Abstract. Many parallel machines based on the interconnections of the boolean hypercube are
now commercially available. A distinctive feature of the hypercube is its universality — programs
written for simpler architectures, such as grids for example, can be transported onto the hyper-
cube with minimal overhead. These simulations are typically obtained by embedding the simpler
architecture within the hypercube. _

This paper presents efficient embeddings of binary trees in the hypercube. We provide a novel
and optimal embedding of a complete binary tree in which all but one tree edges are mapped
onto adjacent processors on the hypercube, and the remaining edge is routed through an unused
processor. With suitably designed processors and protocols, communication through the forwarding
processor should incur no extra delay.

We also present efficient embeddings of binary trees that are not complete, and show that any
N-node binary tree can be embedded with edges of length loglog N + O(1) in a hypercube with no
more than 2N processors. Our results extend to graphs with small separators.
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1. Introduction

The boolean cube (n-cube, hypercube) has emerged as a powerful and popular network for
parallel computing. Following the 64-processor Cosmic Cube built at Caltech [19], a number of
parallel hypercube machines have been designed and some are commercially available. Already,
there is a choice between the 128-processor INTEL iPSC/d7, the 1024-processor NCUBE/Ten,
the 64000-processor bit-sliced Connection Machine from Thinking Machines and the 256-processor
Ametek/System 14 [6]. Similarly, the Shuffle-exchange and FFT networks, both closely related to
the hypercube, have spawned the NYU Ultracomputer [18] and the 256-processor BBN/Butterfly
[6].

] The hypercube offers a rich interconnection structure with large bandwidth, logarithmic di-
ameter, and is ideally suited for divide-and-conquer applications. More importantly, the hypercube
supports efficient routing algorithms [1, 20] and can simulate every realistic architecture with small
overhead. While the same is true of the shuffle-exchange and FFT networks which require fewer
connections per processor, the hypercube has the advantage of being able to simulate networks
such as grids with no communication overhead.

Two factors render the hypercube especially attractive in practice : efficient broadcasting and
simulation. Efficient broadcasting of data among processors is crucial in applications such as
Gaussian elimination with pivoting [10, 15], inner-product computations (13, 16], and eigenvalue
problems [13]. Simulation of other networks with no overhead is especially convenient for reasons
of ‘portability’ : programs written for such machines can be run directly on the hypercube. For
instance, it has long been known that multi-dimensional grids of suitable dimensions can be embed-
ded as subgraphs of the hypercube by means of gray codes [12]. As a consequence, many grid-based
numerical algorithms can be efficiently implemented on the hypercube, examples include multi-grid
methods for solving partial diffrential equations [5], and LU factorizations [10, 11]. Fox [9] presents
a wide range of further scientific applications.

Binary trees constitute an important class of structures, frequently found in applications, as
they capture the essence of divide-and-conquer strategies and serve as efficient data structures in
hosts of applications [2]. Binary trees also arise in the solution of banded systems [14] and in the
solution of sparse systems by direct elimination methods |7, 8]. A complete binary tree with 2" — 1
nodes can be embedded with edges of dilation at most two in a 2"-node hypercube, or with edges
of dilation one in a 2"+ node hypercube [15, 21]; embeddings with unit dilation in a 2"-node
hypercube cannot exist [17, 21].

The binary trees generated by general divide-and-conquer methods and by all adaptive nu-
merical methods are, in general, neither complete nor binary. To our knowledge, the problem of
computing efficient embeddings for arbitrary bounded-degree trees has not been addressed. In this
paper we present some preliminary results and fast algorithms for finding good embeddings.

Section 2 presents the best possible embedding of a complete binary tree within a hypercube
of the same size: every pair (with a single exception) of nodes adjacent in the tree are also adja-
cent in the hypercube, while both nodes in the remaining pair are adjacent to the unused node.
Hence, exactly one tree edge suffers dilation two. With suitably designed processors and proto-
cols, communication through the forwarding processor should incur no delay. Section 3 considers
embeddings of arbitrary binary trees within a hypercube. We show that every N-node binary tree
can be embedded in a hypercube with 2/V nodes such that every tree edge sufferes dilation at most
loglog N + O(1). Conclusions and suggestions for further research are offered in Section 4.




2. Optimal Embeddings for Complete Binary Trees

This section presents the best way to embed a complete binary tree with 2” — 1 vertices within
a hypercube with 2" vertices. We also note a number of implications of our embedding. Before
proceeding with the main result, we establish a few preliminary definitions.

Definition 2.1. A hypercube of dimension n (or n-cube) is an undirected graph consisting of 2"
vertices addressed O ... 2" — 1. Two vertices are connected by an edge if and only if the binary
representations of their addresses differ in exactly one bit position.

Let é; be the binary vector of length n with a 1 in position j and zeroes in all other positions.
If v and v are the addresses of two vertices in the hypercube then u and v are adjacent if and only
if u = v® §; (& stands for the componentwise zor-operation). It is easily seen that each vertex in
an n-cube has degree n and that the hypercube has no cycles of odd length.

Definition 2.2. C;, is the complete binary tree with 2” — 1 nodes and height n.

Definition 2.3. An embedding of C,, into the n-cube is a 1-1 mapping of the nodes of the tree into
the hypercube. The dilation of an edge (u,v) in the tree equals the Hamming distance between
the images of 4 and v under the embedding. The dilation of the embedding equals the maximum
dilation over all edges.

The following theorem establishes that C,, cannot be embedded in the n-cube with unit dilation.
In other words, C, is not a subgraph of the n-cube. The proof below, suggested by Stan Eisenstat
and Mike Fischer, simplifies previous proofs in [17, 21].

Theorem 2.1. Forn > 3, C, cannot be embedded in an n-cube with unit dilation.

Proof. If C, were a subgraph of the n-cube, then n — 1 edges must be added to each leaf of Cp
because the degree of each node in the hypercube is n. In all, therefore, (n — 1)2"~1 edges need
to be added with one end-point per leaf. Let us call the other end-point of each of these edges a
‘receptor’.

Since the hypercube does not have odd cycles, no leaf can also be a receptor. Similarly, no
grandparent of a leaf can be a receptor. Therefore, the number of receptors is at most 2" — 2n=1 —
2"=3, One of these receptors (the unused node in the hypercube) can accept n edges, the root can
accept n — 2 and every other receptor can accept n — 3.

The total number of edges that can be accepted by the receptors is therefore no greater than
(n—38)(2" —2""1 =278 —2) + n — 2+ n. For n > 3 this quantity is strictly less than the number
of edges emanating from the leaves, which means that the edges cannot be added as desired.

|

Theorem 2.2. For every n, C, can be embedded within the n-cube with one edge of dilation two,
and every other edge of dilation one.

Proof. We claim that the n vertex ‘two-rooted’ tree of Figure 1(a) (formed by adding an extra
vertex between the root and one child of C, can be embedded with unit-dilation in the n cube.
The theorem follows directly thereafter.

To prove the claim for two-rooted trees, we perform an induction on the size of the tree.
Figure 1(b) shows a unit-dilation embedding of the two-rooted tree Sy with 4 nodes within the
2-cube. Assume inductively that the two-rooted tree S, with 2" nodes can be embedded with
unit-dilation in the n cube.

For the inductive step, consider two copies of a unit-dilation embedding of S, in an n-cube, as
in Figure 1(b). Without loss of generality, assume that node 7| is at the origin of its subcube (that
is, it has an address consisting of all zeroes). Translate the lower embedding by inverting the jth
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(a) A Two-Rooted Tree.

(c) Levels of Spy1.

Figure 1: Two-Rooted Trees.
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bit of each node. Formally, if a tree node was embedded at address u then after the translation the
tree node will appear at address u@§;. After the translation node ry will be at address ro @ 6; = 7y,
i.e, ry and 1 are at the origins of their respective n-cubes after the shift. Observe that the dilation
is invariant under translations.

Next, rotate the embedding in the lower cube by permuting (for every node) the address bits in
positions 7, 7,k into positions k,7,5. While 75 and r; remain fixed, 7] is rotated so that its address
in the lower cube is identical to the address of s; in the top cube. Similarly, o and s/, have identical
addresses within their respective subcubes.

Combining the two n-cubes into an (n + 1)-cube, vertices in each of the pairs (sy, 1), (r1,7%),
(r2,s5) are adjacent because their addresses differ in exactly the new dimension. By making 7} and
r2 the roots of larger complete binary trees as in Figures 1(b) and (c), r; and 75 become the roots of
a new two-rooted tree Sp41. Figure 1(c) shows the larger two-rooted tree constructed inductively.
To complete the proof, observe that each edge connecting the two embeddings is an edge in the
(n + 1)-cube resulting in a unit-dilation embedding of Spy;.

]
Remarks.

1. By embedding the two-rooted tree within a hypercube of the same size we have implicitly
embedded two disjoint complete binary trees each of size 2"~! — 1 with unit dilation in an
n-cube. This strengthens the unit dilation embeddings of trees in hypercubes of twice the size
reported in [15, 21].

2. In embedding the complete binary tree C,, within an n-cube observe that the single edge with
dilation two from the root to one of its children passes through an unused vertex. By suitably
designing processors so that an unused processor can be switched to directly link two of its
neighbors, the delay across the two links should not, in practice, be noticeably larger than the
delay across a single link.

3. Every node of the embedded complete binary tree is at most distance 4 from its ‘reflections’,
nodes at the same level whose path to the lowest common ancestor differs only at the highest
level. Consequently, if we insert edges for nodes that are Hamming distance 4 apart, the nodes
at alevel form a hypercube. This property can be exploited in algorithms where communication
occurs along the levels of tree in addition to tree edges.

3. Embedding Arbitrary Binary Trees

While the recursive embedding of the previous section gives the best possible embedding of a
complete binary tree, it does not provide much insight into efficient embeddings of arbitrary binary
trees. In this section, we examine embeddings of arbitrary binary trees derived from recursive
strategies similar to those used in VLSI layouts of tree structures [4]. We present two different
strategies: in the first we embed trees with unit dilation in a polynomially larger hypercube, while
in the second we increase the dilation but reduce the size of the hypercube. Thus, dilation is traded -

for expansion, where ‘expansion’ refers to the size of the hypercube relative to the size of the tree
embedded.

Theorem 3.1. Every N-node binary tree can be embedded with unit dilation in a hypercube of
O(NY"1) nodes.

Proof. We use the well-known result that any N node binary tree can be separated into two
disconnected trees, each containing no more than [2N/3] nodes, by removing a single edge, say,
(u, v). Recursively embed the two smaller trees (with unit dilation) within two smaller hypercubes.
Translate one of the cubes so that, when connecting nodes in corresponding positions of the two
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cubes (and thus forming a cube of twice the size), there is an edge between u and v. Of course,
the embeddings within the smaller cubes are unaffected by the translation and every edge in the
embedding has unit dilation.

If D(N) is the number of hypercube dimensions used in a recursive embedding of an N-node
tree, then

D(1)=0,  D(N)< D([2N/3]) +1,

which yields D(N) < logg /2 N. The number of nodes in the hypercube is therefore no greater than
2D(N) < Nlog3/22 — 0(N1'71).
1

Although Theorem 3.1 gives a unit dilation embedding, the expansion proportional to N-7! is
too large to be useful. At this point it is not clear whether this result can be improved, and, in
particular, whether it is possible to embed every N-node binary tree in an O(N)-node hypercube
with unit dilation. Bisecting the tree by means of a more sophisticated recursive strategy reduces
the expansion to a minimum of 2108 V1 /N, but at the expense of increasing the dilation to loglog N+
O(1). We next show how to embed every N-node binary tree in a hypercube with expansion 2 and
dilation loglog IV + O(1). While this embedding is primarily of theoretical interest, we expect that
the bounds can be reduced considerably and made useful in practice.

This improved embedding is based on techniques developed in [4] for VLSI layout : the nodes
of an arbitrary binary tree T are mapped onto a smaller complete binary tree C so that not ‘“too
many’ nodes of T' are mapped onto the same node of C' and, at the same time, any two adjacent
nodes of T are ‘close’ in C. This problem was solved in [4] for classes of graphs harder to separate
than binary trees, but the same technique can be applied to binary trees as well.

The main result necessitates a few preliminary lemmas.

Lemma 3.1. Let T be an N-node binary tree with one of k colors assigned to each node. Let n; be
the number of vertices of colori,1 < ¢ <k, Y ;n; = N. By removing klog N or fewer edges, T can
be bisected into two components of size |[N/2| and [N/2], respectively, such that each component
has at least |n;/2] vertices of colori, 1 < i < k.

Proof. Follows directly from [4].

Lemma 3.2. Every N-node binary tree T can be mapped onto an N-node complete binary tree C
so that

1. at most 6log (N/2*) + 24 nodes of T are mapped onto any node of C at level t (distance t from
the root),

2. any two nodes adjacent in T are mapped to nodes at most distance 3 apart in C.

Proof. For convenience we assume that N is a power of 2. The idea is to recursively bisect T,
placing successive sets of bisector nodes (nodes whose removal bisects the tree) within successively
lower levels of C, until T' is decomposed into single nodes. Specifically, the nodes placed at the root
of C bisect T into two subgraphs T} and T%. Similarly, nodes mapped to the left child of the root
bisect T , while the ones mapped to the right child bisect T%. In addition, level ¢ of C will also
receive nodes of T which

1. have not already been mapped to levels t — 1 and ¢ — 2 of C, and
2. are adjacent to nodes at level t — 3 of C.
Hence, adjacent nodes in T' are mapped to nodes of C that are at most distance 3 apart.
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The corresponding procedure is given below. The application of Lemma 3.1 with three colors
ensures that the number of nodes of T, mapped to a single node of C, is bounded as required.

Step 1. Initialize every node of T' to color 0; bisect T'; and place the bisector nodes at the root
(level 1) of C.

Step 2. For each subgraph created in Step 1, recolor with color 1 nodes adjacent to the bisector

of Step 1; and place a 2-color bisector for the subgraph at the corresponding level 2
node of C.

Step 3. For each subgraph created in Step 2, recolor with color 2 nodes adjacent to the bisector

of Step 2; and place a 3-color bisector for the subgraph at the corresponding level 3
node of C.

Stept. 4 < t < log|T|, for each subgraph created in the previous step, place every node of
color ¢(mod 3) at the corresponding level-t node of C; recolor with color t(mod 3) nodes
of color 0 that are adjacent to those of color ¢(mod 3); and place a 3-color bisector for
the remaining subgraph at the corresponding level t node of C.

If n; is the maximum number of nodes mapped to a level ¢ node of C, then from Lemma 3.1
n1=1logN, ny=2logN/2, n3z=3logN/4,

and the use of a 3-color bisector at each step implies in general
N 1
ne < 8log o7 + Sn-3

The solution to this recurrence yields the desired result.
|

Observe that the decomposition of Lemma 3.2 can be obtained in time polynomial in the size
of T, since a k-color bisector for a tree can be found in polynomial time if k is fixed.

Upon completion of the embedding of Lemma 3.2, the complete binary tree C is truncated
after log V — log6log IV levels; the resulting tree consists of a total of %N log N nodes. Each leaf
of this truncated tree contains, in addition to the nodes mapped onto it, the nodes of the incident
subtree. Consequently, no more than 6log IV nodes are mapped onto any leaf. A simple calculation
also shows that no other node has more than 6log NV nodes mapped onto it. This establishes the
following result.

Corollary 3.1. Every N-node binary tree T can be mapped onto a gl—é\;—N-—node complete binary
tree C so that

1. at most 6log N nodes of T are mapped onto any node of C, and
2. any two nodes adjacent in T' are mapped to nodes at most distance 3 apart in C.

Finally, we proceed to the main result.

Theorem 3.2. Every N-node binary tree T can be embedded in a 21*M19¢N1_pode hypercube with
dilation 9 + loglog V.

Proof. Use Corollary 3.1 to obtain a mapping of the N-node binary tree T in the glgﬁ-node
complete binary tree C so that every node of C contains at most 6 log N nodes of T'. Next, embed
C within a hypercube of log N — log(3log V) dimensions and dilation 2, using the optimal strategy
of the previous section. Finally, expand each node of C into a subcube of log(6log V) dimensions,
and embed the 6log V nodes mapped onto any node of C into the subcube.
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To determine the maximal dilation, consider an edge (u, v) in 7. Either  and v are mapped
onto the same node of C, or else they are mapped to nodes of C' which are distance 3 apart. In the
first case, u and v are mapped within the same subcube of dimension log(6log V), so the dilation
of the edge (u, v) is certainly no greater than log6 + loglog N. In the second case, the subcubes
containing v and v are connected by a path of length at most six (the nodes in C containing v and
v are at a distance of at most 3, and each edge in C has dilation 1 or 2). Traversing each dimension
within the subcubes at most once, and the dimensions along the path connecting the subcubes,
shows that there must be a path of length at most 6 + log(6log N) < 9+ loglog N connecting u
and v.

The embedding of C requires a hypercube of dimension 1+ log NV, log N — log(3log N), and
a hypercube of dimension log6log N for each node within C. The number of nodes in the final
hypercube therefore comes to at most 2.V.

4. Conclusions

The primary contribution of this paper is the optimal embedding for complete binary trees
presented in Section 2. This embedding is likely to have considerable impact in practice. The
results of Section 3, while primarily theoretical in nature, represent the first nontrivial results on
embedding graphs other than grids in the hypercube. More significantly, Section 3 raises a number
of interesting questions.

First, can every binary tree be embedded in a hypercube with dilation 2 and unit expansion?
We know of no binary trees that could be potential counterexamples. Recently, the technique of
Section 3 has been extended to show that every binary tree can be embedded with dilation 10
and expansion 4 [3]. It would be satisfying to obtain the tightest result, while using a less involved
technique than in Section 3. A related issue concerns the development of faster algorithms to embed
trees efficiently.

The results of Section 3 extend to graphs more general than binary trees. In particular, the
result is valid for every graph with a O(1) separator theorem. This includes all trees of bounded
degree as well as bounded degree outerplanar graphs. What other classes of graphs can be efficiently
embedded in hypercubes? Especially important in practice are embeddings of bounded degree
planar graphs.

A number of other engineering issues remain to be formally studied. For example, what is a
good strategy for partitioning a large tree onto a small hypercube so that the load is equally shared
among processors? In many applications, the tree structure grows and shrinks dynamically, and
only the leaves are active. Are there good strategies for maintaining dynamic trees? And finally,
a critical concern in the context of parallel processing is the need to develop efficient embedding
techniques that are able to tolerate faults.
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