1 Introduction

We investigate a parallel algorithm for the numerical solution of linear, time-dependent partial differential
equations (PDEs) of the form

%%+£u=f, z€eQ, 0<t<T,
B(u) = up(t), zed, 0<t<T,
u(z,0) = uo(z), z€Q

*This author was on sabbatical from IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
tThis work is supported in part by ONR Grant # N0014-91-J-1576 and by an IBM/Yale joint study.

where L is a linear elliptic spatial operator, B is the boundary operator, and Q is a spatial domain with
boundary 0Q. For simplicity of presentation we choose the one dimensional problem Q = (0, 1) and Dirichlet
boundary conditions u(0,¢) = u(1,t) = 0. Our model problem in this paper will be the one dimensional heat
equation.

Implicit time stepping schemes, coupled with finite difference approximations of the spatial derivatives,

lead to linear systems at each time step tj, of the form,
Auf = Buf—1 4 b, k=1,2,...n, (1)

where A and B are m X m matrices (m is the number of grid points in the interior of the domain) whose
elements depend on £ and B and uf is an m—vector containing function values u at all the grid points at
the k’th time step. Starting from u®, which is known from the initial condition, we can use an iterative

algorithm such as Jacobi, Gauss-Seidel, or SOR to solve (1) sequentially for each time step:
k_ ok - _ —
u; =Tu;_; +¢, i=1,2,..., k=1,2,...n,

where T is the iteration matrix and ¢ is a vector of known values.

Usually, the entire process is spatially parallelized by splitting the domain € into subdomains and dis-
tributing problems on the subdomains to multiple processors [3]. At each iteration, the processors need to
exchange boundary information with processors holding adjacent subdomains. As the number of proces-
sors increases, the communication/computation ratio increases making the parallel efficiency decrease. In
an effort to forestall this and to allow increasing numbers of processors to be used effectively, a number
of researchers have suggested algorithms which introduce time domain parallelism as well as space domain
parallelism [2, 5, 6, 7].

It is claimed in [2] and [7] that a parallel scheme based on time domain parallelism will converge in exactly
the same number of iterations as the sequential scheme since the two schemes have iteration matrices with
equal spectral radii. In this paper, we examine this claim. We show that, for model time domain parallel
schemes, the iteration matrices are defective and hence, while the spectral radius of the iteration matrix
governs the asymptotic rate of convergence, it does not determine the exact number of iterations required.
Hence, one cannot claim that the two schemes will converge in exactly the same number of iterations. Using
a 2-norm argument, we show that the number of iterations required for convergence of the new scheme
increases with the number of parallel time steps. Even if we ignore the cost of communication, the new

scheme has a very low efficiency for real problems. In this paper, we provide an analysis of a class of these

algorithms as well as computational experiments which demonstrate that this approach is not normally

useful.

2 The Temporal Method

In [7] and [2], an iterative scheme is described for introducing temporal domain parallelism by solving the

linear systems at different time steps simultaneously. The central idea»is to assemble n steps of (1) into the

form
A ul ul + by
-B A u? by
Gu = -B - : = : =b. (2)
A unl br_1
B A u” bn

Equation (2) can be solved in parallel using an iterative scheme such as Jacobi or Gauss-Seidel with the
red-black block ordering. If A = D — L — U, where D, L and U are diagonal, lower triangular, and upper

triangular, then the iteration matrix T4 for solving (1) using Gauss-Seidel is
T4 =(D-L)"'U.
The iteration matrix Tg for Gauss-Seidel for (2) is
Te =(D-L)™'U,

where D, L and U are the diagonal, lower triangular, and upper triangular parts of G. As was shown in [7],
T is a block lower triangular matrix with diagonal blocks equal to (D — L)~U. Hence, the eigenvalues of
Te are the collections of all eigenvalues of all the block matrices on the main diagonal. Since all blocks on
the main diagonal are equal to Ta, Tg has the same eigenvalues as T4 but with higher multiplicity. This

shows that
o(Ta) = o(Ts),

where o(T) is the spectral radius of 7. Hence, both iterations appear to converge at the same rate.

Based on the “proof”

sketched above that iterative schemes (1) and (2) converge in ezactly the same
number of iterations, both [2] and [7] go on to demonstrate that the parallel algorithm involving both spatial

and temporal dimension parallelism is far superior in terms of speedup and communication/computation

ratio over algorithms employing only spatial dimension parallelism. However, in the following sections, we

demonstrate that this is not valid.

3 Convergence of Iterative Methods
Any stationary linear iteration scheme can be written in the form
up41 =Tug +c

where T'is the iteration matrix and c is a vector of known values. The error e; in the k** approximation to

the solution is given by

e = Tke().
Hence, the sequence of iterates uj, ug, ..., ug,... will converge to the true solution as k — oo if and only
if
lim 7% =0
k—o00

since ug, and hence eg, is arbitrary. If the m x m matrix T has m linearly independent eigenvectors

vs,8 = 1,...,m, then it follows that
m
er = ch)\fvs, (3)
s=1

where)A; is the eigenvalue corresponding to vs. Thus e; will tend to 0 for an arbitrary eq if and only if
| As | < 1for all s, i.e., if and only if o(T') < 1, and the convergence rate behaves like of.

While the preceding result is true in general (see [4]), this argument holds only if the matrix T' has m
linearly independent eigenvectors. If T is defective, i.e., lacking eigenvectors, then we may not be able to
express eg as a linear combination of the eigenvectors and (3) may not hold. In this case, we cannot claim
that the convergence rate behaves like of except in an asymptotic sense, which may not yield any useful

information. For example, consider the m X m matrix

which is defective and whose eigenvalues are all equal to 0. Hence, ¢* = 0 for all £ > 1. However, ||T’“|]2 =1
for 0 < k < m and T™ = 0. Hence, if the iteration matrix is defective it is not enough to look only at its
spectral radius.

We show in Section 4 that the iteration matrix for solving (2) is defective for the block and point Jacobi
and Gauss-Seidel methods with the natural ordering. Hence, the spectral radius does not give a true picture
of the convergence rate and one must actually look at the norm of the k*" power of the iteration matrix, 7%,

to determine the number of iterations it takes for the iterative scheme to converge. Since,
llexll, = IT* eoll, < IT*[],lleoll,,

and there exists at least one initial error vector ey for which the equality holds, we can only assert convergence

if the norm of the error is reduced in k iterations by a factor of € < 1, i.e. if
IT*)l, <e<1, (4)

we can determine lower and upper bounds on the number of iterations for convergence by determining k
such that (4) holds. We will show that the number of iterations required to solve (2) is enough to negate
any advantages of temporal domain parallelism.

In Section 5, we consider the block Jacobi and Gauss-Seidel methods and show that the 2-norm of T* is
large enough that the increase in the number of iterations required for convergence eliminates any possible
speedup due to temporal domain parallelism. We present numerical results to validate this claim.

In Section 6 we address the point Jacobi method. We derive an expression for the 2-norm of T* and
show that the parallel scheme exhibits very low efficiency in most cases. We also present numerical results
to validate this claim.

In Section 7 we consider the point Gauss-Seidel method. We describe numerical experiments which show
that the parallel scheme using the point Gauss-Seidel method again exhibits very low efficiency contrary to

the claims made in [7].

4 Defectiveness of the Iteration Matrix

Consider solving (2) using a block Jacobi iteration scheme, where each block corresponds to one time step.

The resulting iteration matrix is

Tpy =

A" 0
Ty is an mn x mn matrix, where m is the order of A and n is the number of time steps we are attempting
to solve simultaneously. This matrix is defective for any matrix A and all its eigenvalues are 0. In fact, it

can be easily shown that Tg; has only the m linearly independent eigenvectors

0
0 0
) y e)
0 0 0
€1 €2 €m
where eq,es,...,6n is the m-dimensional canonical basis. A similar argument shows that the iteration

matrix, Tpg, for block Gauss-Seidel on (2) is also defective.

Let us consider the point Jacobi scheme, whose iteration matrix is

D~YL +7D)

D' DY L+U)
Tpy =)

D-! D YL +VU)

To simplify the presentation, consider the block 2 x 2 case, which corresponds to the case of two time

levels.
Lemma 1 Let F = D™Y(L 4+ U) and H = D1. Then the block 2 x 2 iteration matriz

F 0
H F

Tpy =

ts defective.

Proof: Tpj has the same eigenvalues as F', but with higher multiplicity. Let F have order m and eigenvalues

A1, .., Am with corresponding eigenvectors vy, ..., vy. The eigenvectors of Tp; are given by
F 0 z z
1) Y 1
H F Zy zy

from which it follows that either

z1=0 or z1=uv;.

The choice of £; = 0 gives m linearly independent eigenvectors

0 0 0

V1 V2 Um

and Tpy is thus defective. We now show that the choice of z; = v; leads to a contradiction. In fact, z; = v;
gives

Hx1+Fa:g=Hv,'+Fx2:)\i:c2

or

(F - /\51)1'2 = —H'I)i. (5)

The matrix (F — ;) is singular since }; is an eigenvalue of F. The backward Euler scheme results in a
linear system whose matrix is tridiagonal with constant diagonal elements (14 2r), where r = -(ﬁV‘ Hence,
H = D~ = al, where a = 1/(1 4 2r) = constant, and F = D~'(L 4 U) is a tridiagonal, symmetric matrix
with zero diagonal. Then, (5) becomes

(F - /\iI):L'Q = —QV;

which has no solution. Indeed, taking the inner product of both sides with v;, we get
<(F=XDza,vi > = —a < v, v > .

Since (F — A;I) is symmetric, this gives
<z (F—=XIDvi > = —a < v, > .

But v; is an eigenvector of F, so (F — A;I)v; = 0 and we get

0= —-a<v,v >

which is a contradiction. Hence, a solution does not exist and Tpy is a defective matrix. Il
In general, (5) will have a solution if and only if Hv; has no projection into the nullspace of (F' — A;I).
In practice, this is unlikely.

We state, without proof, the following theorem
Theorem 1 The iteration matrices for point Jacobi and Gauss-Seidel methods are defective.

Hence, a spectral radius argument cannot be used to determine the number of iterations for convergence

of an iterative scheme to solve (2).

5 Block Iterative Schemes

In this Section, we consider the block Jacobi and Gauss-Seidel methods. We derive lower bounds on ||T*||)
and show that the number of iterations k required to satisfy (4) is large enough to negate the advantages of

the time parallel method.

5.1 Block Jacobi Iterative Schemes
5.1.1 Backward Euler

In order to simplify the notation in this section, we restrict our attention to backward Euler differences. In

this case, the matrices in (1) are B = I, and

142r —r
—r 1427

Amxm = ’
-r

—r 142r

where r = Lm—:lﬁ =7 AAJP . The number of timesteps being being solved for in parallel is n.

The k** power of the iteration matrix is given by

(0)

Tg.] = A—k

Ak 0)

Let t, and ¢, be the wall clock times for the parallel and serial algorithms, respectively. In the serial case

the time, t,, for n time steps is ns, where s is the serial time to solve Az = b.

Theorem 2 The total wall clock time using n processors and ignoring communication time is

1 1
tp Z 7—r—2‘ll’l (;) t,,

for the block Jacobi scheme applied to the backward Euler equations.

Proof: Note that
1

T80, = 1475, = 57—
B 2 Min(4)

A simple analysis shows that
2

Amin(A) =1+ 4rsin2(-2(m7r—+1)) <1+ %
Hence,
k Tk
ITESl, > [+)k
To be convergent, we need that

T8N, <e<l.

This holds if I (L
LI O(n).

The total work in aggregate in the parallel scheme is
) . sn? 1
W, = k - work/iteration = kns > —-In { - | .
s €
Since ¢; = sn, the total wall clock time using n processors, assuming no communication overhead, is

1
tPZ%ZEln(1>:ln(2€)ts. |

n w2 € T

Corollary: Even if we ignore the cost of communication, the total wall clock time to solve the problem

using a parallel approach is at best asymptotically the same as the serial time in spite of the larger number

of processors used. In particular the parallel algorithm will actually take more wall-clock time than the serial

version if ¢ < 5.17 x 1073,

5.1.2 Crank-Nicolson

We repeat the analysis of § 5.1.1 for the Crank-Nicolson scheme to show that the asymptotic behavior of the

scheme is identical. In the Crank-Nicolson case, the matrices in (1) are
1+r —-r/2
—r/2
Amxm =
—r/2
—r/2 1+7r
and
1—r »/2
r/2
Bmxm = /
r/2
r/2 1—7r
The iteration matrix is
(o)
A'B 0
Tic = A'B
0
A"'B 0)

Theorem 3 The total wall clock time for block Jacobi to solve the Crank-Nicolson equations is

1 1
tp Z '7;'2' In z t,,
tgnoring communication overhead.

Proof: The norm of the iteration matrix is related to the eigenvalues of A~!B in the following manner:

- k -
I1T7cll, =1 (A7'B)" ||, = Aer (47'B).

10

Since
A+ B =2,
the eigenvectors of A and B are identical. The eigenvalues satisfy

/\,(A) + /\,'(B) =2,
The eigenvalues of A~! B are given by

i=1,...,m.
- 2 - Xi(4) 2
Ai(AIB) = = -1
WIB=3a @
As a result,
2
Amao(A™1B) = ——— — 1.
@B =50 @
The eigenvalues of A are given by
As(A) =1+ 2rsin? (—2—(7—:7_:_—1)), s=1,...,m.
Hence,

Amaz (A™'B) > 1=

-
1+ 7=
By an analysis similar to the proof of Theorem 2, [|Tj¢l, <e<1if

In(3)
Corollary: The parallel algorithm will actually take more wall-clock time than the serial version if ¢ <
5.17 x 1075.

5.2 Block Gauss-Seidel Iterative Schemes

We now analyze block Gauss-Seidel methods. We state the formal result showing that the parallel methods
never provide an asymptotic speedup and may be slower for sufficiently small time steps.

Before we present the results for this section, we would like to introduce some notation to simplify the
presentation. The block matrix M (A, m,n, k) denotes a mn x mn matrix having the following structure

0

)

0
M(A,m,n k)=

11

where A is an m x m matrix and the A's lie on the k*» block sub-diagonal.

Theorem 4 Let tBF, th, toN and th be the total wall clock times for the backward Euler and Crank-
Nicolson (serial and parallel) variants. The total wall clock times, assuming no communication overhead,

for block Gauss-Seidel are given by

and

Proof:
We first consider the backward Euler difference approximation. The scheme suggested in [7] results in the

following iteration matrix:

(a4 : _1 0 \

Tep=| " T

\ ~I A

or using the notation introduced at the beginnning of the section,

0 M(A"l,m,%,l)
Tep =)
0 M(A‘Z,m,%,l)

where A is given by
1+2r —r

—r 1427

Amxm =

—r 1+42r

12

The rate of convergence is governed by the norm of the T% . Simple algebraic manipulations show that

. 0 M(A™%*+1 m 2 k)
Tge =
0 M(A™%* m, 2 k)

The norm of the iteration matrix is given by

1 2k
ITésll, = (m)

Amin(A) = 1+ 4rsin? (

where

2

il <1+
2(m+1)/) — n’

As a result
7l'2 -2k
Imtal, > (145)

To achieve a reduction in norm of the error by a factor of ¢ we require

1T&5ll, < €

2\ —2k
™
(1 + ———> <e
n

In (¢)

which gives us the required error bound, assuming e < 1.

or

which means

Second, we consider the Crank-Nicolson difference approximation. An analysis similar to the one for the

backward Euler case with A replaced by M !N yields the desired bounds. Here M and N are given by

1—r »r/2
r/2
mem= /
r/2
r/2 1-r
and
1+r —-r/2
—r/2
mem: r/ .
—r/2
—rf2 147

13

m| n k
Jacobi | Gauss-Seidel

60 | 16 16 8
22 22 11
28 28 14
34 34 17
40 40 20
46 43 23
52 45 24
58 46 24

90 | 16 16 8
22 22 11
28 28 14
34 34 17
40 40 20
46 46 23
52 52 26
58 58 29

Table 1: Tterations (k) required for convergence of block methods.

Corollary: The parallel algorithm is slower than the serial one when

< 2.68 x 10~° backward Euler
€
| 3.718x10"° Crank — Nicolson

Since communication time has not been factored into the above calculation, the parallel versions will in

practice be slower for much larger values of e.

5.3 Numerical Results

We have implemented the above block schemes on a workstation in order to illustrate and validate our claims.
In the results to follow, we counted the number of iterations required for convergence of block Jacobi and

Gauss-Seidel schemes for the backward Euler method with » = (AA;F = 100. Convergence is asserted when

14

the norm of the residual is less than 10~7.

Table 1 contains numerical results for the block Jacobi and Gauss Seidel methods applied to the backward
Euler equations. The number of iterations required to converge to the desired solution increases linearly with
the number of timesteps in parallel as predicted by the theory. This negates any potential benefits from

parallelization.

6 Point Jacobi Iterative Schemes

In this section we consider the point Jacobi iterative method for the backward Euler method for simplicity.

We consider the serial case and analyze the time it takes to solve for a single time step.

6.1 Backward Euler

For the conventional backward Euler scheme the iteration matrix is given by

1 - 0 .
Trnxm = 7o ,
T (L2 S

with eigenvalues given by

1 %4 .
/\i—m[QTCOS(m)], z..l,...,m.

The norm of the k** power of the iteration matrix is given by

1 T k
kil — 2k — - R
1T, = Aoz = 12 <2rcos (1)) .

Theorem 5 The Jacobi iterations take approzimately k iterations to converge where k is given by

k- (In€) +In(1 + 1/(4r))
In(2r) — In(1+2r)

Proof: We have
llexll, < 1%L, lleoll,

15

Since Aup41 = uy, for the given boundary conditions and we use the solution at time t = n to initialize the

iteration to solve for t = n 4+ 1 we have

o=t — A uy = (1= A Vu,

lleoll, < 1 = A7, llunll, = Amaz (T = A7Y), luall, = 1,
which reduces to
leoll, < o
O =734~

The iteration converges after k iterations when ||e||, <€, or,

4r 27 cos (m’j_l)
<e.
1+4r 14+ 2r -

2r cos (——"—)
m+1 1
khl (—T-'I—-—é?_—) = lne+ln (1 + Z;)

_ (lne)+1In(1+1/(4r))
k= In(27) — In(1 + 27) u

For the parallel case the iteration matrix is given by

This happens when

or

L+U
I
Tpy = 1-:27')
I L+U
where
A=D-L-U,
L+U =VAVY,

16

and [|V||, = 1. The norm of the k'™ power (assuming k > n) of the iteration matrix, which controls the

rate of convergence, is given by
Ak
C{c Ak—l Ak

1

TX =
I PJ“2 1+ 27‘)k CkAk-T
r

C,’:Ak‘"' o CfAk" - C{“Ak‘l AF
where Cg are the binomial coefficients.

Theorem 6 In the temporal parallel case, the point Jacobi method takes at least k iterations to converge

where k is the solution to the equation
ct ok
An (14 2r)k

/\:21’008(T)
m+1

Proof: The iteration converges when ||T’“||2 < €. Since the norm of any matrix is greater than the largest

with

entry in a matrix we have

T, > CRllAF=",.

Since A is the matrix of eigenvalues of the original iteration matrix we have

k—-n
k-n|| _— Ll
IA®="[], = 27 cos (m+l) .

Therefore the iteration converges when

T, <e,

k-n
C,’i(?rcos(T)) <,
m+1

or when k is greater than the solution of the equation

or

Ck Xk

2_ - __—¢ 1§
a1+ 2r)F €

17

Jacobi Efficiency for r = 1

o:actual
0.9r + : predicted .

efficiency
o o o o
N (%] o (4]
) .

o
o
T
.

o

Figure 1: Predicted vs. Actual Efficiency for m = 60 r = 1

6.2 Numerical Results

Since the above expression for the number of iterations cannot be solved for in a simple manner we present
the numerically determined values for k. We also present the number of iterations that were observed
experimentally to validate our claim. In Figure 1 and Figure 2, we present graphs for the computed and
experimentally observed efficiency of the parallel scheme for two different values of ». As can be easily
observed, the efficiency of the parallel scheme decreases rapidly with increasing n.

This qualitative behavior is largely independent of m as can be seen from the graph in Figure 3, in which
we show the efficiency of the parallel scheme for different values of m. Clearly, the efficiency does not stay

constant as claimed in [7].

7 Point Gauss-Seidel Iterative Schemes

In this section, we consider the point Gauss-Seidel scheme using the backward Euler method. We are unable
to derive a lower bound for the 2-norm of k** power of the Gauss-Seidel iteration matrix. We present

numerical results to demonstrate that the efficiency of the parallel scheme goes down with increasing the

18

Jacobi Efficiency for r = 100

efficiency
o o
[5,) (0]
T T

o
i
T

03r

0.2r

o: actual
+: predicted

0.91

0.8

0.7

efficiency
o
(52

1
S

0.3

0.2

0.1

25

2: Predicted vs. Actual Efficiency form = 60 r =

Jacobi Efficiency for different m

o:m=60
+:m=1000

Figure 3: Efficiency for m = 60 and m = 1000

19

Gauss Seidel Efficiency form = 1000 r = 1
1 T T T T

efficiency
o
=

Figure 4: Efficiency for m = 1000 r = 1
number of parallel time steps contrary to the claims made in [7] that it remains constant.

7.1 Numerical Results

In Figure 4 and Figures 5, we show the efficiency of the parallel scheme for two different values of . As the
graph shows, the efficiency decreases with increasing n.

In Figure 6, we show the behavior of the parallel scheme for two different values of m. As the graph
shows, the efficiency decreases rapidly with increasing n irrespective of the value of m and does not stay

constant.

8 Conclusions

We have analyzed the numerical solution of a linear, one-dimensional, time-dependent PDE using temporal
domain parallelism. We have shown that the increase in the number of iterations required for the convergence

of block and point Jacobi and Gauss-Seidel methods negates any advantages of temporal domain paralleism.

20

efficiency

efficiency

Gauss Seidel Efficiency for m = 1000 r = 100

0.9F

0.8f

0.7f

o
[}
T

o
o
T

0.3

0.2r

0.1

Figure 5: Efficiency for m = 1000 r = 100

Gauss Seidel Efficiency for m = 60 and m = 1000

25

0.3r

0.2f

+:m = 1000
o.m=60

0.1

Figure 6: Efficiency for m = 60 and m = 1000

21

25

References

[1] G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins University Press, Baltimore, MD,
1989.

[2] J.H. Saltz. Parallel and Adaptive Algorithms for Problems in Scientific and Medical Computing. PhD
thesis, Department of Computer Science, Duke University, Durham, NC, 1985.

[3] H.A. Schwarz. Uber einige abbildungsaufgaben. Ges. Math. Abh., 11:65-83, 1869.
[4] R.S. Varga. Matriz Iterative Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, 1962.

[5] D. Womble. A time stepping algorithm for parallel computers. STAM J. Sci. Stat. Comput., 11(5):824-
837, 1990.

[6] P. Worley. Parallelizing across time when solving time-dependent partial differential equations. In

D. Sorensen, editor, Proc. 5th SIAM Conf. on Parallel Processing for Scientific Computing. SIAM, 1991.

[7] J. Zhu. A new parallel algorithm for the numerical solutions of time dependent partial differential
equations. In Proc. Technology Focus Conference, April 5-7, 1992, University Partners Program, Super-

computing Systems Division Intel.

22

