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Abstract

Tactical situation assessment is the analysis of a battle situation to determine enemy capabilities and
intentions. One way to perform this analysis automatically is to divide the battlefield into meaningful regions,
based on trafficability and capacity, and find which regions can be used to attack or travel to which other
regions. After this off-line analysis, a particular tactical situation can be analyzed by generating paths for
flow of enemy forces, finding weak spots in that flow, generating counterattacks for friendly forces, and so
forth. The static ‘and dynamic relationships among regions and force entities can be displayed graphically,
revealing important tactical features to a human user. The user can interactively alter the forces on the
battlefield, and call for new battlefield scenarios. The proposed representation of alternative enemy plans
may provide an efficient basis for specialized plan recognition.




1 Introduction

Tactical situation assessment is the process of analyzing battlefield terrain, enemy force dispositions
and objectives, and intelligence reports, in order to arrive at an assessment of the enemy’s intentions and
capabilities. The present report describes software developed at Yale over the past two years (under contract
number DAAB10-86-K-0604 from the Army Center for Signals Warfare) for performing simple tactical sit-
uation assessment. The software does not do the job completely, but represents an experimental foray into
some of the harder aspects of the problem. The domain of tactical situation assessment is a good one for
Al application, because it allows us to explore tough issues of plan recognition and abduction in a relatively
contained environment.

In real life, a battlefield commander brings a creative intelligence to this task. He! knows a lot about the
enemy’s past history, the overall context of this one engagement area, the ultimate objectives of the enemy,
and so forth. It is important in applying Al techniques to a problem like this that one not plunge headlong
into anthropomorphism, attempting first to code up some “knowledge” and type it into fhe computer. Al
is no different from any other area of Computer Science when it comes to solving problems. We must
think carefully about the problem, and about algorithms and data ;tructurw for solving it. The main
difference between AI and other approaches is a somewhat greater willingness to think heuristically and
program symbolically. Hence, it what follows I will be careful to outline exactly what the algorithms we
have developed can and cannot do. I will in the end talk about how they could be extended to handle more
complicated problems. |

I will view tactical situation assessment as fundamentally a problem in plan recognition, the inference
from the enemy’s actions to the plan of the enemy that best explains those actions. This already represents
a narrowing of the problem, because in many situations the enemy is doing nothing, or merely reacting to
our plans, and the assessor should say so. I will assume that the enemy is planning to do something concrete
in the near future, and on a battlefield that implies that he is ready to go somewhere and shoot something.
The current set of algorithms will never report that “The enemy is in full retreat under our attacks, and is
weakest in Sector R.”

On the other hand, the algorithms cannot print out a detailed summary of the enemy’s plans, or even a
summary of all of his possible plans. There are too many possibilities. Instead, the algorithm must assign one
or more tactical significances to each piece of terrain on the map, and assume that the observed or predicted
presence of the enemy on that piece of terrain means that he is trying to exploit its tactical significance.

The print-out will therefore emphasize where the enemy is hypothesized to be, where he is going, and why

1 or she, and similarly for all other masculine pronouns in this paper




someone might be trying to go to each of those places, but will leave it to a human to piece those motivations
together into a coherent plan.? '

The Combat Intelligence field manual (U.S. Army 1971) distinguishes five “military aspects” of terrain:
observation and fire, concealment and cover, obstacles, key terrain, and avenues of approach. A trained
intelligence officer can look at a map and see that a certain bridge is a piece of key terrain, or that a forest
provides concealment from aerial observation. I will be talking about several of these aspects, not always in
terms a soldier would recognize, but one thing should be made clear now: The present research neglects most
of the things an intelligence officer sees on a map, including the bridge and trees just mentioned. Instead,
I assume that the battles are being fought on a cloudless day on the moon, so that there is nothing in the
vicinity to think about except mountains and boulders. The reason for this simplification is that the shapes
of the mountains and boulders are harder to think about than bridges and trees, and I wanted to work on
the hardest part of the problem first. This decision may seem backwards to a nonexpert in Al, so let me
explain. A bridge can just be marked as a crucial conduit from one side of a river to another. A forest
can easily just be marked as providing concealment. Such symbolic features are the stock in trade of Al
programs, and will present very few difficulties. But it is less plausible that a human will be willing to go
carefully over a topographic map and locate all the avenues of approach. Here we demand thaf the program
extract such useful features for itself, from raw elevation data. Much of our effort has been spent on this
task, since we are confident that analysis of bridges, forests, and towns can be put in later.

Hence the inputs to the program are as follows:

1 Elevation data: A map of a battlefield, roughly 10 km on a side, divided into 100 m by 100 m pizels,
with a single elevation number for each pixel.

2 Accessibility data: One bit per pixel stating whether the pixel is traversable by a military unit of
significant size at the division level (i.e., a company or battalion). A pixel could be untraversable
because of excessive steepness, or for some other reason.

3 Force concentrations: Hypothesized friendly (“Blue”) and hostile (“Red”) force concentrations, each
represented as a location in Cartesian coordinates and an estimated size.

4 Red objectives: Hypothesized objectives for the enemy, represented as a location in Cartesian coordi-
nates and an estimated force requirement to carry out some mission at that point. The program has no
other way of figuring out where the important overall objectives are, because those will usually depend
on factors outside the map area.

The program, called YATS, operates as follows: Offline, it performs an analysis of the terrain, dividing
it into compact regions of approximately uniform width and finding line-of-sight relationships among them.
The result is a terrain-analysis graph that summarizes the important aspects of the terrain. This analysis is
fairly time-consuming, but need be done just once for a battlefield area.

Next, YATS collects force concentrations and objectives. The program traces out possible attack routes

for Red forces toward their objectives. It tags every region with an estimate of the “expected” force that will

2 Here and elsewhere I will admit that our treatment is somewhat abstract, and not based on detailed models of the thought
processes of real G-2s and commanders. I really don'’t know whether the output of this program would be directly useful in its
present form. It will be clear later that this really doesn’t matter so far, given other limitations of the system.




traverse it from each source to each sink, where “expected” is used be analogy with the statistical concept
of expected value. That is, the program does not literally expect an attack in this strength through this
region,‘but over many such situations in which Red attacks these objectives, it expects to see a force of this
strength on the average. (Even so qualified, this definition must be taken with a grain of salt, given the
factors the current program neglects.)

After generating a preliminary Red attack flow, the program identifies a certain class of pieces of key
terrain, namely those that could be used to counterattack against the advancing Red forces. These terrain
areas become objectives in a Blue counterattack, which is generated using the same force-flow algorithm.
Finally, the Red attack is rerun, taking into account anticipated Blue responses. The results are displayed
graphically.

The current program does not attempt to match intelligence data with the projections arrived at, in
order to sort out what actually happens from all the possibilities. This is an obvious area for future ;esearch.

In the rest of this report, I will describe each of these phases in more detail.

2 Region Analysis

The first phase is an off-line grouping of traversable pixels into regions, resulting in a graph of the
interesting relations between regions. There are two criteria of interestingness: mobility and attack. We
want to place links between regions that adjoin, and between regions that have a clear view of each other

even though they don’t adjoin. These two computations are quite different.

2.1 Grouping Pixels into Regions

Every pixel is classified as traversable or untraversable, up front.® This dichotomy is based on the
idealization that every pixel (which, you will recall, represents a 100 m square portion of the world) may
either be traversed by military forces or not. It is hard to be entirely comfortable with this idealization,
but it seems reasonable if we focus our attention on the kinds of forces expected at the division level.
Smel! harassing or reconnaissance teams might well go where battalions cannot go, but we can neglect that.
Presumably a commander assumes that his movements are always observed and always subject to harassing
fire.

The purpose of dividing the map into regions is, in essence, data compression. By thinking of a region
as a unit, we save the effort of thinking about every pixel. For many purposes, it doesn’t matter exactly
how we divide the map into regions; if there are a few too many, our algorithms will sthive. There are two
main principles we adopt in dividing into regions: A region should be of approximately uniform width; and

long thin regions ought to be straight. The first principle derives from the fact that the chief constraint on

3 It would be easy to derive this information purely from elevation data, but other considerations may enter into it.




the motion of forces through a region is how wide it is. The width of a region varies throughout, and is hard
to define for an arbitrary region. We will describe one heuristic attempt below.

The second principle derives from the fact that long thin regions serve as conduits or, in military
parlance, “avenues of approach,” to other places. If such a region has a sharp bend, then it should be broken
at the bend so that it each half will have a definite direction. That way, the presence of troops moving
through a region will strongly suggest a destination.

The second principle does not come into play until a preliminary grouping has been found. After that
the algorithm finds polygonal approximations to regions, and makes sure that long thin ones are straight.
The preliminary grouping is found by propagating numbers through grids of pixels. These numbers are an
attempt to approximate the “local width” of an area of the map. A spine pizelis a traverséble pixel that
whose distance to the nearest untraversable pixel is a local minimum. For spine pixels, this distance is half
the local width of the region. To extend the local width to other pixels, we must do two things: eliminate
spurious spine pixels, and assign every pixel to some nearby spine.

The first phase is to find spine pixels. The algorithm labels every pixel with its Manhattan distance
to the nearest untraversable pixel. That is, it first label untraversable pixels 0, every traversable one oc.
Then it labels every pixel with 14the label of its smallest neighbor (using 8-neighborhoods) This algorithm
repeats until there are no changes, at which point every pixel will be labeled with its distance to the nearest
untraversable pixel. )

We have been running this algorithm on a TI Explorer 2, which provides acceptable performance.
However, these algorithms are well adapted to running on a parallel machine such as the Connection Machine
(Hillis 1985) For this reason, I have actually written the low-level pixel-propagation code in *Lisp (Thinking
Machines 1986), a dialect of Lisp that exploit the parallelism of the CM. On the Explorer, this code runs
using a lazy-evaluation simulator, which imposes an overhead over just using arrays of numbers. Apparently,
this overhead is quite acceptable. In what follows, I will omit further references to the CM simulator, but a
more detailed description of it will be found in the Appendix.

The next step is to find local maxima using 8-neighborhoods. That is, for every pixel, if its eight
neighbors are no larger than it, label it a local maximum. Such local maxima correspond to the centers of
regions. If a region is long and narrow, the local maxima will be found at a ridge running down its spine.
Unfortunately, in practice things don’t work out so prettily. If a region varies in width or has wavy borders,
there will be lots of local maxima, corresponding to little fragments with different Manhattan distances to
their borders.

The next step compensates for those imperfections. The numbers are propagated from local maxima to
their neighbors, so that in the end every pixel is located with a good guess as to its local radius. We actually
store three numbers with every pixel. One number, M, is the actual maximum assigned to a pixel; when

the algorithm is done, every pixel in a region will have the same M value. The second, D, is the distance to
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the pixel where the M value came from. The third, R, is the value of the nearest local max, which may be
smaller than M if a larger M value propagated through a local max.

There are three ways in which these numbérs propagate. The simplest is “downhill propagation.”
Suppose pixel P, is sitting next to pixel P;, and P, is not a local maximum. (So its D is greater than 0.)
Then if P; is closer to a bigger local maximum than P, currently is, we label P; with the local maximum
from P,. This process eventually labels every pixel that is not a local maximum with the M value from some
nearby local maximum. As it goes, it labels pixels with increasing D numbers, keeping track of the distance
to the source of the M value; the R values are the same as the M values.

In addition, spurious local maxima must be overwritten by dominating alternative maxima. The basic
idea is to label pixels with the nearest local maximum. So if a pixel sees a neighbor with a smaller D value,
it copies its maximum over (and takes a D value one greater than its neighbor). We also use a smoothing
technique, which applies to a pixel P, with a smaller M value than its neighbor P;. If P;’s value is  than
1.2 times P;’s, or if the distance value D for P; is exactly equal to P;’s +1, then P,’s gets written to P;.
This algorithm tends to merge adjacent regions with “essentially the same” maximum value.

At this point every pixel is labeled with a number that represents the local maximum that propagated
to it, which is roughly proportional to the width of the region the pixel is in. We will call this the radius
bf the region. Now find contiguous blocks of pixels with the same radius, and label every pixel in a block
with an arbitrary integer which will be used as a region id for that region. In figure 1, the resulting region
boundaries have been drawn using heavy lines. There are three regions, the left with radius 4, the upper
right with radius 8, and the lower middle with radius 2.

The next task is to find polygonal approximations to the boundaries of each region. There are several
ways to define what we mean by approximation. We are currently assuming this definition: One polyline
L, approximates another Ly if each vertex of Lo is also a vertex of Lo, and for all pairs of adjacent vertices
vy, in L, the vertices between vy and vy in Lo are sufficiently close to the line between v, and v; in
L;. The meaning of “sufficiently close” will depend on the width of the region whose boundary is being
approximated.

Now, to find a polygonal approximation to a region boundary, we first find, for each boundary vertex
vg, the furthest vertex v, on the same boundary such that some line through vy is sufficiently close to every
vertex between vy and v;. Call v; the “partner” of vo. Then we take the vertex vy with the furthest-away
partner vy, and test whether the line from vg to v; is a legal approximator of all the vertices in between. If
not, we set v; to the next vertex, one step closer to vg. Repeat this until a legal approximator is found. We
now have approximat.ed one piece of the region boundary. We snip that piece out, and approximate what is
left.

There are actually two kinds of boundary to worry about: a boundary between two traversable regions,

and a boundary between a traversable region and an obstacle. The former are guaranteed to be short, so

6




ARy

Figure 1 Approximating regions by polygons

we just approximate them with a single straight line, which becomes a portal between the two regions. The
latter require the approximation algorithm described.

Applying the polygonal-approximation algorithm to figure 1 might give the result shown using heavy
lines.

Now we can classify long, straight regions as conduits, everyone else as a “blob'.” Unfortunately, i*. may
be the case that a region of constant width corresponds to several conduits. The region on the left in figure 1
is an example. Hence we must take our polygonal approximations, and break them into actual conduit-like
pieces if possible. A conduit is defined as a subregion of approximately constant width bounded on at least
one side by a long straight line. Since we have already found linear approximations to the boundaries of
regions, and the regions are of approximately constant width “everywhere,” all we have to do is find long
straight lines, and break out the subregions they bound. By “long” here we mean long compared to the
region width. This operation may reveal that a region consists entirely of a single conduit; or it may break a
thin curving region into a chain of conduits; or it may break a region down into conduits and blobs. Except
for the first case, this further breakdown introduces new regions, with portals to each other and to old

regions.*

4 The current implementation does not actually include the code to do this breakdown, although it has been written.




2.2 Line-of-Sight Analysis

The observation-fire pair is complementary to the concealment-cover pair. What is crucial to all these
concepts is the idea of “line of sight.” If a person at point A is to observe an object at point B, there must
be a line of sight between them; and if the object at B is to remain concealed, there must not be. It is not
always necessary that a defender be visible from the position of an attacking weapon, but he must be visible
from whoever is controlling the fire of that weapon.

There are two ways to approach the line-of-sight problem, at the region level or the pixel level. At first
glance, it looks as if we are mainly interested in line-of-sight relations between areas, and hence it might be
wise to postpone line-of-sight calculations until after segmentation is done, and then search out from each
region to find places to attack it from. But searching out from a region is a fairly clumsy operation, and
often we are interested in more than just whether anything would be found by such a search. We might, for
instance, want to know the shape of the area in region A that can spy some part of region B, and figuring
that out requires finding all the pixels in A that can see some pixel in B. Hence we have tried a more
ambitious approach, finding all pairs of pixels that can see each other, and later clumping together pixels in
region A that can be used to observe pixels in region B.

It may sound as if just storing the intermediate results of this computation would be prohibitive. A
map typically consists of about 104 pixels,® so we might have to examine and output 102 pairs. Fortunately,
we can use hierarchical techniques for representing and computing the pairs. The line of sight from most
pixels terminates fairly quickly; when a pixel has a loﬁg view, it can typically cover a wide area as well.
These facts suggest analyzing the map at a coarse rmlutioﬁ first, ﬁsing “fat” pixels called pizblocks that
cover many actual pixels. There are three possible outcomes to a comparison between two pixblocks P1 and

P2 at the coarse level:
1 You can see any point of P2 from any point in P1. (Complete visibility)

2 You cannot see P2 from any point in P1. (Complete invisibility)
3 You can probably see some point in P2 from some point in P1.
If the outcome is 1 or 2, then we can stop, storing the result at the coarse level. Future retrievals from
any pixel covered by P1 or P2 must be careful to check the higher-level pixblocks to catch such relationships.
If the outcome is 3, then the algorithm must recurse, checking all pairs of sub-pixblocks, one drawn
from P1 and one from P2. The recursion ceases with pairs that can see each other completely or not at all;
or with paifs of elementary pixels, for which outcomes 1 and 3 are counted the same.
We obtain the coarse levels in the obvious way: Map pixels are clumped into two-by-two groups, making
coarser pixels four times as big. These are then clumped in the same way, and so on, until a single fat pixel is
obtained covering the whole map. We will use the word pizblock to cover these things, and count individual

pixels as zero-level pixblocks. With each pixblock we store its maximum and minimum altitudes, that is, the

5 Actually, in our current examples, more like 2 x 103,



max and min of the altitudes of any sub-pixel. In addition, we record whether a pixblock is flat, meaning
that it is approximated well by a plane, or bumpy. I will be more precise about the definition of flatness
later.
This algorithm wins over brute force if it succeeds fairly often in analyzing two broad, flat areas without
descending to their pieces. It will often happen that the algorithm will not realize that P1 is completely
“visible to P2, but after recursion will find that every sub-pixblock of P1 can see all of every sub-piece of
P2. In this case we want to do data compression, and store a single pointer pair between P1 and P2 rather
than sixteen pointer pairs between their sub-pixblocks. (This idea is reminiscent of quadtrees (Samet 1985,
Samet and Webber 1988), but differs in that each pixblock summarizes information about its components,
instead of serving merely as an indexing structure for them.)

The algorithm starts with a map of elevation data, and imposes a hierarchy of pixblocks on it. It then

calls (PAIR-ANALYZE P P), where P is the top pixblock, and PAIR-ANALYZE is defined as follows:

; Set up pointers between pixblocks.
(PAIR-ANALYZE (P1 P2 - pixblock)
(LET ((VR (Find line-of-sight relation between P1 and P2)))
; VR is either TOTAL, PARTIAL, or NOKNE
(CORD ((It’s TOTAL)
(Set up a VISIBLE pointer pair between P1 and P2))
((It’s BOKE)
(Set wp an INVISIBLE pointer pair between P1 and P2))
((It’s PARTIAL)
(COND ((At bottom level)
(Set up a VISIBLE pointer pair bdween
P1 and P2))
(T

(Enumerate traversable sub-pairs

S1 and S2 of P1 and P2
(PAIR-ANALYZE S1 S2))

(Consolidate pointers; that is, if all
four sub-pizblocks of P1 or P2
are pointed to by some pizblock, replace
with a single higher-level pointer.
Do this for both VISIBLE and INVISIBLE
pointers.)) )) )))

It remains to describe the algorithms for testing pixblock intervisibility. There are three cases: testing
whether P2 is completely visible from P1, testing whether whether P2 is completely invisible from P1, and
testing whether a pixblock is completely visible to itself (i.e., is flat enough that all its sub-pixblocks are
completely visible to each other). Of these, we will focus on the first case. The third is basically a matter
of whether the terrain inside a pixblock P is flat enough that given a “periscope” of height h we could see
over any hijll.

When a pixblock is tested for flatness the first time, the program runs a standard, somewhat expensive,

flatness test, and the result is stored on the pixblock so the test doesn’t have to be repeated. The test is
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quite straightforward. First, the program finds the approzimating plane for the pixblock. This is a plane
containing the point zq, yo, 20, Where zo, yo is the center of the pixblock, and zg is its “average” height (i.e.,
the average of its min and max heights). We need to constrain the remaining three degrees of freedom for
the plane, which may be represented as the normal vector through zg,y0,20. We obtain such a constraint
by assuming a slope in the z and y directions equal to the average slopes to neighboring pixblocks. That is,
if D is the diameter of the pixblock, the average z-slope is

2241 neighbor — 2z~1 neighbor
2D

and similarly for y. If we let X and Y be vectors pointing along the z and y axes with these slopes in the 2
direction, then the normal vector in the plane is X x Y, the cross product of the two.

If a piece of terrain is exactly planar over a wide area, then the pixblocks in that area will coincide with
their approximating planes exactly. To the extent that the terrain is bumpy, the quality of the approximation
will degrade. Actually, there are two ways it can degrade. It can simply have many bumps, or it can be
smooth but far from planar. The program can test for both these conditions the same way. It checks
every pixel (not pixblock) inside the area being approximated to see how close it comes to the proposed
approximating plane. If every pixel is within a fixed distance, the pixblock passes the test. (The distance is
currently 10 m.)

The test whether a pixblock is entirely visible to itself consists just of‘the,ﬂatn&ss test. The test of
visibility between two different pixblocks P1 and P2 is more complex. We want the test to be as accurate as
possible, but we are willing to sacrifice some accuracy for speed. Hence we make a simplifying assumption,
that we can find two points, one in each of the two pixblocks, such that if something blocks the view between
these two points, then there is no view between any two points in P1 and P2. These two points are called
the partial-view sighting points between Pl and P2. Furthermore, if the two pixblocks are approximately
planar, then we assume there are two points, one in each pixblock, such that if nothing blocks the view
between them, then nothing blocks the view between any two points in P1 and P2. These are the total-view
sighting points. Figure 2 shows how these points are found. We draw a line between the centers of P1
and P2. We then find points on that line that are highest above the approximating planes to serve as the
partial-view sighting points. If the two pixblocks are approximately planar, we choose the lowest points
above the approximating planes to serve as the total-view sighting points.

The program that does all this is called OTRER-VISREL. It takés two arguments, P1 and P2, representing
two distinct pixblocks, and returns one of TOTAL, PARTIAL, or BONE, depending on the quality of the view
between P1 and 2. It can return TOTAL only if P1 and P2 are flat and bigger than a single pixel. If
either is bumpy there is no way to judge whether there is a total view between them without descending
to sub-pixblocks; and if they are single pixels there is no point in distinguishing between partial and total
visibility.

10




Srgnting Foints
P1 P2 = Partial-view . /
P2
71,72 = Total-view
TOP VIEW

T2

7

SIDE VIEW
P1

e

Figure 2 Sighting Points between Pixblocks

Hence the algorithm first computes the approximating planes of P1 and P2, and finds the partial-view
sighting points between them. If the conditions are met, it sets boolean variable COULD-BE-TOTAL to frue,

and finds total-view sighting points. It then executes the following loop:

(LOOP FOR (Pizblocks between P31 and P2)
UNTIL (All pizblocks ezamined)
RESULT (COFD (COULD-BE-TOTAL ’TOTAL)
' (T ’PARTIAL) )
URTIL (A pizblock blocks the partial-view sighting line)
RESULT ’NONE
(coND (COULD-BE-TOTAL
(!= COULD-BE-TOTAL
(The pizblock doesn’t block the total-view
sighting line))) ))

The loop repeatedly checks intermediate pixblocks to see if they block the partial-view sighting line
(i.e., the line between the partial-view sighting points); and, if the total test is still alive, if they block the
total-view sighting line. As soon as the total-view line is blocked, the total testing is turned off. As soon as
the partial-view line is blocked, the algorithm stops and returns NOKE.

The test for whether intervening pixblocks block a sighting line also sacrifices accuracy for speed. We
model each such pixblock as a cylinder with a beveled top. If the pixblock is flat, we use its approximating
plane as a model of its surface. (Figure 3) Otherwise, we model its surface as a horizontal plane, at either the
maximum height of the pixblock or its minimum height. We use the minimum height for the partial-view
test, the maximum for the total-view test. That is, for there to be a total view, the intervening bumpy

pixblock must be incapable of blocking the total line no matter where its highest bump occurs. But for a
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Figure 3 An Intervening Pixblock and How it Might Block the View

partial view, the algorithm gives the intervening pixblock the benefit of the doubt in letting it get out of the
way. A ) , ‘

The test whether a pixbiock modeled this \;vay might actually block the view is then quite simple. We
test to see if the line between the two sighting points intersects the cylinder. This is just a test for whether
the projection of the line into the zy plane intersects the projection of the cylinder — i.e., a circle. If it does,
there is a further check for whether either intersection point is below the plane of the top.

On simple examples, the algorithm runs fairly quickly, although there is room for improvement. On
a map 66 by 35 pixels (i.e., representing a battlefield of 6.5 by 3.5 kilometers), it takes 30 minutes to do
a line-of-sight analysis. Part of the speed is obtained by avoiding testing pixblocks that are marked as
inaccessible. One way to speed the algorithm up further would be to do the pixel-level analysis in parallel,

on a Connection Machine. We have not given this much detailed thought, since the results of the analysis

can be saved on disk and restored, which is entirely adequate for experimental purposes.

2.3 The Terrain-Analysis Graph

The output of region analysis is a terrain-analysis graph, which gives a description of every region and
the relationships among them. Regioas are described in terms of their (approximate) width, a boundary,
their portals to other regions, and their attack relations to other regions. We have dealt with all but the last
in Section 2.2. Here I will describe how attack relations are found.

A view link between two regions consists of the following four items:

12



1 The higher of the two regions, Ry

2 The lower of the two, Rp

3 The piece of Ry that has a view of R,

4 The piece of Ry that can be seen and shot at

The “pieces” in this data structure consist of unstructured collections of pixblocks. It would be easy to
provide more structure, such as a polygonal approximation.

Finding view links is straightforward given the data structures the algorithm has already computed. The
line-of-sight analyzer keeps track of the regions that each pixblock overlaps. (At the lowest level, of course,
each accessible pixel is in exactly one region.) When the analysis is complete, the program enumerates all
regions, and, within each region R all its pixblocks, looking for pointers to pixblocks in other regions whose
average altitude is lower. For each such partner region R’, the pointers from pixblocks in R to pixblocks in
R’ are collected. When R has been scanned completely, the result will be a list of regions that R can attack,
plus pairs of pixblocks that can see each other. These pairs are then divided into a group of pixblocks in
R and a group in R', which become subreéions A and A, and < R,R', A, A’ > then becomes a view link,
which is pointed to from both R and R'.

3 Force-Movement Analysis

Once the terrain-analysis graph has been produced, YATS can use it to produce tactical scenarios.
These represent courses of action that Red might take, and possible Blue responses. Such predictions can
then be matched against incoming intelligence reports to provide a hypothesis about what is happening.
However, we do not attempt to provide detailed plans and counterplans for either side. The combinatorics
would simply overwhelm us. Instead, we produce an abstract representation that subsumes all of an agent’s
possible plans, and reason about these representations in doing counterplanning and matching. The abstract
representation is called a “flow graph,” and it consists of a table specifying the ezpected force flow across
every portal in the battlefield.

The algorithm assumes reasonable hypotheses about the current positions of force elements. These
do not have to be completely accurate. It also must be given all possible objectives. Each hypothesized
concentration is called a force source. Currently these are represented as straightforward objects that are
associated with locations on the map, and displayed iconically. What the flow graph specifies is a function

F : force-source x portal — amount x time
which gives, for every force source and portal, an expected amount of that source that might travel across
that portal (in a direction given by the sign of the amount), and roughly when the force would get there if
it left now. _

I use the phrase “expected force flow” guardedly. One can think of it as the amount of force that would
make use of this portal on average, if the battle were fought many times, but that is just a convenient image.
There is no rigorous event space here that would justify the use of probability. Still, the numbers at all

portals are supposed to add up to the total amount of the force source (except when attrition is involved).
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If 1/3 of the force from a source goes along route 1, and 2/3 through route 2, that is supposed to indicate
that route 2 is more attractive — “twice as attractive” — as route 1, but that either one is definitely a
possibility. (Splitting the forces is also a possibility, maybe even a necessity, but a more careful analysis of
the capacities of the routes would be required to figure that out.)

The flow graph does not actually tell us about complete routes, but only about fragments of them.
In Figure 4, there are are 2" different routes through the regions shown, but the flow algorithm does not
find them. It only reports that a certain amount of force is expected to flow through each of the regions.
This insensitivity to combinatorics is the great strength of the algorithm. However, it does make extracting
information a bit trickier. If YATS really generated detailed plans and counterplans, then it might generate
a tremendous number, but we would know how to evaluate them. As it is, we have to work harder to get
meaningful numbers out. An example is the attrition calculation. Suppose we want to decide how the flow
will be affected by the presence of hostile troops in a region. We want to do a quick simulation of the possible
battle that will occur there. But what size do we assign to each side? The expected force flows are in general
too small, because if the battle occurs at all there will probably be bigger forces involved than the fractions
generated by the flow algorithm. So we have to guess what the actual size would be in order to predict an

outcome.

Figure 4 A Potentially Combinatorially Explosive Situation
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3.1 Finding Flows

Force flow occurs from sources to sinks, corresponding to force sources and objectives. Inside the flow
algorithm, both of these are modeled as portals, but peculiar portals with just one side. Real portals are
~ straight lines separating regions of different widths, as explained in Section 2.1. The two sides (arbitrarily
called BERE and TEERE) are pointed to by the data structure for the portal. Flows are positive in the
direction BERE to THERE. A source is represented by an artificial portal with BERE=#F,° a sink by one with
TEERE=#F. Flows through these artificial portals are never negative. Portals have Cartesian coordinates,
which correspond to the midpoint of a real portal, or the hypothesized location of a source or sink.

Each portal has a capacity, which represents the maximum number of troops that can flow through it
during the time frame we are reasoning about. The capacity may be thought of as depending on the minimum
of the widths of the regions on either side of the portal. As the flow algorithm progresses, its probes through
the graph may reveal global capacity limitations that prevent all of the capacity of a portal being used. As
forces are backed out of tight squeezes, the capacities in the constrained directions are reduced. At any given
time, there is an “out-capacity” from a region through a portal, which is in general a table giving the current
capacity for each force source.

A sink portal represents an objective, a point to be captured at the coordinates of that portal. Its
capacity stands for the number of troops required to carry out the mission at that point. If there is just one
objective, and we want’all the force to go there, we can set the capacity .very high. The force-flow algorithm
is given a set of sources a.nd sinks, plus some information about_ the time frame of the battle to be predicted.
Each sink can have an associated latency, specified .in a sink-latency table, which is the time within which
that objective must be reached by the forces being pushed through the map.

The algorithm operates by pushing force through the map as fairly as possible while delivering the
maximum amount of force to each sink. The schedules are represented as tables on each portal showing the
forces that have arrived from each source, and when they arrived. Portals start off directionless, meaning
that force can flow through them in either direction. But once a portal has been used in one direction, no
force can flow through it in the opposite direction. Hence all portals that are used get assigned a DIRECTION
in which all lows occur.

We divide the forces as “fairly” as possible among alternative routes to avoid overlooking possibilities.
We do not assume that the forces will actually be divided into small pieces.” If forces are found divided into

small pieces en route to an objective, that is simply an indication that it is hard to predict exactly which

6 oFis Lisp false, which is eq to BIL in Common Lisp. Similarly, Lisp true will be written $T, which is usually written as T
in Common Lisp.

7 It is true that such tactics favored by some military theorists, but we don't want to wire such assumptions into our
algorithms.
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route they’ll take, unless the small pieces actually fit snugly into their respective channels, in which case the
troops have been forced to divide into small pieces simply to get through. It will be seen that the output of
this algorithm makes all sorts of information explicit for use by later stages of reasoning, but does not by
itself print out a useful plan.

It is not enough to find a route to a sink; the route must be traversable within a reasonable time. In
war, all forces must arrive simultaneously to have any effect. As we construct a schedule, we keep track of
when force bundles arrive at portals. If a force element gets so far off track that it can’t get to a sink in the
time allowed, then its meanderings are canceled and it is rerouted.

Delay due to terrain conditions is modeled by specifying a travel speed parameter with every region,
which determines how long a force will take to go one kilometer through it. In addition to the obstacles
presented by the terrain, there are also obstacles presented by enemy troops.® If enemy troops are located in
a region, then any force trying to move through it will be attrited and delayed. These factors are determined
by running a “simulation” of the battle that would ensue if Red and Blue forces both arrived at this region
as promised. More on this in Section 3.3.

Were it not for the “fairness” and maximum-latency requirements, and the need to model attrition, we
could simply use a standard max-flow algorithm to arrive at our result. (Even 1979) (Such algorithms assume
steady flows, but a maximal one-shot schedule, repeated indefinitely, is equivalent to a steady flow.) But,
with the complicafions, what we are really doing is simulating various possible battle scenarios in parallel.
The algorithm works to the extent that all scenarios get included. Formalizing this requirement is not easy.
For now, we focus on ways of extracting important data from flow graphs, and looking for insights into how
and why it works, and for ways to improve it. A quasi-formal analysis of the algorithm is given in the next
section.

The algorithm operates by maintaining three queues of regions, called FORWARD, BACKWARD, and SIDE-
WAYS. The first queue contains regions with force on their in-portals that has not yet flowed out. The second
contains regions with force coming in that has no way to flow out. The third contains regions with force
ccming iz and only unpromising ways to flow out. A portal is unpromising if it doesn’t point toward any
sink. (More precisely: if, for every in-portal, the line from its midpoint to the midpoint of the candidate
points away from every sink.)

The top level of the algorithm loops through these three queus- until they are empty. It starts with
FORVARD consisting of just the regions with sources, in decreasing order of force level. It loops through
this queue, pulling a region off, propagating forces to neighboring regions, and repeating. When force is

propagated to a neighboring region, that region goes onto the forward queue. When force reaches a sink,

€ In case you are confused, in this context “enemy” means, “opposing the side moving the forces.” This side will usually be
Red, so “enemy” usually means “Blue.”
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it is recorded there. Hence, in the best case, this loop succeeds in solving the whole problem, propagating
everything to the given sinks.

The forward-propagation algorithm is fairly complex because of the fairness requirement. When it
examines a region, it can sort its portals into three categories: ins, outs, and neutrals. Recall that all portals
are initially neutral, but a region can’t get on the FORWARD queue without having force coming through one of
its portals toward it, and all such get classified as in-portals. All others are candidates to push force through.
However, not all in-portals can direct flow to all candidate out-portals, for three reasons: (1) During the
forward push, we avoid portals that go in strange directions; (2) we never allow force to go so far astray that
it would be impossible to get to a sink before its maximum-latency period; (3) we forbid force to flow back
to a region that it came from (i.e., a loop in the flow graph). ‘

There is a subroutine to do this analysis, which returns a table showing which in-portals can feed which
out-portals. The forward propagator then calls a detailed flow model to figure out exactly how much of
the force coming can go out, and where to. If it can’t ali flow out, then the resulting “clog” is handled by
backing some of the force out of this region and sending it another way, i.e., by putting the region on the
BACKWARD or SIDEWAYS queue. More on this below.

The model of force flow through a region is entirely controllable by the user, because it is a Lisp program
bound to the global variable REGION-FLOW-MODEL#. In section 3.3, I will talk about how the user might make
use of this feature. In what follows, I will describe the default model supplied by the system.

The model is complicated by two factors: the desire to divide force faﬁly and thoroughly, and the
need to model the attrition 6f the forces marching through this region. Let’s look at the first of these first,
the problem of dividing up forces fairly among several out-portals, given that they have entered a region
from several in-portals, but not every in-portal is eligible to feed every out-portal. We solve this dilemma
by dividing the force at each in-portal proportionally to the capacities of the out-portals. If the resulting
distribution causes the capacity of some out-portal to be exceeded, the algorithm trims all the portals feeding
it by just enough to put the portal right at its capacity. Now it looks for out-portals with excess capacity,
and if it finds one, it sends the surpluses among eligible in-portals there. Then it goes back to remove clogs.
The algorithm repeats until either there are no more clogs, or all the out-portals are full. On each iteration,
this algorithm leaves one more out-portal full, so it is sure to terminate.

This little algorithm is the most complicafed piece of code in the system. One reason for its complexity
is that after backtracking, the capacities of portals are reset, as explained later in this section. Initially every
portal has a capacity t x ¢ in either direction, where t is the maximum time alloted to force movements
(the “time frame”), and c is the capacity of the portal per unit time. After force has been backed out of
a portal, its capacity in that direction is reset to a table of < source, number > pairs, which specifies the
maximum force for each source that can pass in that direction. Hence the flow model must allocate forces
to a backed-through portal in a different way, because increments from different sources are competing for

independent pieces of capacity.
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Putting attrition into the model raises some subtle issues. The main one was mentioned above. An
army’s progress through a region will be dramatically slowed if it is under attack. Indeed, it might not
make it through an otherwise easily traversable area. But figuring out exactly how much damage can be
expected requires knowing what the sizes of the two contending forces are, and this is information that the
flow algorithm does not explicitly give us. The current system takes the average of the expected force in the
region and the total force everywhere as the number. Hence if 40% of the force is expected in an area, we
will assume 70% is there for purposes of modeling battles. This estimation technique is rather crude, and
does not even bother to see if 70% of the total force would fit in the current region. I have not bothered
to correct this problem, because it is symptomatic of a deeper problem, that the system does not currently
calculate the actual maximum amount of force that could be brought to bear on a region. To do this would
require running a standard maximum-flow algorithm (Even 1979), and this is definitely a direction worth
pursuing. For now, the crude estimator works okay.

Once we have estimated the attacker’s force by this method, we have to estimate the defender’s force,
where the defender is trying to prevent flow through this region. There are two models, static and dynamic.
The static model estimates the force based on the locations of forces now. The dynamic model estimates
them based on predicted flows already arrived at. In this case, the number we want is the amount of
force that is expected to flow through this region by the time the battle occurs, an amount that is easily
calculated. Currently, and somewhat arbitrarily, we do not amplify these figures by averaging them with the
total defending force. The rationale is that there is already an exaggerati(‘m due to the fact that we count
all the force that has ever been through this region, which will give the defender the same force to use in
many different locations. ’ '

With our attacking and defending forces arrayed, we can proceed to the actual attrition calculation.
The current model is a throwaway that could no doubt be improved upon easily. It is controlled by three
parameters: DEFENDER-KILL-RATIO#*, number of attackers killed per defender; HARASSMENT-RATIO#*, the
attrition due to artillery fire from a single region that can view this one (a number between 0 and 1); and
DEFENDER-KILL-TIME#*, the time for a superior attacking force to wipe out each defender. If DEFENDER-
KILL-RATIO* x the number of defenders is greater than the number of attackers, then it is assumed the
offense will lose, and the region is treated as if it were a dead end. (l.e., it goes on the backtrack queue.)

Otherwise, let V be the number of enemy-occupied regions that can fire upon this one. Define W =
HBARASSMENT-RATIO#Y . Then the quantity

DEFENDER-KILL-RATIO#* X defenders
adjusted atiackers

A=Wx(1- )

is between 0 and 1, and represents the fraction of the attacking force that will get through. It is multiplied
times each packet of force sent from an i-portal to an out-portal. In addition, there is a substantial delay

when moving through a region under fire. The travel time under fire is modeled as

DEFENDER-KILL-TIME#* X defenders x i
w
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where 1 is the unopposed travel time. That is, the time required to get through the region is the time
required to wipe out the defenders, increased by a factor dependent on the amount of hostile fire. No prizes
are awarded for improving on this model.

" If the forward-push phase does not succeed in getting all of the force from the sources to the sinks (or
to its final reward), the algorithm will detect this fact when there is a clog at a particular region: more force
comes in than can leave. An absolute clog occurs when all portals to that region have been classified as in
or out, and there is no further capacity to be exploited on the out side. A transient clog occurs when there
are potential out-portals that are unused because they point away from all the given sinks. Such transient
clogs can be relieved by allowing forces to flow in such apparently counterproductive directions. Regions
with this kind of clog are queued on the SIDEWAYS queue. Regions with absolute clogs go on the BACKWARD
queue; such a clog is relieved by backing some of the flow out of the region, and sending it a different way.

We have a choice about whether to propagate sideways or backwards first. The current algorithm
tries backward propagation first. That is, when clogs develop it tries redistributing the flow along existing
channels before striking out in new directions.

Redistribution depends on a field called STILLEERE that is associated with every portal, and updated
by every forward propagation. This field is the amount of force that was stranded at the portal. (Actually,
we have a table of source-force pairs, and the STILLEERESs are associated with each table entry.) To undo the
clog at a portal, the algorithm must send enough force back to the region F on the other side of the portal
to make STILLEERE zero. Force never sits in regions, but on portals, so this operation requires moving force
back to various in-portals of F. See Figure 5, where the portal in question runs from F to B, the region that
was found on the BACKWARD queue. (If there is no such F, i.e., if the clogged portal is a source, then we have
detected a global clog, and we just leave it.) Because of the complex attrition calculation, it is impossible to
partially undo the region flow, so we adopt the following stratagem. The backward propagator simply resets
the capacity of the clogged portal from F, and then puts F back on the forward queue. When F is found
on the queue, the battle there will be rerun, but this time fewer troops will be able to make it through the
clogged portal. They will either go another direction, or cause a clog at F that will in turn be backed up.
Because REGION-FLOW-MODEL#* is an arbitrary user procedure, it is possible that a different amount of force
will come through B during the rerun, but the default models will send exactly the same amount through,
and YATS will avoid rerunning B.

Once the inversion has been accomplished for all the in-portals of a clogged region, the other sides of
those portals will have been placed on the FORWARD queue. The algorithm then tries to empty that queue
before backing up another region, pushing the stuff forward by alternative routes.

As ] have mentioned briefly a few times, when the backtracker resets the capacity of one of its in-portals,
it actualfy stores a table of < source, capacity > pairs. Later propagation through this portal will be limited
on a source-by-source basis. For example, suppose that 5 units from two sources come into a portal. Of the

5 from source 1, all 5 continue on to some destination, but all 5 from source 2 are “still here.” YATS resets
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Clog at B must be slleviated by moving
stuff back to in-portals of F from portals
linking F to B.

Figure 5 Backing out of a Region

the capacity to (< source 1,5 >,< source 2,0 >. Later propagations involving source 1 will allow 5 units
through, but propagations involving source 2 will have to go elsewhere. If we did not keep track of things
this tightly, source-2 forces would repeatedly attempt to go through this portal, and repeatedly bog down
somewhere down the line (say, because source 2 is further away than source 1), then get retracted.

The backward-propagation algorithm has one other trick that it tries. It checks to see if one of its
in-portals is reversible, that is, can be switched to an out-portal. This will be true if all the force that has )
flowed through the portal is still here, so sending the excess back will zero it out. If there is some reversible
portal, the program picks one and reverses it, putting this region back on the forward queue. The reversal
may make it possible for force to flow out now; in any case, reversing one portal cannot make things worse
than reversing all of them. ‘

In summary, there are two distinct operations the backward propagator can do: unclogging a region,
which means reversing a single in-portal, converting it to an out-portal, and putting the region back on
the forward queue; and stoppering a region, which means restricting the capacities of all its in-portals and
putting the region on the other side of each in-portal back on the forward queue.

I have as yet not described the SIDEWAYS queue. Whenever the forward-push algorithm finds flow
clogged at a region with a candidate out-portal that points in a strange direction, it puts the region on the
sideways queue instead of the backwards queue. This queue is examined when the other two queues are
empty. Exactly the same processing is done as in the ordinary forwards case, except that portals in strange
directions are treated thé same as all the other portals. That is, material is pushed through to the other
sides of those portals, and if it can’t all get through, the region is added to the backwards queue. This way
of doing things ensures that flow proceeds as much as possible in the general direction of the sinks, but when
all else fails the algorithm takes one step in an odd direction, and pushes forward from there. Once a region

bas experienced sideways propagation, all propagation out of that region from then on is done the same way.
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3.2 Complexity of the Algorithm

This algorithm is quite tricky to analyze rigorously, although it is definitely fast enough in practice. On
moderate-sized graphs, it typically finishes in less than 10 seconds. There are several other places in the
system that require speeding up, but not this one.

However, it is worth pausing to analyze its behavior more carefully. Many algorithms that traverse
graphs can have exponential worst-case behavior, and we need to make sure that this one will run in
polynomial time, O(n3) or better, to be precise. I will analyze a slightly idealized version of the algorithm,

and argue that the actual algorithm will not differ in practice. I start with two assumptions:
1 The number of portals at a region is bounded by a small constant, e.g., 8. This is entirely reasonable

for the sort of planar graphs we are concerned with.

2 The region flow model is monotonic in the sense that more force coming into in-portals does not result
in less force going out any out-portal. This certainly seems reasonable, and holds for the default flow
models.

The flow algorithm starts with an undirected graph, and ends up imposing a DAG on it, by classifying
relevant portals as in or out. (Unclassified portals have nothing flowing across them, and presumably are
useless as routes from force sources to objectives.) Part of the complexity of the algorithm is due to this
DAG structure not being given to start with. But note that the algorithm almost never changes its mind
about the direction of a portal; the only exception is the backward-flow routine’s ability to reverse just one
portal. Such a reversal occurs at most once per portal, because the capacities are changed to make this
impossible again. Hence the algorithm tends to generate a DAG structure quickly, and then adjust the flows
within it. | -

The algorithm has the following structure:

(loop
(loop
(loop forward-propagate from one region
; (Can add to any queue)
until FORWARD queue empty)
backward-propagate from one region
; (Can add to forward queue)
until BACKWARD gqueue emply)
sideways-propagate from one region
; (Can add to forward or backward queue)
until SIDEWAYS gqueue emply)

Obviously, the speed of the innermost loop, the forward-propagation wave, is crucial. If some oracle gave us
the DAG structure at the outset, then this loop could be fast. For one thing, the test for cycles in the flow
could be eliminated. More fundamentally, we could avoid propagating from each region more than once.
Consider Figure 4, in which the flow is from left to right. Suppose, during the forward-flow phase, that a
region is never examined before all the regions to its left have been examined. Then each region will be
examined exactly once, where by “examination” I mean performing the miniature battle scenarios described

above.
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The problem is that we won’t know the DAG until the algorithm is done. To circumvent this, we must
arrange for the system to “notify itself” of the DAG structure as soon as possible. Define the rank of a
region as follows: the rank is 0 if no regions immediately precede it (i.e., it contains a source and is not fed
by any other region); otherwise, the rank is 14 the greatest rank of all regions that immediately precede
it in the DAG. We keep track of an “estimated rank” for each region, initialized to 0, and set to 1+ the

“estimated rank of any region that precedes it when this precedence is discovered, if the new estimate would
be bigger than the old. We then arrange for the forward-propagation algorithm to order regions on the queue
by estimated rank. A given region can have its rank estimate changed at most r times, where r is the actual
rank; the estimate starts at 0, and eventually attains the actual rank. From change to change, a region R is
visited at most once, because if visits to two predecessor regions cause it to be put on the queue, and both
have smaller estimated rank than R, then both will be handled before R is. The rank is bounded by n, the
number of regions. Hence every region can be visited at most n times before its true rank is known, after

which it will be visited at most one more time. So we have this theorem:

Theorem 1 : The rank-estimation version of the forward-sweep algorithm runs in time O(n3).

Proof: The argument was given above. There are n regions, each is visited at most n times, and each visit
takes O(n) time units. This time depends on the loop-detection calculation that is done to prevent the i)AG
from acquiring a cycle; and on the rank-estimate updates for successor regions. One subtlety is that we must
take into account the time to keep the queue sorted. Every time a region is added to the queue, it must be
inserted in the proper ﬁlace. Using standard heap--sort techniques, this can be done in time O(log n), which
is asymptotically insignificant. QED »

The actual algorithm does not try to estimate ranks. Instead, it simply sorts regions by average arrival
times of the forces waiting to be propagated through them. In practice, this has roughly the same effect.
Furthermore, the estimates given above were quite generous. It is extremely rare for a region to be visited
more than once during a single forward sweep, so this part of the algorithm is in practice O(n?).

We have yet to include the operations of the other two queues. Backward propagation would be easy to
analyze if it weren’t for the possibility of single-portal reversal, which moves an apparently clogged region
back to the forward queue. This reversal will lower the estimated ranks of some regions and raise the
estimated ranks of others. (A sweep algorithm to revise the estimates will take O(n) time.) Such reversals
are the only way that rank estimates can change during backward propagation. Hence during the ensuing
forward propagation, there is no need to revise rank estimates or do cycle detection. The existing DAG
structure can be used as is. So (although we don’t bother to do this in the actual implementation) a forward
sweep after a stoppering or an unclogging can employ a simpler algorithm, which sees each region at most
once, sorting regions by existing rank estimates. We will call this a settling forward sweep, versus a pioneering
forward sweep, which can transform neutral portals into DAG arcs. The time for a settling sweep would be
linear except for the priority-queue manipulation, which takes time O(logn). Hence a settling sweep takes

time O(nlogn), while a pioneering one takes time O(n3), as argued above.
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To analyze backward propagation further, I need to make two further idealizations: that all unclogging
is done before all stoppering; and that regions are stoppered in decreasing order of estimated rank. (The
actual structure will be described later.) In other words, we will break the backward queue into two pieces:
an unclogging queue and a stoppering queue. Once all unclogging is done, stoppering can never give rise to

any more of it.

Lemma 2 : After a wave of unclogging, further stoppering and settling cannot be the occasion of more
unclogging.

Proof: Settling does not change the current tentative DAG structure. The only way unclogging can occur is
when a clog develops at a region with an in-portal such that a certain amount of force has arrived at that
portal, and none of it has propagated to an out-portal of the region. But if this is an in-portal, it must
have been so labeled during the previous pioneering phase; that is, something must have come through it.
That something must have been propagated through to an out-portal, or the resulting clog would have been
unclogged already. Hence the in-portal is ineligible for unclogging after this round of settling. QED

The structure of all but the outermost loop of our idealized algorithm is now:

(loop ... pioneering sweep through FORWARD queue ...)
(loop through unclogging queue, choosing one portal in
region to reverse, and putling regions on
FORWARD queue) .
(loop ,
(loop ... settling sweep through FORWARD queue ...)

until Both FORWARD and BACKWARD gqueues are empty
Remove a region from the BACKWARD gueue and stopper
it,adding its feeders to FORWARD queue)

The unclogging step takes time O(n). The last loop’s time depends on how many times it is executed,

which depends on how many times a region can get on the stoppering queue.

Theorem 3 : In the algorithm above, a region can be stoppered at most once.

Proof: Let R be the first region to be stoppered twice. The second time, there must be some R’ such that
there is an out-portal from R to R’, and such that R’ was just stoppered, causing R to be put on the FORWARD
queue, whence it went to the stopper queue.' By hypoih&sis, R’ was never stoppered before, and R was.
Hence the portal between them is in its pristine state, and must be full to capacity with flow from R. If any
of this flow were still here, then R’ would have been on the stopper queue, and would have been stoppered
earlier, before R, because regions are removed from the stopper queue in decreasing estimated-rank order.
Hence, none of the flow is still on the portal between R and R'. But in that case, stoppering R’ will not
cause R to go on the FORWARD queue. This contradiction refutes the assumption that R is stoppered twice.
QED

Putting all this together yields:
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Theorem 4 : The forward-backward portion of the algorithm runs in time O(n?).
Proof: The pioneering sweep takes time O(n®). The unclogging phase takes time O(n). The stoppering loop
takes time O(nlogn), and it is executed O(n) times, once per region stoppered, for a total of O(n?logn).
Hence unclogging and stoppering are dominated by pioneering, and the net complexity is O(n®). QED
Finally, we have to include the time spent on sideways propagation. Each region can be “sideways
propagated” at most once, 8o the maximum number of times the outer loop can be executed is n, giving
a net complexity of O(n*) for the whole algorithm. But this is absurdly pessimistic. The whole point of
sideways propagation is to avoid exploring irrelevant parts of the map, but according to this analysis we
would do better to turn it off and always explore in any direction — the result would be an O(n3) algorithm.
Intuitively, the reason sideways propagation helps is that it allows us to focus on a subset of the regions of
size ng, and if they don’t suffice expand to another subset n;, and so forth, so that the actual complexity of
the algorithm is £n?, which is never greater ’than n3. Unfortunately, this argument is not formally correct,
because the subsets are not disjoint. A sideways propagation will take one step in a funny direction, but
subsequent steps may well merge back in with previously found flows. To deal with this phenomenon,
the algorithm would have to be fiddled further so that there was no hard and fast distinction between
pioneering and settling. Every region would be classified as explored or unexplored. At unexplored regions,
a cycle-detection test would be necessary before sending flow out of neutral portals. At explored regions,
new material would be sent over familiar channels. During a single sideways propagation, material would
obviously stay in explored territory once it got there. Hence, if we let n; be the number of regions explored
on the i’th pioneering propagation (letting the zero’th be the one before the sideways queue is examined for
" the first time), the complexity of each phase would be O(n x n? 4+ nlogn). The first term in this sum comes
from the pioneering phase (each new region is seen at most n; times, and each cycle-detection take O(n)
time units); the second term comes from the settling phase. The second term is negligible, so, if there are k

sideways phases, the net complexity is
O(nZ{o(n)) whereZi_on; < n

which is the same as O(n3).

This argument is not exactly rigorous. I will not bother to make it so, because its conclusion is, I
believe, overly pessimistic, even for the idealized version of the algorithm. In practice, the actual algorithm
has time complexity that is closer to O(n?), as explained. It is probably possible to prove a tighter bound
than the n3 obtained above, but it seems much more important to get some experience with the algorithm,
and understand better what it computes, if anything.

Let me summarize how the idealized algorithm differs from the actual implementation:

1 The real algorithm does not keep queues sorted by estimated rank. The FORWARD queue is kept sorted
by arrival time of forces; this is probably better in practice than the idealization. The BACKWARD queue
is simply managed fIFO, that is, as a stack. Hence a region can be stoppered more than once. This
appears not to matter much. 4

2 The real algorithm interleaves unclogging and stoppering. As soon as a region is unclogged, it goes back
on the forward queue. Unclogging is rare enough that this is unimportant.
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3.3 Attrition Models

The current system provides a very crude sort of attrition model. This is the main “hook” the user
has for altering the system, so I will discuss in some detail how the user can go about .using it. To write a
new attrition model requires some knowledge of the way YATS represents regions and other data structures.
Indeed, doing anything sophisticated will require careful study of the program listing.

An attrition model is the value of the variable REGION-FLOW-MODEL#*, which takes a set of inputs
to a region, alters the outputs, and returns a list of regions on the other sides of the affected outputs
(from which flow should proceed). Each portal in a region contains a table of portflows, each a four-tuple
< source, flow, stillhere, latency >. The source is the region the flow started in. The flow is the amount that
reached this portal; stillhere is the amount that could not proceed from here because of capacity or time
constraints; latency is the average time of arrival of the force. (Different fragments of the total flow have
arrived at different times.)

The procedure that is the value of REGION-FLOW-MODEL#* takes two arguments: the region to be flowed
through, and list of transpecs, each a tuple < in, pf, outs >, where in is an in-portal to the region, pfis a
portflow on that portal, and outs is a list of candidate out-portals that YATS has decided are legitimate
candidates for force to flow to from in. (The user’s procedure can ignore this.) The procedure must actually
clobber the portflows on various out-portals of the region. A low-level procedure for doing this is provided,
called ,

(CLDBBER;POR’I'FLOU'source region in out d; d, At)
which alters the flow for the source within region from portal in to portal out, subtracting d; from the flow
at in, and adding d, to the flow at out. (Presumably d, < d;, with equality if there is no attrition.) The At
argument is the travel time taken to cross the region. The procedure
(TRAVEL-TIME in out region)
will give the raw time, but the user’s model may decide the time under the circumstances is longer (or
shorter, for that matter).

If the user’s procedure uses CLOBBER-PORTFLOV, then all low-level bookkeeping is the user’s responsibility.
In some cases, the user is content to let YATS direct traffic, while his code computes the fatalities and delays
due to enemy action. The procedure

(COMPUTE-TRARSPEC-DISTRIBUTION region iranspecs)
returns two values: a Boolean telling whether a clog developed; and a list of “io links” spelling out the traffic
flow. An iolink is a data structure encoding a tuple < in, ipf, out, opf, amt >, specifying a “microflow” of
amount amt from portflow ipfon portal in to portflow opfon portal out. The user needn’t inspect these at
all, but merely pass a list of iolinks L to the procedure

(IMPOSE-TRANSPEC-DISTRIBUTION region L Fg Fj)
where region is the region the flow is going through, and F,; and Fy are attrition and delay functions. F,

takes a force level and returns the amount of it that will get through the region; F4 takes an unopposed
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travel time, and returns the actual time it will take to traverse the region. IMPOSE-TRANSPEC-DISTRIBUTION
returns a list of regions, suitable as the return value of REGION-FLOW-MODEL+.

The default attrition models barely scratch the surface of what’s possible. There is ample scope for
further research here in improving on them. For example, the current system computes the firepower brought
to bear on a force in a region as a function of the opposing forces that can view that region. There are two
versions, static and dynamic. The static version takes the force array that is currently hypothesized by the
user. The dynamic version takes a time-varying force array that is derived from a predicted enemy troop
flow. (See the next section.) In the second version, the total opposing force is computed by checking to see
how much of the enemy’s force can flow into a dominating region from time 0 to the time of region transit.
But suppose that friendly forces can counterattack against that force and wipe it out. Then it would be
advisable to forces transiting the region to wait for that to occur, unless of course they are the forces that

are being counted on to suppress enemy fire! See Figure 6
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Figure 6 Complex Attrition Considerations

The current system neglects most such subtleties.
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3.4 Counterplanning

The force-movement algorithm is not sufficient by itself to generate a complete picture of possible Red
plans. There is more to military planning than figuring out possible lines of march. Once these have been
found, the program goes back and finds possible Blue counterplans, and revises Red’s plans accordingly.

The current algorithm focuses on Blue’s opportunities to disrupt Red’s line of march by use of firepower.
After a preliminary Red flow has been found, YATS looks for sub-paths in the Red flow such that once Red
forces have committed to one of them, the Blue forces will have time to maneuver so as to attack it. The
areas Blue can use for this purpose become objectives in a Blue flow. Red must cope with anticipated
Blue flows along the resulting lines, so YATS runs the flow algorithm again with a dynamic attrition model
reflecting the Blue counterattack.

An intuitive example will make this clearer. In figure 7, once Red forces have entered region 1, they
have tipped their hand. They must be on their way to region 5 or region 3. After that they have further
choice points, but locally they have committed themselves to heading in a predictable direction for a while.
Hence the Blue force will have ample time to take up positions in region 4, overlooking 3 and 5, and bring
damaging fire to bear on the Red forces. The Red flow must be run again, this time through the gauntlet

represented by this attack.
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Figure 7 Red Force Commitment Point

The algorithm finds these possible Blue counterattacks by the following algorithm: For every region
through which Red will march, the view links from potential attackers are examined. For region A to be a
good attack site on region R, A must attack a significant fraction of the total flow (we multiply the fraction
of R that A commands times the fraction of the total flow that goes through R); A must be significantly

elevated over R; and it must not be the case that Red is already planning to march through 4 on its way to
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R. All such attack sites are collected. The same attack site may serve to attack several regions, called its
target. (A may be good even for attacking itself, if Red is planning to march through it.)

Next, for each attack site, YATS finds the commitment point for that attack site, the region R such
that as soon as Red enters R, he has committed to traveling through the target of the attack site. To find
that point, we use a marker-propagation algorithm. First, all of the “predecessors” of the target are marked,
that is, all the regions Red goes through on his way to some element of the target. Each such predecessor
is a candidate for commitment point. Consider a particular predecessor C. If all the force flowing out of C
uitimately flows to some element of the target, then C is a commitment point. It is rather hard to verify that
this is the case. We opt for an approximate algorithm. We mark all of C’s successors that are predecessors of
the target, i.e., all the regions Red can get to after going through C, still on the way to the target. So every
region is either (a) marked as a successor of C and a predecessor of the target, (b) marked as a predecessor
of the target, but not a successor of C, or (¢) unmarked. The “leakage” for C is the sum of the local leakages
for all the regions in category (a). Intuitively, it is the amount that escapes from the area Blue is trying to
confine Red to. C passes the test if the flow into C plus the leakage for C is < 1.2x the total flow into the
target.

Total leakage was defined in terms of local leakage. The local leakage for such a region is defined as

inleak outleak

mleak - tl -
2 x (wmleak x (1 )} + outleak x (1 atiol

)

tntot

where intot and outtot are the total flows into and out of the region, and inleak and outleak are the total flows
into this region from unmarked regions and out of this region to unmarked regions, respectively. (Fractions
of the form 0/0 here are taken as 0.) The expression 2{(1 — I/t) where 0 < ! <t reaches a maximum when
1l =t/2, i.e., when half the flow leaks away. (If all of it leaks away, we are presumably at the target itself,
and that doesn’t count as leakage.)

Some attack sites have no useful commitment point. If a site does, then we can get a good estimate
of the time Blue has to get to it. We just subtract the arrival time at the commitment point from the
average exit time from the target. The resulting time frames will vary from attack site to attack site. When
YATS runs the Blue counterflow, it will make each useful attack site an objective, and give it the time frame
computed in this way. Some places would be great to attack from, but they can’t be reached in the time
allotted. During this Blue counterfiow computation, YATS uses a dynamic attrition model based on the
preliminary Red flow. The result will be a prediction of how much force Blue will be able to bring to bear
on good attack sites for Red’s line of march.

Finally, YATS runs Red’s flow again, this time with a dynamic attrition model based on the Blue
response. The result will be a more realistic reflection of Red’s capabilities, given the likelihood of opposition.
In many cases, the net result is that Red will do nothing, because all avenues of attack will be blocked off.

This algorithm, while it draws some interesting pictures on the screen, must be seen as a prototype at

best. It suffers from several inadequacies, some easy to correct, some hard.
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The most obvious inadequacy, mentioned at the beginning of this paper, is that it is oriented entirely
toward Red attack. If Blue is planning an attack, the current algorithm cannot reason about Red’s possible
defenses. ,

Currently, no attempt is made for Red to suppress Blue fire by attacking some of Blue’s objectives.
Conceptually, we should really run the flow algorithm for each side repeatedly, “until it converges,” that is,
ﬁntil each side has a flow that, as it were, represents the best response to the other’s flow. Unfortunately, it
is not clear how to make this work. A straightforward implementation could easily oscillate, shifting back
and forth among various plans in response to enemy counterplans, which themselves shift, out of phase. One
idea is to average together the flows over several oscillations, and call that the answer.

The commitment-point algorithm has a flaw. Suppose that Blue has two attack sites to choose from,
A; and A,, with commitment points C; and C; so close to A; and Az respectively that there is no time to
get to either of them. Let Co be the commitment point for the union of the targets of A; and A;. There
might be a staging area Ag such that (a) once Red enters Co, there is time to get to Ag before Red has
arrived beyond reach of either A; or As; and (b) after Blue gets to Ap, he is so close to A; and A, that he
has time to get to the appropriate one once Red’s commitment becomes clear. Under these circumstances,

Red should assume that he will meet with opposition should he head for Cj.

4 The Implementation

i have implemented a preliminary version of the system, YATS 1.0, written in Nisp (McDermott 1988)
for the Texas Instruments Explorer II. When the program is running, the user sees the screen shown in
Figure 8. A t;:rrain map appears in the main window. A menu appears to the left. A Lisp “listener”
appears at the bottom. Most interaction is via the menu. Under menu control, the user can input a terrain
map, have it broken into regions, order a line-of-sight analysis, place forces and objectives on the map, and
request a tactical situation assessment. Red forces, Blue forces, and Red objectives are displayed on the map
as boxes with serrated edges, boxes with smooth edges, and flags, respectively. The user can have various
sorts of information displayed under mouse control, including graphical displays of the tactical significance
of various regions and pixels on the map. This display is generated from the current tactical scenario which
is generated when a situation assessment is réqu&sted, and retained until overridden.

The menu entries are in this order:

Clear Clear the screen and discard the current scenario.

Load map Prompts for file name to load map from. (Format given below.)
The raw map contains information about terrain elevation and
traversability. Untraversable areas are displayed in black. Other
areas have altitude proportional to their whiteness.

Find regions The map is divided into regions, as explained in Section 2.1. Re-
gion boundaries are displayed as heavy white lines.
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Clear

Load map

Find regions

Edit objects on map
Save odbjects in file
Restore saved objects
Line-of-sight analysis
Save l-o~s analysis
Restore saved l-o-s
Display region info
Display 1~o-s relations
Display view links
Tactical assessment
Display tactical info
Refresh
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Figure 8 YATS Screen Layout

The user is prompted to click on various map pixels. If a pixel
contains an object already, he is invited to edit its characteristics,
changing its type, attributes, or location. Otherwise, he is invited
to create a new object.

Prompts for file name to store current things on map.
Prompts for file name to retrieve a list of things from.

The analysis described in Section 2.2. This takes about 30 minutes
on a small map, so the results should be saved in a file.

Prompts for file name to store current line-of-sight analysis in.
Prompts for file name to restore sich an analysis from.

The user is prompted to click on various map pixels with the
mouse. Each click causes a small text window of geographical
information about the region containing the pixel to be displayed.
For debugging, the most useful piece of information is the “id” of
the region, which is an integer less than few thousand.




Display l-o-s relations The user is prompted to click on map pixels. Clicking the left

button whitens all the pixels that are visible from this one. Click-
ing the right button blackens all the pixels that are invisible from
it. These two sets should cover the whole map. Clicking in the
middle refreshes the screen.

Display view links The user is prompted to click on map pixels. Clicking the left

button on a region complements every pixel that some pixel in
this region looks down on. Clicking the left button complements
every pixel that looks down on some pixel on the region. This
information is stored in “view links” as described in Section 2.2.

Tactical assessment A tactical assessment is performed using all the of the forces and

objectives shown on the map. First, a Red flow is performed,
using a static attrition model treating only existing Blue force
concentrations. Then a Blue counterflow is done, as described in
Section 3.4. Then a Red countercounterflow is done. The first
few times this is done, it takes a long time, because various ex-
pensive computations are done regarding attack-site quality, and
then cached for future reference. The results of these flows are
saved as the current tactical scenario.

Display tactical info The user is prompted to click on map pixels. Clicking left shows

the role of the region as a Blue attack site. If this region is a
Blue attack site, arrows are drawn to regions that this region can
attack and that Red might be trying to move through. In addition,
the first region where these Red forces are committed to going
through this zone is marked with a big X. Clicking right shows
the significance of this region from the viewpoint of Red defenses.
Arrows are drawn to this region from all the places Blue might
attack it. Clicking middle pops up a text window summarizing in
natural language the schedule of Red and Blue troop movements
through the region, including attrition, plus a list of the attack

relations between this region and others (identified by the integer
id).

Refresh Redraw the screen, including the current scenario, shown as black

arrows for Red movements and white arrows for Blue movements.

To run the program, the hardest thing to provide is the map data. YATS loads maps from character

files with this format:

1.
2:

3:
: R lines, each containing blanks for traversable pixels, nonblanks for untraversable ones (e.g., x’s). If the

Two integers, the number of columns C and the number of rows R in the map.

R lines, each containing C floating-point numbers. These spell out the altitudes of the corresponding
map pixels.

Any number of blank lines, followed by a line beginning with a hyphen (“-).

character “|” is encountered, then it and everything else on the line is ignored, and the remaining pixels
are assumed to be untraversable.

: An optional line beginning with hyphen. If this line is encountered before R lines of text have been

processed, then all remaining rows are assumed to be untraversable.

Each pixel is assumed to represent a square of width and height equal to the value of the global variable
PIXEL-DIAM*, whose default value is 100 (meters).
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To run the program, load the file BUILDYATS.XLD from the top-level YATS directory. Then execute
(LOAD-YATS) and (RUN-YATS). ‘

The map is displayed in the map window. What is displayed is actually the upper-left-hand corner of
the map. If it will not fit on the screen, changed the global variable SQ-PIX-NUMBER#* before loading. This
is the number of screen pixels per map pixel. The default value is 6. Setting it to 4 will cram three times as
much surface area onto the screen. (Later versions of the program should allow zooming, shifting, and map
editing under menu-and-mouse control.)

There are a few other global variables that can be used to control the way the program works. (See
also the attrition parameters of Section 3.3. WIDTE-CAPACITY-FACTOR#* is the number of battalions that can
pass through a portal of width 1 m in 1 hr. The default value is 0.01 (i.e., 1 battalion per hour can travel
through a 100m gap.) The variable DEFAULT-SPEED#* says how fast a unit can travel, in meters per hour.
The default is 2000 (i.e., 2 km per hour). Currently, all regions have this same default speed. To change #
region, set its ! SPEED slot. E.g., to set R1’s speed to 1 km/hr, execute

(t= (!_(region SPEED) R1) 1000.0)

When a tactical assessment is done, various comments will be printed saying what the program is doing
next. To turn this off, set ASSESS-DBG* to #F (its default value is #T). (Recall that we use #T and #F for
true and false.)

If the variable FLOW-DBG# is set to #T (default #F), then a verbose commentary will accompany force-flow
generation. You probably don’t want to see it. ) .

When you do a line-of-sight analysis, you will see pixels dancing around the screen. If you set VISREL-
DBG* to #F (default #T), they will go away. With the variable set to #T, the calculation runs twice as slowly

(one hour instead of 30 minutes), but it seems faster because there is something to watch.

5 Conclusions

Work is just beginning on this paradigm for tactical situation assessment. It is too early to draw any
definite conclusions. So I will draw some tentative ones.

Tactical situation assessment is a variety of plan recognition or motivation analysis, the inference to
an agent’s plans from his behavior. The theory of plan recognition is in its infancy, both theoretically and
practically. (For some theoretical work, see Birnbaum 1986, Kautz 1987, Kautz and Allen 1986). Most of the
practical work has been in the area of natural-language understanding, where plan recognition is required
to infer the reasons for story characters’ actions. (Charniak 1988, Wilensky 1983) Programs that do plan
recognition are plagued by combinatorial explosion.

One reason for the explbsion is a natural tendency to see plan recognition as a process of inverting
planning. Any given action could be an atomic part of a great many plans, so there is a big search space

in the bottom-up direction. Once a plan is proposed, lots of actions could be steps in it (or substeps or
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subsubsteps, ...), so the top-down search space isn’t so great either. One is naturally led to marker-passing
schemes (Charniak 1983), which have many problems.

The present work sidesteps all of this. It deals with direct observations of behavior (actually, in the
current version, just of current state), so that natural language is not involved. There are more of these
observations, and they tend to be at the same level of detail, so we don’t have to worry about searching up
arbitrarily far from observation to hypothesis. We don’t have to worry about indexing an encyclopedia of
possible plans, but only the plans that an agent might have on a battlefield. And, most important, we are
free to seek a representation that subsumes all likely plans compactly. The force-flow graph is an attempt at
such a representation. Rather than generate a large disjunction of all possible Red plans, we can generate
a vaguer representation of where he might go and what he would have to attack if he went there. If later
observations confirm that he is in that vicinity, we have a good idea of how he got there and in what strength,
and where he is going next.

The current system does not attempt to match incoming intelligence reports against these hypotheses.®
This is among the most important areas for future work. What I envision is something like this: As
intelligence reports of Red activity come in, they a.re' matched up with predicted flows. If the match is good,
then the system should assume that significant Red forces are located in the areas where they have been
observed, and that no forces are in alternative areas. Given these revised force concentrations, the scenario
generator should be run again, yielding up-to-date predictions of future Red motion which can be matched
against newer reports. ’ )

There are lots of other imbrovements that need to be made to YATS. As I said at the beginning, I have
neglected symbolic reasoning about cover, concealment, and such. Forces are treated as vanilla blobs of stuff,
with no differentiating properties. All of this would be easy to change. For instance, different force sources
could have different travel speeds through different regions. The attack-site finder (section 3.4) could check
vegetation cover and decide that infantry in a region could not be attacked effectively from another area.

One particularly interesting modification would be to take roads into account. Currently all movement
is assumed to go in straight lines from portal to portal. Clearly, unopposed movement would often do better
by staying on roads as much as possible. The region-flow model could check to see if a force moving through
a region was under fire, and, if not, do a local search for the most effective use of roads in the region to get
from portal to portal. The resulting flow graph would be the same as now, except for reduced travel times.

Some attention should be given to finding maximum flows as well as “expected” flows. The attrition
algorithm is just guessing when it picks values-for the opposing armies in its simulated battles. What it needs
to know is the most force that each side could bring to bear at a point. Military force is usually applied in

an “all or none” way. When tne flow algorithm says that 1/3 of the force will be at a place and time, that

9 Some experimentation was done with a numerical-optimization approach to confirming these hypotheses, but it was
abandoned.
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really means that 1/3 of the time as much force as possible will at that place at that time. It is probably
not too hard to run a standard max-flow algorithm (Even 1979) on the DAG output by the expected-flow
algorithm.

The current algorithm does not do an adequate job of annotating its outputs. For example, if Red
cannot get to any objective in force, the result is an empty flow, which doesn’t tell the user much. He can
click on different regions, but all he gets is a blurb saying “No Red forces come through here.” It would
not be hard to print out instead something to the effect that “Red forces could not get here within the time
frame allotted, because they would be under attack from Blue forces.” Much of this is just a matter of
collecting a little more information and digging it out when required.

Acknowledgements: This work profited from discussions with Andrew Gelsey, who convinced me that detailed

planning was not the way to go, and with Jeff Maier, who helped develop an earlier version of the force-flow
algorithm.

Appendix: Connection-Machine Simulator

Early in this research, I became interested in the idea of running a lot of algorithms using data-parallel
hardware like the Connection Machine. In retrospect, this wasn’t such a great idea. The slowest part of
the system is the line-of-sight calculator, which uses a hierarchical algorithm that is not amenable to data
parallelism. (There may be a more suitable algorithm; this is an important avenue to pursue.) I never
actually got around to running anything on a real Connection Machine (although Yale owns one), but I
did get as far as writing a simulator and writing many of the region-analysis algorithms in *Lisp, the data-
parallel Lisp dialect developed for the Connection Machine. Because of simulator overhead, these programs
run much slower on a sequential machine than they have to. It would be a relatively straightforward project
to rewrite them in ordinary Lisp, and this should be done.

The structure of my simulator may be of interest to language hackers. The basic data structure is
the “pvar,” which behaves like an array of data that may all be accessed in parallel. For instance, it takes
constant time to add two pvars together, because all the element additions occur simultaneously. One way to
implement pvars on a sequential machine is as arrays. Adding two pvars would then be a matter of allocating

a new array and filling its slots with sums. This is too expensive, because only a small piece of the data
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structure may ever be used. What we need is a sort of “lazy evaluation” scheme (Abelson and Sussman
1985), in which pieces are not computed unless they are needed.

The basic operation on pvars is PREF-GRID.!® (PREF-GRID v i j) returns the j’th element of the i’th
column of pvar v. Using object-oriented programming techniques, we define various sorts of abstract pvar
objects, and cause them to respond to the PREF-GRID message in appropriate ways. For example, one kind of
pvar is the lazy pvar. It is defined purely in terms of a function that is called to compute the ¢, j’th element
when required. The function is called anew for every invocation of PREF-GRID.

A good example of a lazy pvar is one produced by +!!. Like most *Lisp primitives, the name of this one
ends in two explanation marks to indicate that it creates a pvar. In the simulator, (+!! v; v3) produces a
lazy pvar that responds to PREF-GRID by finding the ¢, j elements of v; and v, adding them, and returning
them. The sum is done every time the element is accessed, and no array need be allocated.

Lazy pvars are inappropriate as variable values, for two reasons. First, variables can be destructively
altere&, a meaningless operation on a lazy pvar. Second, computational results have to be cached somewhere,
or the system will recompute the same things over and over. So we need memo pvars, which internally consist
of an entry generator plus a data structure in which to store entries as they are generated. The entry generator
is just another pvar of some sort, which contains the initial values of this one.

The data structure is a vector of vectors, one per column. Initially, the vectors are not allocated, but
appear as d\_xmmy #F values. When a column is touched for the first time, its vector is allocated, but initially
each entry is a special *EMPTY ﬁaé. Onl).' when the entry is actually needed for the first time is it computed
and stored.

The main subtlety (and biggest headache) with memo pvars is side effects on them. The operation *SET
stores some part of one pvar into another. (For details, see the *Lisp manual, Thinking Machines 1986.) To
avoid having to compute that part, the system stores with each memo pvar a history of all *SET operations.
When the contents of a position are required, this history must be examined to determine what was the last
item targeted there, and compute and store it.

Finally, a special case of memo pvars is Boolean pvars, whose entries are either #T or #F. These play a
big role in the system, because of their use as masks for gating other operations (e.g., *SET). For efficiency,
the simulator works hard to keep from explicitly representing #F elements. It keeps track of columns that
are entirely false, and, within each column, the bounds within which all the non-#F entries lie. Rather than
allocate a vector of constant size for a column, all that is allocated is a vector large enough to hold the
non-#F entries. In this way, the common case of a small rectangle of #Ts can be represented with reasonable

efficiency.

10 Actually, in the real Connection Machine, there is a more fundamental operation PREF, but for the terrain-analysis
application we need only a two-dimensional view of pvars.
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In spite of all the ingenuity that went into this system, and its possible theoretical interest as a lazy-

evaluating array package, getting rid of it would be an improvement for the situation-assessment system.
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