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In this paper we show that nondeterministic space s(n) is closed under
complement, for s(n) greater than or equal to logn. It immediately follows
that the context-sensitive languages are closed under complement, thus set-
tling a question raised by Kuroda in 1964 [9]. See Hartmanis and Hunt [5]
for a discussion of the history and importance of this problem.

The history behind the proof is as follows. In 1981 we showed that
the set of first-order inductive definitions over finite structures is closed
under complement [6]. This holds with or without an ordering relation
on the structure. With an ordering present the resulting class is P. Many
people expected that the result was false in the absence of an ordering. In
1983 we studied first-order logic, with ordering, with a transitive closure
operator. We showed that NSPACE[log n] is equal to (FO + pos TC), i.e.
first-order logic with ordering, plus a transitive closure operation, in which
the transitive closure operator does not appear within any negation symbols
[7). Now we have returned to the issue of complementation in the light of
recent results on the collapse of the log space oracle hierarchies [10,1,14]. We
have shown that the class (FO + pos TC) is closed under complement. Our
main result follows. In this paper we give the proof in terms of machines
and then state the result for transitive closure as Corollary 2. The question
of whether (FO + pos TC) without ordering is closed under complement
remains open.
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Theorem 1 For any space constructible s(n) > logn,

NSPACE[s(n)]= co-NSPACE(s(n)].

Proof We do this by two lemmas. We will show that counting the exact
number of reachable configurations of an NSPACE[s(n)] machine can be
done in NSPACE[s(n)] (Lemma 2). Lemma 1 says that once this number
has been calculated we can detect rejection as well as acceptance. Note the
similarity between Lemma 1 and a similar result about census functions in
[12].

Lemma 1 Suppose we are given an NSPACE[s(n)] machine M, a size s(n)
initial configuration, START, and the ezact number N of configurations of
size s(n) reachable by M from START. Then we can test in NSPA CE[s(n)]
if M rejects.

Proof Our NSPACE[s(n)] tester does the following. It initializes a counter
to 0, and a target configuration to the lexicographically first string of length
s(n). For each such target either we guess a computation path of M from
START to target, and increment both counter and target; or we simply
increment target. For each target that we have found a path to, if it is
an accept configuration of M then we reject. Finally, if when we are done
with the last target the counter is equal to N, we accept; otherwise we
reject. Note that we accept iff we have found N reachable configurations,
none of which is accepting. (Suppose that M accepts. In this case there
can be at most N — 1 reachable configurations that are not accepting, and
our machine will reject. On the other hand, if M rejects then there are N
non-accepting reachable configurations. Thus our nondeterministic machine
can guess paths to each of them in turn and accept.) That is we accept iff
M rejects. ; |

Lemma 2 Given START, as in Lemma 1, we can calculate N - the total
number of configurations of size s(n) reachable by M from START - in
NSPACE/s(n)].

Proof Let N4 be the number of configurations reachable from START
in at most d steps. The computation proceeds by calculating No, N1, and
so on. By induction on d we show that each Ny may be calculated in
NSPACE[s(n)]. The base cases d = 0 and d = 1 are obvious.
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Inductive step. Given N4 we show how to calculate Ng4;. As in Lemma
1 we keep a counter of the number of d+ 1 reachable configurations, and we
cycle through all the target configurations in lexicographical order. For each
target we do the following: Cycle through all Ny configurations reachable in
at most d steps, again we find a path of length at most d for each reachable
one, and if we don’t find all Ny of them then we will reject. For each of
these N, configurations check if it is equal to target, or if target is reachable
from it in one step. If so then increment the counter, and start on target+1.
If we finish visiting all N4 configurations without reaching target, then just
start again on target+1 without incrementing the counter. When we’ve
completed this algorithm for all targets our counter contains Ng1. Note
that we have only used O[s(n)] space.

To complete the proof of the lemma and the theorem note that N is
equal to the first Ny such that Ng = Ng41. | |

The following is immediate:

Corollary 1 cf. [1,10,14] The Log Space Alternating Hierarchy and the Log
Space Oracle Hierarchy both collapse to NSPACE[log n/.

Several corollaries and extensions of Theorem 1 have been observed by
other authors. Sam Buss and Steve Cook independently showed that NL*
= NL [2]. Mike Fischer observed that one can now diagonalize nondeter- -
minsitic space and thus easily prove a tight hierarchy theorem for nonde-
terministice space [4]. Martin Tompa showed that LOG(CFL) is also closed
under complement [16)].

In [7) we have shown that NSPACE(log n] is equal to (FO + pos TC). Any
problem in this class may be expressed in the form TC[p)(0,max) where ¢
is a quantifier free first-order formula, and 0 and max are constant symbols.
It now follows that the same is true for the class (FO + TC).

Corollary 2 1. NSPACEflogn] = (FO + pos TC) = (FO + TC) .

2. Any formula in (FO + TC) may be ezpressed in the form TCl] (0, max)
where p 13 a quantifier free first-order formula.

In [7] we also showed similar results for Symmetric Log Space using a
symmetric transitive closure operator (STC), cf. [11,13]. It is easy to see
that the proof of Theorem 1 remains true for Symmetric Space and thus,




Corollary 3 1. For all constructible s(n) > logn, SYM-SPACE[s(n)] =
co-SYM-SPACE|s(n)).
2. The Symmetric Log Space Alternating Hierarchy and the Symmetric
Log Space Oracle Hierarchy both collapse to SYM-SPACE{logn].

8. SYM-SPACE|logn] = (FO + pos STC) = (FO + STC) .

4. Any formula in (FO + STC) may be ezpressed in the form STCly)(0,max)
where © 13 a quantifier free first-order formula.

Of course most of the interesting questions concerning the power of non-
determinism remain open. We still don’t know whether nondeterministic
space is equal to deterministic space, or whether Savitch’s Theorem [15]
is optimal. It is interesting to consider whether our proof method can be
extended to answer these questions, or to tell us anything new about non-
deterministic time.

Acknowledgements Thanks to Sam Buss, Mike Fischer, and Steve Ma-
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