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ABSTRACT

The Rapid Solution of the Laplace Equation on Regions

with Fractal Boundaries

Jin Hong Ma
Yale University
1992

Interest in the numerical solution of the Laplace equation on regions with fractal
boundaries arises both in mathematics and physics. In mathematics, examples in-
clude harmonic measure of fractals, complex iteration theory, and potential theory. In
physics, examples include Brownian motion, crystallization, electrodeposition, viscous
fingering, and diffusion-limited aggregation. In a typical application, the numerical
simulation has to be on a very large scale involving at least tens of thousands of equa-
tions with as many unknowns, in order to obtain any meaningful results. Attempts
to use conventional techniques have encountered insurmountable difficulties, due to
excessive CPU time requirements of the computations involved. Indeed, conventional
direct algorithms for the solution of linear systems require order O(N3) operations for
the solution of an N x N— problem, while classical iterative methods require order
O(N?) operations, with the constant strongly dependent on the problem in question.
In either case, the computational expense is prohibitive for large-scale problems. We
present a direct algorithm for the solution of the Laplace equation on regions with frac-
tal boundaries. The algorithm requires O(N) operations with a constant dependent
only on the geometry of the fractal boundaries. The performance of the algorithm
is demonstrated by numerical examples, and applications and generalizations of the

scheme are discussed.
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Chapter 1

Introduction

During the last decade, the numerical solution of the Laplace equation on regions with
fractal boundaries has been becoming increasingly popular both in mathematics and
physics. In mathematics, examples include harmonic measure of fractals, complex
iteration theory, and potential theory. In physics, examples include growth phenom-
ena such as crystallization, electrodeposition, viscous fingering, and diffusion-limited
aggregation, where the harmonic measure governs the growth of the fractal surfaces
[56]. Thus, much recent work has been focused on the study of the metric properties

of harmonic measure on fractals [5], [12], [33], [38], and [34].

1.1 Background

Carleson proved recently in [12] that the dimension of the support of harmonic mea-
sure for any two-dimensional Cantor set is strictly less than one . However, the actual
values for particular sets have not been determined, and it is unclear how they can
be, without some form of computer experimentation. In R3, the behavior of harmonic
measure for Cantor sets is completely unknown. Thus, several attempts have been

made during the last several years to solve such problems numerically (see [5] and

[34)).
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There are two approaches to the study of the metric properties of the harmonic

measure on fractals.

1. Viewing the harmonic measure as the relative hitting probability at points on
the surface, and using the Monto Carlo method to conduct computer simulations

on parallel machines such as the Connection machine (see [5]).

2. Formulating the problem as an integral equation of the first kind, and using

brute force to solve it numerically.

While the first approach has produced some significant results (see [5]), the com-
putation becomes prohibitively expensive when high accuracy is desired, due to the
slow convergence of the Monto Carlo method (as is well known, the error of a Monto
Carlo simulation decays like 1/v/N, where N is the number of trials).

On the other hand, the second approach has also encountered insurmountable
difficulties, due to excessive CPU time requirements of the computations involved.
Indeed, in order to obtain mathematically meaningful results, systems of linear equa-
tions have to be solved, involving at least tens of thousands of equations with as many
unknowns. Conventional direct algorithms for the solution of linear systems require
order O(NN?3) operations for the solution of an N x N— problem, while classical itera-
tive methods require order O(NN?) operations, with the constant strongly dependent
on the problem in question. In either case, the computational expense is prohibitive
for large-scale problems.

We present a direct algorithm for the rapid solution of the Laplace equation on
regions with a certain type of fractal boundaries. The algorithm requires O(N) op-
erations with a constant dependent only on the geometrical property of the fractal
boundaries, where N is the number of elements in the discretization of the fractal.

And the evaluation of the potential at any point requires O(log(N)) operations.
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1.2 Genealogy of Fast Algorithms

The algorithm of this thesis is closely related to other analysis-based fast algorithms.
Among them, perhaps the Fast Multipole Method (FMM) [25] is the best known. It
provides a fast scheme to evaluate gravitational and electrostatic potentials involving
a large number of particles. In [8], wavelets are used to generalize the FMM to a
variety of integral operators. In [4], wavelets are combined with the Schultz algorithm
to solve integral equations of the second kind. Several other “fast” schemes have been
constructed, such as the algorithm of [27] for the rapid evaluation of Gauss transforms.
In [48], a fast direct solver is developed for the solution of integral equations in one
dimension. However, the latter algorithm substantially exploits the one-dimensional
geometry. While the algorithms of [25], [8], [4], [3], and [27] are essentially fast
algorithms for applying a matrix to a vector, our algorithm can be viewed as a fast

direct inversion scheme for the some of matrices of the type produced by the FMM.

1.3 Outline of the Dissertation

The direct algorithm presented in this thesis exploits the fact that far-field interactions
are of low rank for any given precision, and low rank operators can be recursively
compressed without actually generating them.

We begin with the definition of the problems to be addressed in Chapter 2. In
Chapter 3, we summarize certain mathematical and numerical facts to be used in this
thesis. In Chapter 4, we establish the principal analytical tool of this thesis that ranks
of far-field interactions are finite to any given precision. In Chapter 5, we develop
the mathematical apparatus used to construct the fast algorithm by borrowing termi-
nology from the standard scattering theory for the Helmholtz equation. In Chapter
6, we present the description of the fast algorithm, and in Chapter 7, we illustrate
the performance of the algorithm by numerical examples. Finally, in Chapter 8, we

outline some applications and generalizations.




Chapter 2

Statement of the Problems

As is well-known, the governing equation for potential problems is the Laplace equa-
tion , \
Au=~g—:§2+g—y—g=0. | (2.1)
Functions which satisfy (2.1) are referred to as harmonic functions.
In this chapter, we define the problems to be addressed, namely, the boundary
value problems for the Laplace equation on regions with fractals of Cantor type as

the boundaries.

2.1 Fractal Boundaries

A fractal of Cantor type is a classical example of fractals (see, for example, [7], [16],
and [39]), which can be generated recursively by dividing a given region into four
corner regions (boxes) with a ratio of sides as a parameter.

Given a real numbera ( 0 < a < 1), we define a sequence of sets as follows (See

Figures 2.1, 2.2, and 2.3):

Cy = { the unit square }, (2.2)

Cy = {4 corner boxes with a as their sizes }, (2.3)
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Figure 2.1: Set C§

Figure 2.2: Set C¢
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Cf = {4 corner boxes with a' as their sizes }, (2.4)

where [ is an integer.
The Cantor set associated with the ratio a is the limit of the sequence of sets

{C;}, which decreases monotonically:
Ce 201203 2.
The limit is defined as the intersection of the sets {C}}

c'= () Cp (2.5)
1€{0,1,2,..,00}
For a given [ > 1, we will define the /-th approximation to the Cantor set (asso-

ciated with the ratio @) as a set
A; = { the centers of all boxes in C} }. (2.6)

We will refer to the 4' boxes C! generated during the [ — th step of the above
process as level [ boxes. Thus, there is one box on level 0, and it coincides with the
unite square. The level [ + 1 is obtained from the level [ by subdividing each box on
the level ! into 4 corner boxes (see Figure 2.2).

We will also impose a tree structure on the hierarchical structure of C?, so that if
iboz is a fixed box at level /, the four boxes at level [ + 1 obtained by subdivision of

iboz are considered its children, while the four child boxes are considered neighbors.

2.2 The Laplace Equation

Let C* denote the Cantor set associated with the given ratio a (see Figure 2.4). We

will consider the following exterior Dirichlet problem for the Laplace equation

2.7)

Au = 0 for x€R?\Ce
’U,ICa = f
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To insure the uniqueness of the solution of problem (2.7), the far-field condition

. Ou(x)| _
lim |u(x) —rlnr o | =

0 2.8)
is normally imposed. In the above formula, r> = (z — z0)? + (y — yo)? with point
x = (z,y) € R*\C*® and an arbitrary fixed point xo = (z¢,y0) € C°.

Remark 2.1 As is well-known, for any harmonic function u : R* — R!, there ezists

two functions, ¢ and 1,
(>}
o(r,0) = 3 axrMe™,

k=—00
P(r,0) = Z Bir®e* 4 y1nr,
k=—0c0

such that u = ¢ + 9.
The far-field condition (2.8) exzcludes the constant term in the ezpansion of v

while allowing the logarithm term.

The proof of the following theorem can be found, for example, in [55].

Theorem 2.1 The boundary value problem (2.7) with the far-field condition (2.8) is

a well-posed problem.

As is well-known (see [15], for example), the boundary value problem (2.7) with
the far-field condition (2.8) can be formulated as an integral equation of the first kind
by representing the solution as the logarithmic potential of the charge distribution on
the boundary C°. The charge distribution is a Borel measure on the Cantor set C*
(see [15]). Denoting by o the charge distribution over the boundary C*, we obtain

the integral equation

/C ln|z — t|do(t) = f(z) (2.9)
with ¢ € C°, where the integration is in the sense of Borel measure.
Remark 2.2 As is well-known, the Lebesque measure of a Cantor set C* is zero,

However, the equation (2.9) is mathematically sound due to the fact that any Cantor
set C® possesses a positive capacity (for detail, see [15] or [55])
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For a given integer L > 1, suppose that N = 4L, and Ay = {z; |i =1,2,...,N}
is the L-th approximation to the Cantor set C°. Then, by the definition of Borel

integration, the integral equation (2.9) is discretized as a linear system of equations
Ao=b with AeR"N and beRV, (2.10)

where
Ajj=log |z —z;| fori#j, and A;;j =1-loga+é fori=7j. (2.11)

In formula (2.11), § is a constant dependent on the ratio a and the total number of
levels L in the approximation of Cantor set C®. The actual choice of the constant §
will be discussed in Chapter 7.

Given a measure p over C%, we define an integral operator P, : R2 — R! by the

formula
P(z) = /C In|e — t|du(t). (2.12)
Lemma 2.1 can very easily verified; and it states that with any non-negative

measure p over C?, the function P,(z) is negative for z € C°. Theorem 2.2 is the

immediate consequence of Lemma 2.1.
Lemma 2.1 If u is a non-negative measure over C®, then
P,(z)<0 forzeC" (2.13)

Theorem 2.2 There exists an integer Ny such that for any integral N > Ny, the
coefficient matriz A in (2.10) is negative definite.

Remark 2.3 Ezperiments show that the integer Ny in Theorem 2.2 can be as small
as Ny = 64 (see Chapter 7).




Chapter 3

Mathematical and Numerical

Preliminaries

In this chapter, we summarize certain well-known mathematical and numerical facts
to be used in the rest of this thesis. They can be found, for example, in [10], [13],
and [55].

3.1 Potential Theory for the Laplace Equation

3.1.1 Green’s Function

Definition 3.1 (Green’s function in R?) Suppose that @ C R? is an open con-
nected set, then for P € Q, function G(z,P) : @ — R will be referred to as the
Green’s function of Q with pole (or singularity) at P if it satisfies the following three

conditions.

1. G(z, P) is harmonic in ), ezcept at the point P.

2. If P # oo, then
9(2) = G(z,P) —log |z — P| (3.1)

is harmonic in a neighborhood of P.

10
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If P = 00, then
9(2) = G(z,00) —log 2| (3.2)

is harmonic in a neighborhood of co.

3. As z tends to any point on the boundary of 2, then

G(z,P) — 0. (3.3)

Theorem 3.1 (Existence of Green’s Function in R?) Suppose that @ C R? be a
domain bounded by a Jordan curve I'. Then the Green’s function G(z, P) for ) ezists
for any P € Q. '

Lemma 3.1 (Green’s Formula) Let v : [0,L] — R? be a closed Jordan curve,
with image of v denoted by T'. Suppose that Q C R? is the interior of T, so that
T = 80. Suppose further that N, : [0, L] — R? is the interior normal to T, function
G: @ x Q — R! is the Green’s function for Q, and ¢ € L*(T'). Then the function
u:Q — R defined by the formula

w@) =5 [ P(0) 5y Clan(t) - (.49

is harmonic, and u|r = .

3.1.2 Boundary Value Problems for the Laplace Equation

Suppose that I' C R? is a Jordan curve, parameterized by its length v : [0, L] — R?,
and () is the region bounded by T, so that §Q = I. Suppose further that NV : [0, L] —
R? is the interior normal to I'. For an integrable function f : [0, L] — R, we will be
solving one of the following problems.

(A) Interior Dirichlet problem

Ad(z) = 0 for z€Q

(3.5)
&(z) = f(vYz)) for ze€T
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(B) Exterior Neumann problem
A¥(z) = 0 for ze€ R*\Q
2¥(z) = f(r7(z)) for zeTl
with U satisfying the far-field condition (2.8).

(3.6)

As is well known, each of the above two problems has a unique solution for any

continuous right hand side f and piecewise smooth boundary I' (see, for example,

[13]).

3.1.3 Single and Double Layer Potentials

Suppose that a point charge of unit intensity is located at the point zo € R?. Then,
for any z € R? with z # x¢, the potential due to this charge is described by the
expression
$z0(z) = —In(]|lz — 2ol|). 3.7)
The potential of a dipole of unit intensity located at zo and oriented at the direc-
tion h € R? (||h|| = 1) is described by the formula
boile) = T2, 9
|Ix — xol|
For an integrable function p : [0,L] — R?, the potential of a single layer with
density p is given by the formula

L
¥(a) = [ bu(@)t)dt, (3.9)
and the potential of a double layer with the dipole density p is given by the formula
L
o) = [ roawin (@t (3.10)

3.1.4 Integral Equations of the Classical Potential Theory

In the classical potential theory, the interior Dirichlet problem (3.5) is solved by

representing ® as the potential of a double layer, and the exterior Neumann problem
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(3.6) is solved by representing ¥ as the potential of a single layer. The analysis of
the single layer and double layer potentials in the vicinity of the boundaries results
in two integral equations of the second kind.

(A1) Interior Dirichlet Problem

L 0
wu(e)+ [ g g (@) —1llut)de = f(a). (3.11)

(B1) Exterior Neumann Problem

— (o) + 577 o 108 I(e) = 1Ollu()dt = () (3.12)

3.2 Galerkin Method for the Solution of Integral
Equations

As is well-known, the classical Galerkin method can be used for the numerical solution

of the integral equations of the form

b
w)+ [ Ko, t)u(t)dt = f(c). (3.13)

The following is the brief description of the Galerkin method.
Suppose that {P,(z), P:(z),---,Pu(z),---} is the orthonormal basis in L*[a,b].
Then the function p, : [0, L] — R! defined by the formula

pn(z) = 3 ;i P;(2), (3.14)
J=1
and satisfying the condition
(1’, /‘n) =0, (3.15)

will be used to approximate the solution of the integral equations (3.13). The error

function r(z) in formula (3.15) is defined via the expression

r(z) = in(e) + [ K (o nli)dt — f(z). (3.16)
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The above procedure results in a linear system Bz = b defined by formulae

By = /0 § /OLK(:c,t)P,-(t)Pj(t)d:cdt i, (3.17)

for 1 <i,57 <n,and B; =1,

b= ¥ H(2)Pi(e)ds, (3.18)

for1 <:<n.

A detailed discussion of the Galerkin method for the solution of the equations of
the classical potential theory can be found, for example, in [6], [10], [14], [20], [24],
[32], [52], [53], and [61].




Chapter 4

Fields of Charges

In this chapter, we investigate in some detail the structure of potential fields in R?,
and prove Theorem 4.2, which is the principal analytical tool of this thesis.

It is well known that the potential ¢x, due to a point charge at xo € R? (defined
by formula (3.7)) is harmonic in any region excluding the source point xo. Moreover,
for any harmonic function u : R? — R!, there exists an analytic function w :€ —»C
such that u(z,y) = Re(w(z,y)). In the rest of this thesis, we will make no distinction
between points in R? and points inC. In complex terms, the potentials ¢x, and @x,,r

defined by the expressions (3.7) and (3.8) respectively, assume the form

$20(2) = Re(—1n(z = 20)),

and
h

Z—Z2p

bz0m(2) = Re( ),

where z = = + 1y and zp = o + iyo. Following the standard practice, we will refer to
the analytic function In(z — 2zo) as the potential at the point z €C due to a charge

located at the point zp.

15
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4.1 Ranks of Interaction Matrices

The following lemma can be easily proved by expanding In(1 — w) into Taylor series

with respect to w.

Lemma 4.1 Let a unit point charge be located at zo. Then for any z such that

|z| > |2ol,
>.a
$2(2) = In(z — 20) = aoln(2) + ) ;E, (4.1)
k=1
where
2
a=1 and ar = (—)—];— (4.2)
Furthermore, for any p > 1,
1 P
bz (Z) —ao ln(z) - E zk = ( ) (4-3)
k=1
where
c=|Z (4.4)
20

Remark 4.1 The above lemma can be reformulated in a slightly different way, which
will be used later.
Truncating the ezpansion ({.1) after p terms (p > 1), we will denote the error of

the truncated ezpansion by € (z), so that

2,(2) = bu(2) — aoln(s) = 3 2.

k=17%
Then for anyp > 1,
b2(2) = 5’;0(z) + up”g (4.5)
with the vectors u, and v, defined by the formulae
11 1
= . = 4.6
(lnz,z 22? ,ZP) ( )
2 _P
= (1, z° % ... Z%) (4.7)

2 P
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Furthermore,

() (49

c_.

e2,(2)] < (
with ¢ defined by (4.4).

Clearly, the truncation error €% (z) in (4.8) decays exponentially as the function
of p. Thus few terms in (4.1) are needed to achieve any given accuracy,

The following theorem is the principal analytical tool of this thesis. It states that
under certain conditions, the rank of the matrix describing the potential interaction
between two sets in R? is finite to any given precision.

We define the interaction matrix between the two sets of points {zi,--,zm} and

{y1,+,Yn} as a m X n matrix

[ bu(z1) bu(z1) -+ Sual=1)
(fy;(z) = ¢’“E$2) %fzz) ¢y"f$2) (4.9)
\ b5 (2m) Gu(zm) -+ ya(Tm)
/ln(a:l—yl) In(zy —y2) -+ In(z1—yn)
_ ln(x2._yl) ln(wz.—yz) 111("32._ Yn) (4.10)
\ In(¢m — 1) 0(zm —y2) -+ In(zm —yn)

The following theorem follows immediately from formulae (4.5 ) and (4.8).

Theorem 4.1 Let n unit point charges be located within the circle |y| < R at points
{y1,92,--*,¥n}, X > 0 be some real number, and {z1,22,---,Zm} be another set of

points such that |z;] > (1 + AR for all 1 < i < m (see Figure 4.1). Then the
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Figure 4.1: Points {z;} outside the circle with radius (1 + A)R

interaction matriz of the two sets {z;} and {y;} has the decomposition

1)

.14 [ 11
toaod = ok Wt —ym
Inz; = % % A _;2 4
(#s(20) = : g uoE Sa | 4+ EP, (4.11)
nem oo = o 4 =¥
\ P P 4 )

where the truncation error EP = (sgj(m;)) is bounded by the expression

1 p

1
P (. o
&5, @] < (4.12)
forl<i<mandl<j<n.
Inequality (4.12) means that every element of the matrix of truncation error E?
decays exponentially as the function of p. Thus for any given accuracy, the interaction

matrix of the two sets {z;} and {y;} can be decomposed into the product of two

matrices of low rank ( < (p+1) ).
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Figure 4.2: Well-separated sets in the plane

For two sets of points, {1,232, -+ ,Zm} €C and {y1,y2," -+, yn} E€C, we say that
the two sets are well-separated (see Figure 4.2) if there exist points zo,y0 €C, and
R > 0 such that

|zi —zo| <R forl <i<m,

lyi—yol <R forl1<j<n,
|zo — yo| > 3R.

Theorem 4.1 implies that with any prescribed precision, the interaction matrix
of two well-separated sets can be decomposed into a product of two matrices of low

rank, the rank depending only on the separation of the two sets (A > 1), (see formula
(4.12)).

4.2 Interactions in Cantor Sets

In this section, we consider electrostatic interactions within a Cantor set C*. For any
given ratio a, the interactions in the Cantor set C® are of low rank. The interaction
ranks depend only on the ratio a for generating the Cantor set.

The following lemma is obvious, and will be used in the proof of Theorem 4.2.

Lemma 4.2 Suppose that Dy and D, are two subsets of Cantor set C* with ratio a,

set A is a child boz of Dy, and B is a child boz of D, (see Figure 4.3). Then the rank
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Figure 4.3: Two Subsets of C* and Their Child Boxes

of the interaction matriz between subsets Dy and D, at most four times as large as

that between bozes A and B.

Theorem 4.2 For a given real number @ (0 < a < 3 ), and an integer | > 1,
suppose that C® is the Cantor set associated with the ratio a, and C} is the set of

bozes generated at the I—th level
C} ={Dy,Dq,--+,Dy}. (4.13)

Then for any given precision, the rank of the interaction matriz between any two bozes
D; and D; depends only the ratio a for generating the Cantor set C°, and does not
depend on the sizes of bozes and the numbers of points inside the bozes.

In other words, the matriz of interactions between any two bozes at any level of

Cantor set C* is of fized rank, to any prescribed precision.

Proof: Because of the self-similarity of the Cantor set C?, it is sufficient to estimate

the rank of interactions between any two boxes of Cf with I =1,
Cf' = {Dl, Dz, D3, .D4}

Suppose that D; and D, are not well-separated. Then we divide each of them into
four squares of the same size (see Figure 4.4). Let A be a square from the subdivision

of Dy, and B be a square from the subdivision of D;.
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Figure 4.4: Subdivisions of Two Sets

If squares A and B are well-separated, then the rank of interaction between Dy
and D; is no greater than 4p, where p is the interaction rank between A and B.

If A and B are not well-separated, then we keep dividing each region into four
squares till the pieces are well-separated.

Due to Lemma 4.2 and Theorem 4.1, the rank of the interaction matrix between
any two boxes at any level of the Cantor set is bounded by

_ |- 2a)/(v2 - 1)

p-4F with k&
Ina

(4.14)

where p is the rank of the interaction matrix between two well-separated boxes. W

Remark 4.2 Clearly, the estimate (4.14) is an extremely pessimistic one. In the

following chapter, we obtain much sharper numerical estimates (see section 5.3).




Chapter 5

Scattering Theory for the Laplace

Equation

In this chapter, we borrow terminology from the standard scattering theory of wave
equations for the design of fast algorithms, and refer to the result as scattering theory
for the Laplace equation.

To develop the scattering theory for the Laplace equation, we first introduce the
concept of scattering matrix, and then present the merging scheme for generating
scattering matrices recursively.

Throughout this section, I will denote a Jordan curve, parameterized by its length
7 : [0, L] — R?. The region bounded by I" will be denoted by Q, and D will denote a
compact subset of 2. In addition, G: @ xQ — R! will denote the Green’s function for
domain 2, and N : [0, L] — R? will denote the interior normal to I'. For a compact

set E C R?, M(E) will denote the set of all non-negative Borel measures on E.

5.1 Scattering Matrices

Any function ® : @ — R harmonic inside  and continuous on Q will be referred to

as incoming potential. As is well-known, for any continuous function ¢ : I' — R,

22
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Figure 5.1: Compact set D in domain § with boundary T

there exists a unique function ® : @ — R harmonic on {2, and continuous on Q such
that ®|r = . Therefore, we will abuse the notation by referring to the function
@ : ' = R as the incoming potential.

Suppose that ¢ € L%(Q) and o is a Borel measure over D. Given a function
K € L?(R? x R?), the function

U(z) = /D K(z,t)q(t)do(t) for z € R2\D (5.1)

will be referred to as outgoing potential. Similarly, we will call its restriction
¥ = ¥|r onto I' an outgoing potential. Outside the domain £, function ¥ will also

be referred to as scattering potential.

Remark 5.1 Particularly, we are interested in the case when K(z,t) = In|jz —t||,

and q(t) is the characteristic function of D. Then the outgoing potential

U(z) = /D In||z — ¢||do(?) (5.2)

is a function harmonic in R*\D, and satisfying the far field condition (2.8).
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We define three operators
L: L*T) — L*(D),

P : M(D) — L*(R*\D),
S: M(D) — L¥(T),

via the formulae

L&) = - [ #0(0) garGlaa(®) - dt 6:3)
P(o)(z) = /D K(z,t)q(t)do(t) for z € R?\D, (5.4)
S(o)(z) = /D K(z,t)q(t)do(t) for z € T. (5.5)

We will be considering equations of the form

P(o) = f, (5-6)

with f € L?(D). A special case of equation (5.6) is the integral equation (2.9) defined
in section 2.2, with D a Cantor set, K(z,t) = In||z — t||, and ¢(%) the characteristic

function of D.

Definition 5.1 The operator o : L*(T') — L*(T) defined by the ezpression
a=8-P1.L (5.7)

will be referred to as scattering matrix.

Remark 5.2 Given an incoming potential ¢ on the boundary T', the operation of c

on ¢ can be viewed as consisting of three steps:

1. The operator L constructs a function f = Ly : Q@ — R harmonic over the

compact set D, and such that (Ly)|r = .
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Figure 5.2: Scattering matrix a: ¢ — ¥

2. The operator P~ constructs the solution o = P~ f of equation (5.6) from the

harmonic function f = L.

The charge distribution o will be referred to as induced charge distribution.

3. The operator S defined by (5.5) constructs an outgoing potential tp = So on T

from the induced charge distribution o.

The outgoing potential b will be referred to as induced outgoing potential.

Thus, the scattering matrix o maps an incoming potential ¢ to the induced out-

going potential 1
P = ap. ‘ (5.8)

The following theorem, while interesting in itself, is not closely related to the
purpose of this thesis since its proof is quite involved. We refer the reader to [15] and

[55], where it can be found in a somewhat different form.

Theorem 5.1 (Compactness of Scattering Matrix o) Suppose that K(z,t) =
In||z — t||, and q(t) is the characteristic function of D. If DNT = 0, then the

scattering matriz o in (5.7) is a compact operator.
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Figure 5.3: Disjoint compact sets {D;} in domain Q

In other words, if D is strictly inside domain §) (bounded by T ), then the discretiza-
tion of I' results in the finite dimensional approzimation to the scattering matriz, to

any prescribed precision.

5.2 Recursive Generation of Scattering Matrices

We will consider a case when a compact subset D of domain {2 is the union of mutually
disjoint compact sets {D;} (see Figure 5.3).

It turns out that the scattering matrix of D can be obtained by merging the
scattering matrices of {D;}. We begin with introducing the requisite notation. Then

we present the merging scheme for the recursive generation of scattering matrices.

5.2.1 Notation

Suppose that A = {I'1,T3,---, T} C Qis a set of closed Jordan curves. Each I'; € A
is parameterized by its length ~; : [0, L;] — R?, and §; C ) is the region bounded by
T';. Suppose further that for 1 < : < m, D; is a compact subset of ;, function G;:
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Figure 5.4: D; C Q;for1<:i<m

Q; x Q; — R is the Green’s function for domain €, and function N; : [0, L] — R? is
the interior normal to T';.
Assuming the domains {£);} to be mutually disjoint, we will consider the compact

subset D of domain ) defined by the formula

In addition to operators L, P, and S defined by (5.3), (5.4), and (5.5) in the

preceding section, we will require the operators for 1 <: <m
L;; : L(T;) — L*(%%)
P; : M(D;) = L*(R*\D;)
Sii : M(D;) — L*(T;)

defined by formulae

L)@ = 5 [ #l(0) 5 Gilos () - (5.9)
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Pi(o)(z) = /D K(z,1)q(t)do ) for z € R?\D (5.10)
Si(o)(z) = /D K(z)a(t)do () for z € . (5.11)
We will consider equations of the form
P(o)=f (5.12)
with f € L?(D;),and 1 <i < m.

Definition 5.2 A function ¢; € L?(T';) will be called total incoming potential if
for any z € D;,
Pi(o|p.)(z) = Li(e:)(=), (5.13)

where operators P; and L;; are defined by (5.10) and (5.9) respectively, and o|p; is
the restriction of the charge distribution o (defined by (5.4)) to the compact subset
D;cD.

* Suppose that for any 7 (1 < ¢ < m), function ¢; is the total incoming potential
on I';, function %); is the outgoing potential induced by ¢;, and operator «; is the

scattering matrix for the domain D;. Then
Q; = S,’,'Pz-—lL;i, (5.14)

Yi=a;- i, (5.15)

(see (5.9), (5.10), (5.11), (5.7), and (5.8)).

We will also require operators
L; : I*(T) — L*(Ty),

S; : L¥(Ty) — L¥(D),

Lji : I}(T) — LA(T;), 147,
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defined for 1 <i,j5 < m via formulae

L)) = - [ o0 pwGen@)-dt  frael,  (516)
Sithi = /D K(z,t)q(t)do(t)  forzel, (5.17)
Ly = /D K(z,t)q(t)do(t) for ¢ € T;. (5.18)

In other words, the operator S; converts the outgoing potential ¥; on T'; into the
scattering potential on I', and the operator L;; converts the outgoing potential t; on

T'; into the scattering potential on T';.

Definition 5.3 The operator

L*(Ty)
S, : L*(T) — LZ(.F2)
o
defined by the formula
I Loy - —Lmom\ (I
T L (5.19)
s —Lnas o] L

will be referred to as splitting matrix, provided the inverse in (5.19) exists.

5.2.2 Merging Scheme for Scattering Matrices

Lemma 5.1 is used in the construction of the merging scheme for scattering matrices,

and Theorem 5.2 gives the full description of the scheme.
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Lemma 5.1 Suppose that ¢ is an incoming potential on the boundary I', and ¢; is
the total incoming potential on T; in the sense of (5.18). If the inverse in (5.19)

exists, then

=S5, . (5.20)

©Om
In other words, the splitting matriz maps the incoming potential ¢ on I' to the total

incoming potentials {¢;} on boundaries {T;}.

Proof: For any i (1 < i < m), the total incoming potential ¢; on the boundary I';
equals to the sum of the potential from I' and the scattering potentials from {T';}

with j #¢ and 1 < 3 < m. That is,
¢i = Lip+ ) _ Lij;. (5.21)

J#i
Combining (5.15) with (5.21), we have
¢i = Lip +)_ Lijajip;. (5.22)
J#i

Viewing the above equations as a m x m linear system, we obtain (5.20). ®

Theorem 5.2 (Recursive Generation of Scattering Matrices) Given scatter-
ing matrices {c;} for domains {D;}, the scattering matriz o of domain D is given by

the formula

a = ( Siq Syap - SmQm ) Sp, (523)
where operators {S;} are defined by (5.17), and the splitting matriz S, is defined by
(5.19).

Proof: Suppose that ¢ is an incoming potential on I', and o is the charge distribution

induced by ¢. Then by definition (see equation (5.1)), the induced outgoing potential
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¥ assumes the form

P(z) = /D K(z,t) - q(t) - do(t)
= [ K@t-a)-dott) (5:24

=1
for any z € T'.
By definition of the operator S; in (5.17),

Sihi = /D K(z, qt)dt, (5.25)

so that equation (5.24) assumes the form

P(z) = 3 (Si - i) (@)- (5.26)

Therefore,

Y o= Y Sicphi=)Y, Si-ai-pi
¥1

Y2

= (Slal Szaz ce Smam) (5'27)

Pm

Now, the conclusion of the theorem follows from the combination of (5.27), (5.7),

and Lemma 5.1. &
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Figure 5.5: A subset D of Cantor set C* in domain
5.3 Scattering Matrices in Cantor Sets

Suppose that D is a compact subset of Cantor set C*, and the set D is enclosed in a
domain Q with its boundary denoted by T (see Figure 5.5). The boundary I' will be
referred to as frame boundary.

To specifically deal with the problem defined in section 2.2, we consider scattering
matrices in Cantor sets, with K(z,t) = In||lz — t|| and ¢(¢) as the characteristic
function of D. Then an incoming potential ® is harmonic in 2, and an outgoing
potential ¥ is harmonic in R?\D, and satisfying the far-field condition (2.8) (see
Remark 5.1).

The operators P : L2(D) — L?(R*\D) defined by formula (5.4), and S : L*(D) —
L%*(T) defined by formula (5.5) assume the form

P(o)(z) = /D ln |z — t||do(t), (5.28)

S(0)(z) = /D Iz — t||do(t). (5.29)
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In this section, we construct an analytical apparatus for representing scattering
matrices corresponding to subsets of Cantor sets. First, we discuss the representations

of incoming and outgoing potentials in terms of single and double layer distributions.

5.3.1 Representation of Potentials

Lemma 5.2 below is an obvious statement about the representations of incoming and
outgoing potentials in terms of the solutions of classical boundary value problems for
the Laplace equation, and Lemma 5.3 is a statement about the representations of
incoming and outgoing potentials in terms of the solutions of integral equations in
the potential theory (see section 3.1). Theorem 5.3 is an immediate consequence of

Lemma 5.3, and Theorem 5.4 follows immediately from Lemma 3.1 and Theorem 5.3.

Lemma 5.2 Suppose that ¢ is an incoming potential on the boundary I, and ¢ is
an outgoing potential on I'. Then the incoming and outgoing potentials ® and ¥ are
respectively the solutions of the following two boundary value problems.

(AA) Interior Dirichlet problem (Incoming Potential)

Ad(z) = 0 for €N (5.30)
o(z) = ¢(v(2)) for ze€T
(BB) Erterior Neumann problem(Qutgoing Potential)
AV = 2\
: (z) 0 for =z € R*\ (5.31)
w2(z) = ¥(v(z)) for z€T

with ¥ satisfying the far-field condition (2.8).

Lemma 5.3 Suppose that ¢ is an incoming potential on the boundary T, and ¢ is an
outgoing potential on I'. Suppose further that a dipole distribution pg and a charge

distribution ps are respectively the solutions of the two integral equations,

L 9
mua() + [ 3N 8 (@) = 1@)lIns()dt = o(z) (5.32)
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3 L
— () + g | og (@) = @)l lke(8)dt = (a). (5.33)
Then the incoming and outgoing potentials can be represented by the formulae
L 9
%(z) = [ 3 8 0@ ~ 2Ol (5:34)
L
¥(a) = [ logllv(z) - 1(®)llns(B)dt. (5.35)

To formulate the above theorem in the operator notation, we define four operators
Qa: L*(T) — L*(),
Q. A(T) — L2(B\Q),
P;: L*(T) — L*(D),
P, : L*(T') — L*(T),

via formulae

Q) = | gy e @) —(Ollas)er (5.36)
Q) = [ Togln(e) —@)lIns(0)k, (537)
Pupa)(a) = wae)+ | gz oelh(e) =10l (539)
Puue)@) = ~m(e) + s [ Togl(e) = Ol (59)

Theorem 5.3 Suppose that ¢ is an incoming potential on the boundary I', and ¢
is an outgoing potential on T'. Then the incoming and outgoing potentials can be
represented via the formulae

& = QuPip, (540)
U =Q,Ply, (5.41)

where operators Q,, Q4, P, and P, are defined by (5.37), (5.86), (5.39), and (5.38)

respectively.
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Theorem 5.4 Suppose that L : L*(T') — L?(D) is the operator defined by the formula
(5.8). Then

Lo = (QaP;*¢)Ip, (5.42)

with the operators Qq and Py defined by the formulae (5.36) and (5.38) respectively.

Remark 5.4 Under certain circumstances, we will be generating scattering matrices

directly by using their definition (see (5.7))
a=SPL (5.43)

where operators P, S, and L are defined by formulae (5.28), (5.29), and (5.42) re-

spectively.

5.3.2 Recursive Generation Of Scattering Matrices

Suppose that {D;,D,,D3,Ds} C C* are four subsets (boxes) resulting from the
subdivision of a bigger subset (box), and the set D is the union the four subsets {D;}

D= CJ D;. (5.44)

i=1
Suppose further that D is enclosed in s square  with its boundary denoted by T
The square ) will be referred to as frame domain (box) while I' is referred to as frame
boundary.

Suppose that for any integer ¢ (1 < ¢ < m), the set D; is enclosed in a square (;
with its boundary denoted by T'; (see Figure 5.6). Within the tree structure of the
Cantor set C° (see section 2.1), we will refer the frame boxes of neighbor boxes as
frame neighbor bozes, and the frame box of a parent box as parent frame boz.

In this section, we obtain the scattering matrix a for D from scattering matrices
{1, a2, a3, 04} for domains {D,, Dy, D3, D,}. First, we need the representations of

operators

L; : L*(T) — L*(T),
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Figure 5.6: Four Subsets of C* and Their Frame Boxes

S; : L(T;) = L¥(T),
Lji : Lz(F{) — L2(I‘j),
defined by formulae (5.16), (5.17), and (5.18) respectively.

Theorems 5.5 and 5.6 below follow from Theorem 5.3 immediately, Lemma 5.4
is the immediate consequence of Lemma 5.1, and Theorem 5.7 is the consequence of
Theorem 5.2 and Lemma 5.4. Theorems 5.5 and 5.6 describe representations of the
operators L;, S;, and L;; defined by formulae (5.16), (5.17), and (5.18). And Theorem

5.7 describes the merging scheme for the recursive generation of scattering matrices

for subsets of Cantor sets.

Theorem 5.5 Suppose that L; : L*(T') — L*(T;) is the operator defined via formula
(5.16). Then

Lip = (QaP;o)Ir, (5.45)

with operators Qq and Py defined by formulae (5.36)and (5.38) respectively.




CHAPTER 5. SCATTERING THEORY FOR THE LAPLACE EQUATION 37

Similar to operators @, defined by formula (5.37) and P; defined by formula (5.39)

for domain §Q, we define operators on domain §; for 1 <z < 4,
Qi : L*(T;) — L*(R®\),

Ps,,' . L2(I‘,) —_ L2(F,'),

by formulae

Quilo:)(z) = [ loglhi(z) — w(Dllos(), (5.46)
P,i(0))(z) = —mos(z) + 5]%?) /0 " og |Ii(@) — 7i(t)llos(t)dt. (5.47)

Theorem 5.6 Suppose that operator
S () — 1),
is defined via formula (5.17), and operator
Lj; : L*(T:) — L*(T)) fori # 3,
is defined via formula (5.18). Then
Sip = (QsiPy ), (5.48)

Lﬁd) = (Qs’iP;il‘tﬁ)ij, (5'49)

with operators Q,; and P,; defined by formulae (5.46) and (5.47) respectively.

Remark 5.4 The splittering matriz

LY(1)
L*(T'2)
L*(T's)
L*(T4)

Sp LZ(F) —
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is given by the expression (see formula (5.19))

-1

I —Liyzas —Lizas —Lysaq L,
—L I —L —-L L
Sp = 2101 2303 2404 2 , (550)
—L3jay —Lszo, I —Lag0y Ls
—Lgyoy —Lgoay —Lgas I L,

with L; defined by (5.45) for 1 <1 <4, and L;; defined by (5.49) for 1 <i,j < 4.

Lemma 5.4 Suppose that ¢ is an incoming potential on the boundary T', and for
1 << 4, @; is the total incoming potential on I'; in the sense of (5.18). Then

¥1
P2
¥3
P4

=59, (5.51)

with the splitting matriz S, defined by formula (5.50).
In other words, the splitting matriz maps the incoming potential ¢ on I' to the

total incoming potentials {¢;} on boundaries {T;}.

Theorem 5.7 Suppose that for 1 < i < 4, the scattering matriz for the compact set
D; is denoted by a;. Then the scattering matriz a for the set D = Ui, D; is given
by the merging formula

o= ( Sia; Seay Ssaz Sioy4 )SP, (552)

with operator S; defined by formula (5.48) for 1 <1 < 4, and the splitting matriz S,
defined by formula (5.50).

Remark 5.5 Due to the self-similarity in Cantor sets (see section 2.1), we only need

to compute one scattering matriz per level.
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Figure 5.7: Frame Boxes for Cantor Set C®

5.3.3 Discretization of Scattering Matrices

From the preceding sections, it is clear that the construction of scattering matrices for
subsets of Cantor sets, either directly or recursively, depends on the choice of frame
boundaries (or frame boxes) (see Remark 5.4 and Theorem 5.7). For a Cantor set
C*, we recursively generate frame boxes for subsets of C* such that frame boxes at
the same level are mutually disjoint, and the distance between a box and its frame
box equals to the distance between two neighbor frame boxes (see Figure 5.7).

With the above choice of frame boxes, we first represent incoming and outgoing
potentials ® and ¥ numerically in the forms described in Theorem 5.3, in order to
discretize scattering matrices for subsets of Cantor sets.

Lemma 5.5 below introduces a set of orthogonal polynomials, and Lemmas 5.6
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and 5.59 describe the two-dimensional integrations involved in the application of the
Galerkin method to the numerical representation of incoming and outgoing potentials
(see sections 3.2 and 5.3.1).

Lemma 5.5 Suppose that {P,(z), P2(z),- -, Pu(z),--} is a set of polynomials de-
fined by the formulae

n! d* n _
Pn(l') = -(—2—71—)!25(:1: - 1) , n = 0,1,2,' . (5.53)
Then
-1
/ P(z)Pi(z)dz =0  forij. (5.54)
-1

The orthogonal polynomials defined above are the well-known Legendre poly-
nomials. The roots of P,(z) will be referred to as the Legendre nodes. We will
use the Legendre polynomials in the Galerkin method as the basis functions to rep-
resent incoming and outgoing potentials numerically in terms of the representations

described in Theorem 5.3.

Lemma 5.6 Suppose that §) is a square of size two with its boundary denoted by T,
and {Py(z), P(z),- -, Pa(z), -} are the Legendre orthogonal polynomials defined in
Lemma 5.5. Suppose further that p is either the solution of equation (5.32) or of
equation (5.33), and the solution u is approzimated by the truncated expansion on

each side of the square Q:

pa(z) =) & Pi(2), (.55)
=0
for each of the two horizontal sides of Q, and
#n(y) = 2_miPi(y), (5.56)
=0

for each of the two vertical sides of Q. Then there are only two types of integrations
involved in the matrices of the type defined by formula (8.17) in the Galerkin method

described in section 3.2. The two integrations are of the form

e (y+1) ()P (2)de
Ly “/_1 /_1 (x+1)2+(y+1)2P‘( JF;(a)dady, (5.57)




CHAPTER 5. SCATTERING THEORY FOR THE LAPLACE EQUATION 41

for any two adjacent sides of domain Q, and

Ji= [ [ ———P(z)Pi(a)dzd 5.58)
ij_[-l./q (z—y)2+4 :(z) Pi(z)dzdy, (5.
for non-adjacent sides of domain 2, where1 <¢,7 <n.

The following lemma is obtained immediately by writing down the integral I;;
(defined by (5.57)) in polar coordinates.

Lemma 5.7 Suppose that for 1 < i,j < n, integration I;; is defined by (5.57). Then
st —2_ x a2
L= {/& /cose +/2 /me}Pi(r cos — 1) P;(rsin@ — 1) sin §drdd. (5.59)
o Jo z Jo ,

Remark 5.6 Integrations I;; defined by formula (5.59) and Ji; defined by formula
(5.58) for 1 < i,j < n, are now integrals of smooth functions. They can be computed
by the Gaussian quadrature rule based on Legendre nodes (see, for ezample, [50]).
Thus, operators Py and P, can be represented numerically by the formulae (5.38) and
(5.39) respectively.

On the other hand, with the approzimated solution u. (defined by (5.55) and
(5.56)) to p the solution of either equation (5.32) or'(5.33), operators Qg and Q,
defined by formulae (5.36) and (5.87) can be represented numerically by using the
Gaussian quadrature rule.

Therefore, incoming and outgoing potentials ® and U are represented numerically

by formulae (5.40) and (5.41) respectively.

Based on the above choice of frame boxes, Tables 5.1 and 5.2 list the number of
Legendre nodes needed on frame boundaries for the representation of incoming and

outgoing potentials to single and double precision respectively.
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e = 10~ (Absolute Error)

[ Ratioa 0.1]0.2]0.3[0.35]0.4]0.45 |
Number of Nodes
Per Side 12 | 18 | 30 | 46 | 66 | 100

Table 5.1: Number of Legendre Nodes for Single Precision

e = 10~ (Absolute Error)

Ratio a 01]02]03]035] 0.4 10.45
Number of Nodes
Per Side 30 {44 | 60 | 80 | 120 | 200

Table 5.2: Number of Legendre Nodes for Double Precision

Remark 5.7 Two observations can be easily made from the above two tables.

1. The number of Legendre nodes needed to obtain double precision is only twice

the number of nodes needed for single precision.

2. The number of nodes needed increases rapidly with the increase in ratio a.

With the frame boundaries described above, we are ready to discretize scattering
matrices for subsets of Cantor sets.

Suppose the the set of points {21, 23,- -, 2 } is the approximation to the compact
set D C , and the set of points {z;,z,---,%,} are the Legendre nodes on the
boundary T'.

The operator P defined by formula (5.28) is discretized in a manner similar to
that of the integral equation (2.9). In other words, the discretization of P is a matrix
P defined by the formulae

(P)ij =In||zi —z|| fori#j and1<i,j<m, (5.60)

(P)i=1-loga+6 forl<i<m, (5.61)




CHAPTER 5. SCATTERING THEORY FOR THE LAPLACE EQUATION 43

where § is a contant (see (2.11)).

Similarly, the operator S defined by (5.29) is discretized as a matrix S defined by

the formulae
(8)ij=In|lzi— 2| for1<i<p and1<j<m. (5.62)

The operator Q4 defined by (5.36) and the operator Q;; defined by (5.46), are
discretized by the Gaussian quadrature rule based on Legendre nodes. The operator
P; defined by (5.38) and the operator P,; defined by (5.47) are discretized by the

Galerkin method described in section 3.2.

Remark 5.8 Given a discretization of operators P, S, Py, Qa, Qs and Ps; (defined
by the formulae (5.28), (5.29), (5.88), (5.36), (5.46) and (5.47) respectively), all the
other operators L, L;, S;, Li; and S, for 1 < 1,5 < 4, are represented numerically
by the formulae (5.42), (5.45) , (5.48), (5.49) and (5.50). Thus, scattering matrices
can be computed either directly by using formula (5.43), or recursively by using the

merging scheme described in Theorem 5.2.




Chapter 6

The Fast Direct Algorithm

In this chapter, we describe a direct algorithm for the rapid solution of the Laplace
equation on regions with fractal boundaries. The algorithm exploits the fact that
for any given ratio a, interactions at any level in the Cantor set C* are of low rank
(the ranks depend only the constant ratio a for generating the Cantor set, and do
not depend on the sizes of boxes and number of points inside). The low rank of
interactions is reflected in the coefficient matrix in equation (2.10) as the low-rank
of its off-diagonal submatrices (see Figure 6.1). Thus, we can recursively compress
these matrices of low rank without actually generating them.

To be more specific, let us consider four subsets (boxes) in a Cantor set C?,
depicted in Figure 6.2. They are boxes of size d, and the distance between any two of
them is (1 — 2a)d. The interactions between them are of low rank (see section 4.2),
and can be represented via scattering matrices (see section 5.3).

Starting with the hierarchical structure of a Cantor set C* (see section 2.1), we
proceed by introducing a set of frame boxes arranged in a tree structure (see section
5.3). For a given precision ¢, we determine the number of Legendre nodes needed on
frame boundaries for the representation of potentials (see Tables 5.1 and 5.2). Then
we precompute the inverses of operators P; and P, defined by formulae (5.38) and
(5.39), via the classical Galerkin method (see section 5.3.1).

44




CHAPTER 6. THE FAST DIRECT ALGORITHM 45

L{L|L
L| |L|L
AR L L L
LiL|L
L|L|L
L| [L|L
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L{L{L
LiL|L
L{ |L|L
L L AR L
L{L|L
L{L|L
L| |L|L
L L L AR
L{L|L

Figure 6.1: Approximation of Cantor set and Coeflicient Matrix

To describe the algorithm, we need the following notation.

L
N

p

I
m

Ay

Number of levels in the approximation of the Cantor set C°.

N = 4%, the size of the approximation of the Cantor set C*
The number of Legendre nodes on each side of frame boundaries

for the representation of potentials to a given precision €

The number of a level on which a scattering matrix is computed directly.
= 45-I1 size of linear systems to be solved directly

The m x m matrix A; is the restriction of matrix A in (2.11) onto a
subset (iboz) at level L;. In other words, (Ay);; = In ||z — 2;l|, and

(Af)ii = Llna+6, where points {z1,- -+, zm} C thoz, and § is a constant.

The fast direct algorithm is a two-pass procedure. In the first (bottom-up) pass,

we compute the scattering matrix for level L; directly by using formula (5.43), and

scattering matrices for all coarser levels (level number < L; ) by using the merging

scheme described in Theorem 5.7. In the second (top-down) pass, we generate total

incoming potentials on frame boundaries up to level L; by using Lemma 5.4. Finally,

we solve 451 small-scale linear systems of size m x m directly at level L;.

Following is a formal description of the algorithm.
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(1 —2a)d i

Figure 6.2: Four Subsets of Cantor set C*

The Algorithm

Initializaiton

Comment [Computations in the initialization are done once for all.]
Step 1

Comment | Given a real number a (0 < ¢ < 1) and an integer L, construct the
approximation of Cantor set C?, and its frame boxes]
do lev =10,1,2,---,L
do ibor =1,2,---,4/
Divide each box into four corner boxes according to the constant a.
Construct the frame box for iboz (section 5.3).
endo
endo
dolev=1L
do iboz =1,2,---,4F
Compute the center of zboz.
enddo
enddo
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Step 2

Comment|[ For a given precision ¢, precompute operators P;!, P!, and A;l]
do
Determine number of Legendre nodes p (see Tables 5.1 and 5.2)
Generate the inverses of operators P; and P; defined in (5.38) and (5.39), via
the classical Galerkin method.
Compute the inverse of m x m matrix Ay directly.

enddo

Upward Pass

Comment[Compute scattering matrices and splitting matrices]
Step 3

do lev =L,
Compute the discretized operators L and S defined by (5.42) and (5.29).
Compute the scattering matrix directly via formula (5.43): « = SA7'L.

endo
Step 4

dolev=L;—-1,[; -2,---,1,0

doi=1,---,4
Compute operators L; and S; (defined by formulae (5.45) and (5.48))
via the Gaussian quadrature rule based on Legendre nodes.
doj=1,---,4

Compute L;; defined by (5.49) via the Gaussian quadrature rule.

endo

endo

Compute the splitting matrix S, by using formula (5.50).

Compute the scattering matrix o via the merging scheme in Theorem 5.7.

endo
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Downward Pass
Comment|[Splitting matrices are now available. Compute total incoming potentials

on all frame boundaries up to level L,]
Step 5

do lev=1,2,---,1,
do iboz = 1,2,--- 4/
Compute total incoming potential ¢; by means of Lemma 5.4.
‘enddo

endo
Step 6

do iboz =1,2,---,411
Solve m x m linear system directly by computing o; = A}'chp,-,
where operator L is computed at Step 3.

endo

Remark 6.1 Suppose that ibox is a fized bozx at level I. Then in the splitting pro-

cess, the total incoming potential on the the frame boundary of ibox can be computed

independently from those on the other frame boundaries of bozes at the same level.
Thus, we can obtain a part of the solution independently from the rest of the

solution if only a part of the solution is desired.

A brief analysis of the algorithmic complexity is given below.
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Step Number

Operation Count

O(N)

O(m® + p°)

O(mp + m?p)

O(p®log N)

O(p*N)

O(m?pN)

Explanation

4N boxes (squares) are involved. Each

box is determined by its center and size.

Operators P; and P, are of size 4p X 4p,

and the Operator Ay is of size m x m.

Operator L is of size m x 4p.
Operator S is of size 4p x m.

Operator A;l is of size m x m.

Operator L;, S;, and L;; is of size 4p x 4p.
Sp is of size 16p x 4p. Operator « is of
size 4p x 4p. There are log N levels.

The computation of the total incoming
potential ¢; on each frame boundary
requires p® operations. There are 4%1+!

(< N) frame boundaries involved.

Operator A;l is of size m x m. Operator
L is of size m x 4p. Potential ¢; is a
vector of size 4p. Computations of A}l Le;

are done 451(< N) times.
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The time complexity of the algorithm is therefore
(619 + B2m?p) - N + Pap® - log N, (6.1)

where the constant m is normally chosen to be m ~ 256, and the constant p depends
on the geometry of a given fractal boundary, and the choice of frame boundaries (see
Tables 5.1 and 5.2), and the constants (1, Sz, and B3 depend on the computer system,

implementation, language, etc.

Remark 6.2 Given scattering matrices and total incoming potentials, the evaluation
of the potential

U(z) = /C lnfle — t]|do(?) (6.2)

at any point z € R?\C*® requires at most O(log N) operations, where o is the charge

distribution over C°.




Chapter 7
Numerical Experiments

We have implemented the fast direct algorithm of the preceding section in Fortran
77. The program is capable of computing either whole or part of the solution, and of
evaluating potential at any point. We used our algorithm to compute the harmonic
measure on Cantor sets with the dimension of support of harmonic measure deter-
mined via the entropy of a set of charges distributed on a Cantor set, the charges
representing the solution of the Laplace equation with unity as the boundary condi-
tion on that Cantor set.

We will need the following terminology to describe our numerical experiments.

1. Hausdorff dimension of Cantor set C° is given by the formula
D =log4/ 1og(%). (7.1)
2. Dimension of Support of harmonic measure on C* is given by the formula
i=H/ log(%), (7.2)
where H is the entropy of the system.
3. Approximation of entropy H

H = lim Hy (1.3)

51
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where
1 N
HN = ——]\7 E O; log O; (7.4)

i=1

with {o;} the scaled charge distribution over the system (Y, o; = 1).

We considered fractal boundaries of Cantor type with ratio 0.1, 0.3, and 0.45.
For the first two experiments (a = 0.1,0.3), the potentials on frame boundaries are
represented to double precision while they are represented to 10 digits for the third
experiment (a = 0.45). The size of linear systems inverted directly at the final stage
has been chosen to be m = 256. The constant § in the coefficient matrix A defined

by formula (2.11) is chosen to be

_Ja ln(\/(a: — 20)2 + (y — yo)?)dzdy
B [odzdy )

where O is a square centered at (zo,30) on the finest level of the recursive generation

6

(7.5)

of L-th approximation of Cantor set C* (see section 2.1). All calculations have been
conducted on a Sparc II workstation.

The results are summarized in tables 7.1, 7.2, 7.3, 7.2, 7.5, and 7.6. In tables 7.1,
7.3, and 7.5, the first column is the size of the approximation to a Cantor set. The
second column is the number of levels in the generation of a Cantor set. The third
column is the actual CPU time of the fast direct algorithm of the preceding section.
The forth column is either the CPU time or estimated CPU time of the combined
algorithm: the Conjugate Gradient (CG) algorithm combined with the Fast Multipole
Method (FMM) (see [46]). The last column is the estimated timing for the Gaussian
Elimination (of course, it is given here only for comparison purposes).

The following observations can be made from Tables 7.1, 7.3, and 7.5.

1. Although our fast algorithm asymptotically requires O(N) operations, the ac-
tual running time of the algorithm as observed from the numerical experiments
seems to behave like log V, due to the fact that the constant 83 in formula (6.1)

is rather large compared to the constants 8; and B;. The constant (5 in formula
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(6.1) can be substantially reduced either by a better choice of frame boundaries,

or by improving the representation of potentials .

2. For any N > 4096, our algorithm is faster than the combined algorithm (the
CG method combined with the FMM, see [46]).

3. The performance of our algorithm deteriorates with the increase in ratio a as is

expected (see Tables 5.1 and 5.2).

Tables 7.2, 7.4, and 7.6 summarize some of our numerical experiments in which
the dimension of support of harmonic measure was computed. The part A of the
tables is the computed dimension of the support d. The part B of the tables is the

the Richarson extrapolation of the first order in terms of levels by the formula

d= mdm - ndn (7'6)

m-—n
with d,, and d, the dimensions of support at levels m and n respectively. The part

C of the tables is the Richarson extrapolation of the second order in terms of levels

defined by the formula
m2d,,; — n’d;,

d=
m2 — n2

(7.7)

with d,,; and d;, the extrapolated dimensions of support defined by formula (7.6).

The following observations can be made from Tables 7.2, 7.4, and 7.6.

1. The dimension of the support of harmonic measure converges linearly with the

number of levels.

2. Despite numerical problems often associated with the type of Richarson ex-
trapolation described above (see [50]), the experiments did show reasonable
convergence rates: the first order extrapolation in Table 7.4 is consistent with

Carleson theorem (see [12]). However, the situation has to be analyzed carefully.

3. Even though our fast algorithm permits simulations on a very large scale to be

performed, the field being investigated clearly could benefit from the application
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of supercomputers, and possibly parallel machines. Investigation of parallel
implementations of algorithms of the type described above will be reported at

a later date.

For illustration, the dimension of support is plotted as the function of the Haus-
dorff dimension in Figures 7.4, 7.5, 7.7, and 7.7. Charge distributions are also plotted
in Figures 7.8, 7.9, and 7.10 along the horizontal lines on which the charges are

located.

Remark 7.1 The value (7.5) of the constant é has been chosen empirically, and no

claim is made here as to its optimality.

The following is a recapitulation of the other notation to be used in the illustration

of our numerical experiments.

a — ratio for generating a Cantor set.

p — number of Legendre nodes on each side of frame boundaries.

m — size of linear systems inverted directly.

€ — precision to which incoming and outgoing potentials are represented.
L — number of levels in the approximation of a Cantor set.

N — size of the linear system (2.10) to be solved, N = 4L.
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Figure 7.1: Cantor Set with a = 0.1

Example 7.1 Harmonic Measure on Cantor Set C* with Ratio a = 0.1.

a=0.1,p=230, m =256, e=10"1*

I N | Levels | Toy,(Minutes) | Togs.raa(Hours) | Tor (Estimated) ||
4,096 6 6 0.4 19.1 Hours
16,384 7 9 3.3 51 Days
65,536 | 8 11 26.4 (est.) 9 years
262,144 9 14 211.2 (est.) 572 years
1,048,576 | 10 19 1689.6 (est.) 366283 years

Table 7.1: Comparison of Timings (a = 0.1)
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Hausdorff Dimension D = 0.602059991327962F + 00

|| Level Number L | Dimension of Support d ||

(A)

6 0.599329045439459E+-00
7 0.599189754023720E4-00
8 0.599085067779161E4-00
9 0.599003595888791E4-00
10 0.598938407116325E+00

First Order Extrapolation

|| Level Number L | Dimension of Support d

(B)

6,7 0.598354005529286E+00
7,8 0.598352264067248E4-00
8,9 0.598351820765831E+-00
9,10 0.598351708164130E+00

(©)

Second Order Extrapolation

|| Level Number L | Dimension of Support d

I 6,7,8 0.598347039681135E+00
I 78,9 0.598350269210872E+00
I 89,10 0.598351257757325E+00

Table 7.2: Dimension of Support d on Cantor Set C* with a = 0.1
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Figure 7.2: Cantor Set with ¢ = 0.3

Example 7.2 Harmonic Measure on Cantor Set C* with Ratio a = 0.3.

a=03,p=60, m=256 e=10"1

[ N | Levels | Tuio(Minutes) | Togs.rma(Hours) | Tee (Estimated) |
4,096 6 45 1.2 19.1 Hours
16384 | 7 67 83 51 Days
65,536 8 88 66.7(est.) 9 years
262,144 9 110 533.8(est.) 572 years
1,048,576 10 134 4270.3(est.) 366283 years

Table 7.3: Comparison of Timings (a = 0.3)
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Hausdorff Dimension D = 0.115143328498689F + 01

| Level Number L | Dimension of Support d ||

(A)

6 0.102592656926 789E+01
7 0.101715537867085E+01
8 0.101051673123065E+01
9 0.100533476169737E4-01
10 0.100118336944343E+-01

First Order Extrapolation

|| Level Number L | Dimension of Support d ||

(B)

6,7 0.964528235088610E4-00
7,8 0.964046199149250E+00
8,9 0.963879005431130E+00
9,10 0.963820839157970E+-00

Second Order Extrapolation

|| Level Number L | Dimension of Support d ||

()

6,78 0.962600091331170E+00
7,89 0.963293827417710E+00
8,9,10 0.963588174065331E+00

Table 7.4: Dimension of Support d on Cantor Set C* with a = 0.3
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Figure 7.3: Cantor Set with a = 0.45

Example 7.3 Harmonic Measure on Cantor Set C* with Ratio a = 0.45.

a = 0.45, p= 80, m = 256, ¢ = 10710,

I N | Levels | T.iy(Minutes) | Tcgermm(Hours) | Tor (Estimated) ||
4,096 6 122 1.6 19.1 Hours
16384 | 7 181 13.0 51 Days
65,536 8 240 103.7(est.) 9 years
262,144 9 297 829.3(est.) 572 years
1,048,576 10 360 6634.2(est) 366283 years

Table 7.5: Comparison of Timings (a = 0.45)
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Hausdorff Dimension D = 0.173610644917543F + 01

(A)

[| Level Numbers | Dimension of Support ||

6 0.122269892939995E+-01
7 0.119171383040669E+-01
8 0.116808624449636E+01
9 0.114954943391115E+-01
10 0.113465307668069E+-01

First Order Extrapolation

[ Level Number L | Dimension of Support d ||

(B)

- 6,7 0.100580323644713E4-01
7,8 0.100269314312405E4-01
8,9 0.100125494922947E+-01

9,10 0.100058586160655E+01

Second Order Extrapolation

[| Level Number L | Dimension of Support d ||

(©)

Table 7.6: Dimension of Support d on Cantor Set C°® with a = 0.45

6,7,8 0.993362863154809E+-00
78,9 0.996221270598445E4-00
8,9,10 0.997909511114859E4-00
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Figure 7.4: Dimension of Support d vs. Hausdorff Dimension D
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Figure 7.5: Dimension of Support d vs. Hausdorff Dimension D

(First Order Extrapolation)
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Figure 7.6: Dimension of Support d vs. Hausdorff Dimension D

(Second Order Extrapolation)




CHAPTER 7. NUMERICAL EXPERIMENTS

Y
Nlev=
1.20 // Koz
1.10
1.00
0.90 Niev=78 ~
Nlev=8.9
0.80 NIev=9.10
/ Niev=8.9.10
0.70 Nievi 85 ™™
/ Nlev=6.7.8
0.60
0.50
X
0.50 1.00 1.50

Figure 7.7: Dimension of Support d vs. Hausdorff Dimension D
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Figure 7.8: Charge Distribution for a = 0.1 (/N = 4096)
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Figure 7.9: Charge Distribution for a = 0.3 (N = 4096)
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Figure 7.10: Charge Distribution for a = 0.45 (N = 4096)




Chapter 8

Conclusions and Generalizations

We have presented an O(N) direct algorithm for the rapid solution of the Laplace
equation on regions with fractal boundaries. In the algorithm, operators of low rank
are recursively compressed, and the inverse is constructed in a compressed form so
that it can be applied to a vector rapidly. The algorithm is capable of generating only
a part of the solution if desired. The evaluation of potential at any point requires
O(log N) operations.

The fast direct algorithm of this thesis admits far-reaching generalizations. Fol-

lowing are some of the examples.

Harmonic Measure On Cantor Sets In Three Dimensions
It is straightforward to generalize the algorithm of this thesis to solve the
Laplace equation in three dimensions on regions with fractal boundaries. In
R3, the behavior of harmonic measure for Cantor sets is completely unknown.
Peter Jones recently raised a question about the determination of the actual val-
ues of the dimension of the support of harmonic measure on fractals of certain
types in R?, and conjectured that the dimension of the support in R® should be
always less than two ([34]). The numerical experiments for the computation of
harmonic measure in two dimensions would provide experience and insights for

the study of harmonic measure on fractals in three dimensions, and eventually

68
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might lead to the understanding of harmonic measure on porous surfaces.

Integral Equations On Fractals
In growth phenomena such as crystallization, electrodeposition, viscous finger-
ing, and diffusion-limited aggregation, the harmonic measure governs the growth
of the fractal surfaces, in addition to describing the distribution of growth prob-
abilities ([56]).
A minor modification of the algorithm of this thesis can be used to study the

metric properties of harmonic measure on other types of fractals.

Integral Equations with Other Non-Oscillatory Kernels
It is easy to see that the algorithm of this thesis does not substantially depend
on the fact the kernel in the integral equation being solved satisfies the Laplace
equation. The property of the kernel being used is simply its smoothness away
from the diagonal, and the fact that it is non-oscillatory. Thus, the algorithm
of this thesis can be generalized to a wide class of integral equations both in
two and three dimensions. This work is in progress and will be reported at a

later date.

Integral Equations On Curves in R? and R®
One of the approaches to the computation of electrostatic fields in the design of
chips and circuits is to formulate the problems as integral equations on curves
either in R? or R® with a free-space Green’s function as the kernel (see [59] and
[47]). The algorithm of this thesis can be generalized to include fast algorithms
for problems of this type. The new algorithms would have advantages over the
conventional methods (such as moment method, and finite element method)

both in the CPU time requirements, and the accuracy of the solution.
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Appendix A

Measure Theory

In this appendix, we collect relevant facts in the literature about Borel integration,
and harmonic measure. Facts about Borel measure can be found, for example, in [35],

and about harmonic measure in [21], [15], [31], and [55].

A.1 Borel Measure and Integration

Definition A.1 (6-ring) Let R be a non-empty family of sets. It is a 6-ring if the
following three conditions hold.

1. For any sets A€ R and BE R,

A|UBeR. (A1)

2. For any sets A € R and B ER,

A\B € R. (A.2)

3. For a countable sequence of sets {A.} C R,

(A- € R. (A.3)
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