
Yale University
Department of Computer Science

On Backtracking Resistance in Pseudorandom Bit Generation
(preliminary version)

Michael J. Fischer Mike Paterson Ewa Syta

YALEU/DCS/TR-1466
October 24, 2012

(Revised December 4, 2012)



On Backtracking Resistance in Pseudorandom Bit
Generation∗

Michael J. Fischer† Mike Paterson‡ Ewa Syta†

Abstract

An incremental pseudorandom bit generator (iPRBG) is backtracking resistant if a state
compromise does not allow the attacker a non-negligible advantage at distinguishing previously-
generated bits from uniformly distributed random bits. Backtracking resistance can provide
increased security in cryptographic protocols with long-term secrecy requirements. While a
necessary condition for an iPRBG to be backtracking resistant is that the next-state function be
one-way, we show that this condition is not sufficient. To do this, we assume that an iPRBG
based on a one-way next-state permutation exists. We convert such an iPRBG into a new iPRBG
that generates the same output sequence and is also based on a one-way next-state permutation,
but the new generator is provably not backtracking resistant. We leave open the important ques-
tion of whether cryptographically secure backtracking resistant iPRBGs exist, even assuming
that cryptographically strong PRBGs and one-way permutations exist.

Keywords: backtracking resistance; pseudorandom generator; computational indistinguisha-
bility; one-way permutation; security

1 Introduction

Random numbers are widely applicable in many fields such as statistical sampling, computer sim-
ulation and gambling. However, they play an especially important role in cryptography as almost
all cryptographic protocols require some amount of randomness. Since random numbers are im-
possible to generate on deterministic computers, pseudorandom bit generators (PRBGs) are used in
practice to provide bits that are computationally indistinguishable from random bits. This property
is desired for cryptographic uses since cryptographic protocols often rely on the unpredictability of
pseudorandom numbers to maintain their security properties. Pseudorandom numbers are used in
the key generation of encryption algorithms, random challenges in authentication protocols, salts
for passwords, cryptographic nonces, etc [6].

It has become customary to consider the security of a PRBG primarily in terms of the quality of
the output it produces, more specifically, its indistinguishability from random output. Therefore, the
notion of computational indistinguishability has become equated with cryptographic security of a
generator and has become the gold standard of PRBG security. However, there are two other highly
∗This material is based upon work supported by the Defense Advanced Research Agency (DARPA) and SPAWAR

Systems Center Pacific, Contract No. N66001-11-C-4018.
†Department of Computer Science, Yale University, CT, USA
‡Department of Computer Science, University of Warwick, Coventry, UK

1



desirable and often overlooked properties: backtracking resistance and prediction resistance [1].
Both properties provide resistance to attacks under the more general security model in which an
adversary is able to obtain the internal state of the generator, potentially in addition to some subset
of the past output and an ability to observe some future output. Informally, a PRBG is backtrack-
ing resistant if any unseen past output remains indistinguishable from a random sequence even to
an adversary who obtains the internal state of a generator. A complementary notion of prediction
resistance ensures that the unseen future output remains indistinguishable as well. It has been con-
jectured that PRBGs based on a one-way function achieve backtracking resistance while prediction
resistance is ensured by providing additional entropy [1].

In this paper we focus on the importance of backtracking resistance to the security of pseudo-
random bit generators given the more general security model. We make the following contributions.
First, we give a motivational example to bring attention to the importance of backtracking resis-
tance. Then, we provide a formal treatment of this property. We prove that one-wayness of the
next-state function is a necessary but not a sufficient condition to ensure backtracking resistance.
Finally, we formulate a number of important questions regarding backtracking resistance for future
exploration.

The rest of the paper is structured as follows. Section 2 discusses the importance of backtracking
resistance to security of PRBGs. Section 3 gives the required definitions. Sections 4 and 5 provide
proofs of our claims. Section 6 outlines future work and Section 7 concludes.

2 Backtracking Resistance

In this section, we give a motivational story, informally discuss backtracking resistance, specify the
security model, present the current approach to backtracking resistance, and review related work.

2.1 Motivational Story

Alice and Bob exchange messages on a daily basis. Because of their sensitive nature, they decide
to encrypt them and use a fresh encryption key every day. Initially, they thought to use a public
key encryption scheme but quickly got tired of the need to exchange their public keys so frequently.
Then, Alice suggested they each use a cryptographically secure pseudorandom bit generator ini-
tialized with the same secret seed to generate the same key for a symmetric encryption algorithm.
After exchanging the secret seed, Alice and Bob each used the pseudorandom bit generator on their
respective computers and decided to generate a fresh AES [3] key every day.

This approach has been working very well. Unfortunately, one day Alice’s device was stolen
and ended up in Eve’s hands. Eve has been secretly intercepting messages exchanged between Alice
and Bob but did not have much luck opening them because AES resists Eve’s cryptanalytic skills.
Since she could not break the encryption scheme, she decided to try to recover the encryption keys
from the pseudorandom bit generator. Because she was in possession of Alice’s computer, she knew
the generator used and its internal state after generating the last key. Her next step was to try to even
is case use this information to recover previously generated bits, thereby giving her full access to all
messages previously encrypted.

Alice and Bob knew that they had nothing to worry about only if their pseudorandom bit gen-
erator was backtracking resistant. If it was, then Eve would not be able to backtrack to previous

2



output bits ensuring the secrecy of past messages. However, if it was not, then Eve would be en-
joying their private correspondence after decrypting their messages using keys recovered from the
previous output of the generator.

The goal of the above example is to illustrate the need to consider the security of pseudoran-
dom generators under a more general security model in which to an adversary has the ability to
compromise the generator itself and obtain its entire internal state.

2.2 New Approach to PRBG Security

Pseudorandom generators are rarely, if ever, used on their own; they are mostly used as a part
of more complex systems and directly affect the security properties offered by those systems. In
practice, most people only consider the quality of the output a generator produces as an indicator
of whether or not they can deem the generator “secure”. However, there is more to the security of
pseudorandom generators than computational indistinguishability of its output.

As illustrated in our story, the security of the system Alice came up with might be at risk be-
cause of the properties (or lack of thereof) of the generator they chose. She surely knew to use a
cryptographically secure generator to ensure that Eve cannot learn about the encryption keys based
on any transmissions she was able to intercept. However, it was not entirely obvious to consider
how a compromise of the system a generator is running on may aid an adversary in breaking the
(past) security of the entire system.

We believe that considering security of pseudorandom generators with respect to more powerful
adversaries is more important than ever. Nowadays, not only well-secured dedicated computers run
sensitive application requiring strong security guarantees; portable devices such as laptops, tablets,
or even mobile phones perform similar tasks as well. Such devices can be easily lost or stolen,
creating a very plausible scenario for state compromise attacks. The approach to PRBG security
must reflect that.

2.3 Importance of Backtracking Resistance

The backtracking resistance property ensures that the output generated prior to a compromise of the
generator remains secure. In other words, if a generator is backtracking resistant, then obtaining its
internal state does not provide additional useful information about the past output and therefore is
not an advantage in breaking the “past security” of an application that employs such a generator.

Backtracking resistance is critical to applications requiring long-term security of past outputs.
Backtracking resistance offers protection similar to but more general than backward secrecy, which
ensures that past keys remain secure even in case of a compromise of future keys. Key generation
and key renewal schemes are two obvious examples of tasks in which backtracking resistance is
extremely important if not essential.

2.4 Security Model

Traditionally, when considering the security of a pseudorandom generator, an adversary is assumed
to be outside of the system on which an instantiation of a pseudorandom generator is running. Such
an adversary might observe (some) output of a generator, but never its internal state, while trying to
either distinguish the generator’s output from truly random output or predict future output based on
previously seen output.

3



In this paper we emphasize the need to consider a more general security model which permits a
more powerful adversary whose capabilities include compromising a device (or a system) on which
a generator is running. In such a scenario, an adversary obtains full knowledge of the internal state
of the generator at the time of the compromise. In addition, the adversary might have additional
knowledge about the previous output generated prior to compromising the system.

Therefore, in backtracking attacks, we shall always consider an adversary whose knowledge
about the generator consists of its internal state at the time of compromise and possibly a subset of
the output generated prior to an attack.

The notion of the internal state of a generator is crucial to understanding backtracking attacks
and devising backtracking resistant generators.

2.5 Internal State of a Generator

The need to consider the internal state as an important and security-related element of a generator
arises from the incremental way in which pseudorandom generators work in practice. Once a gen-
erator is instantiated, it produces output bits whenever requested based on its current internal state.
It then updates its internal state. Informally speaking, an internal state of a generator consists of all
information required for the generator to produce future output bits and internal states.

An internal state may include a varying amount of information and be specific to a particular
type of a generator or even a particular implementation. In the formal treatment of the backtracking
property (Section 3), we assume that the internal state consists of secret information that the genera-
tor acts upon. In practice, additional secret and non-secret information may be stored along with the
state. Retaining unnecessary information may cause a generator to succumb to state compromise
attacks even though the underlying generator algorithm is backtracking resistant. Therefore, the
information kept around as a part of an internal state should be carefully analyzed and be a part of
the generator’s security considerations.

2.5.1 Atomicity of Operations

A generator goes through different stages while (incrementally) producing output bits. At any given
stage i, a pseudorandom generator has an internal state si. It produces a pseudorandom bit ri
using the output function and goes from the current state si to a new state si+1 using the next-state
function. During this transition, the current (si) and future (si+1) states and the current (ri) and
future (ri+1) output bits are simultaneously available. We assume that the operation of computing
the next-state and output functions is atomic; otherwise, breaking backtracking resistance is trivial
because of the additional information available during the transition.

To justify the reasonableness of this assumption, imagine that a system goes through active and
idle periods. During an active period, the generator is in use and continuously produces new output
bits and updates its state. During an idle period, the generator is not in use and only stores its current
state. In our previous example, Alice only requests bits from the generator (putting it into an active
state) when she is physically present at her computer and in need of a new key to encrypt a message.
Therefore, when Eve accesses Alice’s computer, the system is in an idle state, ensuring that the only
information available is a single internal state.

Voting machines are another example. While in use, they are physically guarded in a voting
location, but when stored, they are more vulnerable to physical attacks. Smart phones, tablets, and
other personal devices would exhibit the same “active-or-idle” usage pattern.

4



2.6 Achieving Backtracking Resistance

To achieve backtracking resistance, some restrictions must be placed on a generator, more specif-
ically on the initial-state, next-state, and/or output functions. The goal is to limit the information
carried in the internal state in a way that allows producing future output without revealing informa-
tion about past output.

It has been suggested in [1] that requiring the underlying generation algorithm to be one-way is
a sufficient condition to ensure backtracking resistance.

Backtracking resistance is often thought of as an inability of an adversary to differentiate previ-
ously unseen output of a generator produced prior to stage i from random output after compromising
an internal state si at some stage i. One approach to differentiate such outputs is to retrieve previ-
ous states of the generator from the current one. This way an adversary can himself generate the
previous output which would clearly translate into his ability to differentiate the outputs.

Therefore, requiring the underlying algorithm to be one-way is necessary to prevent inverting
the current state and (trivially) breaking the backtracking resistance. However, it is not sufficient.
The state may carry enough information to retrieve past outputs without the need to fully recover
past states.

2.7 Related Work

Backtracking resistance of pseudorandom generators has not been widely studied. The first mention
and discussion of this property is due to Kelsey et. al. [5]. The notion of backtracking resistance
has been incorporated into the NIST Special Publication 800-90 “Recommendation for Random
Number Generation Using Deterministic Random Bit Generators” [1].

3 Definitions

This section provides the necessary definitions needed for constructions given in Sections 4 and 5.

3.1 Incremental Pseudorandom Bit Generator

A pseudorandom bit generator (PRBG) (sometimes called a deterministic random bit generator
(DRBG) [1]), is a deterministic polynomial-time algorithm G that maps a seed z of length m to an
output string r of length n > m. To be cryptographically secure, the ensemble of output strings
G(Um) should be computationally indistinguishable from Un, where Um and Un are the uniform
distributions over strings of length m and n, respectively.1

In practice, pseudorandom bits are generated on demand and the output string is built incremen-
tally.

Definition 1. An incremental PRBG (iPRBG) G is defined by a tuple (m,N, S, ι, δ, ρ). m is the
length of the seed, N is the length of the output sequence, S is a finite set of states of the generator,
and ι, δ, and ρ are functions. The initial-state function ι maps a seed to an initial state s0 ∈ S. The
next-state function δ is a permutation on S. The output function ρ maps S to {0, 1}.

1The notion of computational indistinguishability, introduced by Yao [7], means that any probabilistic polynomial-
time algorithm behaves essentially the same whether supplied with inputs from the one distribution or the other. See
Goldreich [4] for further details.

5



Starting with a seed z ∈ {0, 1}m, G computes a sequence of states s0, s1, . . . , sN and a se-
quence of bits r0r1 . . . rN−1, where s0 = ι(z), sk = δ(sk−1) for 1 ≤ k ≤ N , and rk = ρ(sk) for
0 ≤ k ≤ N − 1. The output G(z) = r0r1 . . . rN−1.

When the seed z is chosen according to the uniform distribution Um, G induces a distribution
LG
n on the state sn at stage n. Namely, LG

n = δn(ι(Um)).

3.2 Backtracking Resistance

A backtracking attack applies to an iPRBG G whose internal state has been compromised. We as-
sume that an adversary compromises the internal state of G at stage n after rn−1 has been produced
and the internal state has been replaced by sn. Informally, we say thatG resists backtracking at stage
n if the bit string r0 . . . rn−1 is computationally indistinguishable from a truly random string of the
same length even given the state sn. G resists backtracking if it resists backtracking at any stage.
This implies that a polynomially-bounded adversary has only a negligible advantage at guessing
any of the bits produced by G before the attack.

Definition 2. (Backtracking Resistance) Let G = (m,N, S, ι, δ, ρ) be an incremental PRBG, and
let 0 ≤ n ≤ N . Consider a run G(z) on seed z. An adversary who corrupts G at stage n receives
the pair (r, s) ∈ {0, 1}n×S, where r = r0r1 . . . rn−1 and s = sn. When z is chosen randomly, this
gives rise to a probability distribution G∗n(Um), where Um is the uniform distribution over seeds.
We say that G is backtracking resistant if G∗n(Um) is computationally indistinguishable from the
distribution Un × LG

n for all 0 ≤ n ≤ N .

Intuitively, the only difference between cryptographic security and backtracking resistance is
that in the latter case, the distinguishing judge is given either the output and state of G up to a given
stage, or she is given a random output and random state, where the output is uniformly distributed
and the state is correctly distributed for that same stage. Backtracking resistance implies that know-
ing the state of the generator gives the adversary no useful information about the previous output
bits.

4 One-wayness is Necessary

In this section we show that one-wayness of the next-state function is a necessary condition to
achieve backtracking resistance.

Theorem 1. Let G = (m,N, S, ι, δ, ρ) be a backtracking resistant iPRBG. Then δ is a one-way
function.

Proof. Let G = (m,N, S, ι, δ, ρ) be a backtracking resistant iPRBG. We show that δ is a one-way
function.

Assume to the contrary that δ is not a one-way function. Then there exists a probabilistic
polynomial-time algorithm Inv for inverting δ with a non-negligible success probability. In greater
detail, when given a uniformly distributed random state s ∈ S,

Prob[δ(Inv(δ(s)) = δ(s)]

is non-negligible.

6



We construct a polynomial-time judge J . Given inputs r ∈ {0, 1}n and s ∈ S, the judge
computes ŝ = Inv(s). If δ(ŝ) = s, then she compares ρ(ŝ) with rn−1 and outputs 1 if they are equal
and 0 otherwise. If δ(ŝ) 6= s, she outputs a random uniform bit b.

Suppose (r, s) results from a random run of G. If ŝ is in the preimage of s under δ, then
J outputs 1. Otherwise, J outputs 1 or 0 with equal probability. Since Inv succeeds with non-
negligible success probability ε, then J outputs 1 with probability 1/2 + ε/2. On the other hand, if
rn−1 is a uniformly and independently chosen random bit, then J outputs 1 with probability exactly
1/2. Hence, J distinguishes the pseudorandom output from truly random with advantage ε/2. This
implies that G is not backtracking resistant, contradicting the assumption that it is.

Hence, δ must be a one-way function.

5 One-wayness is Not Sufficient

In this section we show that one-wayness of the next-state function is not a sufficient condition to
ensure backtracking resistance.

Theorem 2. Given an iPRBG G = (m,N, S, ι, δ, ρ) where δ is a one-way permutation, there is an
iPRBG H = (m,N, Ŝ, ι̂, δ̂, ρ̂) such that δ̂ is a one-way permutation, H(z) = G(z) for all seeds z,
and H is not backtracking resistant.

This theorem implies that if G is also cryptographically secure, then so is H . This is because
cryptographic security depends only on the generated output sequences and not on the internal
structure of the generator itself, so the output sequences of H and G are the same.

The proof is structured as follows. Starting from an iPRBG G = (m,N, S, ι, δ, ρ) based on
a one-way permutation δ, we construct an iPRBG H = (m,N, Ŝ, ι̂, δ̂, ρ̂) which is the same as G
except that we augment the state with an extra bit of information that does not affect the output
sequence. We show that δ̂ is a one-way permutation, but H is not backtracking resistant. Therefore,
δ̂’s one-wayness is not sufficient to ensure backtracking resistance.

5.1 The Generator H

Assume that an iPRBG G = (m,N, S, ι, δ, ρ) exists with δ a one-way permutation. Define H =
(m,N, Ŝ, ι̂, δ̂, ρ̂), as follows:

Ŝ = S × {0, 1}
ι̂(z) = (ι(z), 0)

δ̂(s, b) = (δ(s), b⊕ ρ(s))
ρ̂(s, b) = ρ(s)

In the following, sk and rk refer to G, and ŝk and r̂k refer to H .

Fact 1. Let 0 ≤ k ≤ N , let b0 = 0, and let bk = r0 ⊕ r1 ⊕ . . .⊕ rk−1 for 1 ≤ k ≤ N . Then

1. ŝk = (sk, bk);

2. r̂k = rk;

3. H(z) = G(z) for all seeds z.

7



Proof. Immediate by induction on k.

To know that H is an iPRBG, we must verify that δ̂ is a permutation on Ŝ.

Lemma 1. δ̂ is a permutation on Ŝ.

Proof. We show that δ̂ is one-to-one and onto.
Suppose δ̂(s′, b′) = (s, b) = δ̂(s′′, b′′). Then s′ = s′′ since δ is one-to-one and δ(s′) = s =

δ(s′′). Moreover, ρ(s′) ⊕ b′ = b = ρ(s′′) ⊕ b′′. Since s′ = s′′, then ρ(s′) = ρ(s′′) so also b′ = b′′.
Hence, δ̂ is one-to-one.

Now let (s, b) ∈ Ŝ. Since δ is a permutation, there exists s′ such that δ(s′) = s. Let b′ =
ρ(s′)⊕ b. Then δ̂(s′, b′) = (s, b), so δ̂ is onto.

Lemma 2. H is not backtracking resistant.

Proof. We construct a polynomial-time judge J . On input (r, (s, b)), where r = r0, r1, . . . , rn−1,
J outputs r0 ⊕ . . . rn−1 ⊕ b.

Let 1 ≤ n ≤ N and suppose a random run of H results in output r = r0, r1, . . . , rn−1 and
state (sn, bn). Then J on input (r, (sn, bn)) outputs 0 since bn = r0 ⊕ r1 ⊕ . . . ⊕ rn−1. On the
other hand, if (r, (s, b)) is chosen according to the distribution Un × LH

n , then J outputs 1 with
probability exactly 1/2. Hence, J distinguishes the pseudorandom output from truly random with
advantage 1/2. This implies that H is not backtracking resistant.

Lemma 3. The next-state function δ̂ is one-way.

Proof. Assume that δ̂ is not one-way. Then there exists a probabilistic polynomial-time algorithm
Înv that inverts δ̂ with non-negligible success probability, We construct a probabilistic polynomial-
time algorithm Inv that inverts δ with non-negligible success probability.

Given a state s ∈ S, Inv computes Înv(s, 0) and Înv(s, 1) to see if either results in an inverse
of δ̂. If an inverse (s′, b′) is found, then Inv outputs s′ (which is a δ-inverse of s). Algorithm 1
describes this strategy in greater detail.

Algorithm 1 Algorithm Inv
Input: s ∈ S
Output: s′ s.t. δ(s′) = s

1. Compute: (s′0, b
′
0) = Înv(s, 0) and (s′1, b

′
1) = Înv(s, 1).

2. If δ(s′0) = s, then output s′0.
Else if δ(s′1) = s, then output s′1.
Else output “fail”.

Inv’s advantage in inverting δ is at least as great as the advantage of Înv. Since Înv is a
polynomial-time algorithm that succeeds with non-negligible probability, then Inv is also polynomial-
time and succeeds with non-negligible probability. This is impossible since δ is one-way.

Therefore, Înv does not exist and δ̂ is one-way.

8



5.2 Proof of Theorem 2

Proof. Assuming an iPRBG G based on a one-way next-state permutation exists, we constructed
a new iPRBG H in Section 5.1 such that H(z) = G(z) for all seeds z. From Lemma 2, H is
not backtracking resistant, but nevertheless, Lemmas 1 and 3 show that H is based on a one-way
next-state permutation.

6 Future Work

We do know how to implement iPRBGs that have a very weak form of backtracking resistance.
Namely, if the adversary compromises the generator and gets only the current state sn, then he can-
not distinguish this case from a random pair (r, s) ∈ Un×LG

n with a non-negligible advantage. This
is true of the Blum Blum Shub (BBS) [2] generator based on the assumed difficulty of the quadratic
residuosity problem. Assuming the contrary, then an adversary for predicting rn−1 from sn would
give a means for constructing a quadratic residue tester with non-negligible success probability. We
omit the details here.

We leave open the major problem of whether or not a cryptographically secure iPRBG exists,
even assuming that one-way functions and cryptographically secure PRNGs exist. The seed in
an iPRBG determines both the output sequence r and the final state sn. Backtracking resistance
requires showing the computational independence of r and sn, something that the authors do not
know how to do except in the very special case mentioned above.

The fact that this problem may be more difficult than is at first apparent can be seen from the
following contrived example. Suppose we start with a cryptographically secure iPRBGG with 160-
bit long states. We construct a new generator H that is identical to G except for, say, the first 160
bits of output. The way H generates those bits is to run G to the end to obtain sN , then continue
running G to generate the next 160 bits r′. Now, the first 160 bits of output from H are r′ ⊕ s0.
We have no a priori reason to believe that H is cryptographically secure because of the strange way
those first 160 bits are generated, yet it seems intuitive that they should still look perfectly “random”.
Nevertheless, H is not backtracking resistant in a very strong sense – if an adversary gets both the
first 160 output bits and the final state sN of the generator, he can compute r′, xor it with the first
160 output bits, and obtain s0, completely breaking the generator.

7 Conclusions

In this paper we have explored a new approach to security of pseudorandom bit generators which
involves a more general security model in which an adversary can compromise the internal state of a
generator. We have formally defined an incremental pseudorandom bit generator (iPRBG) to better
reflect the way pseudorandom bits are generated in practice, and we have defined the backtracking
resistance property with respect to it. We have also provided proofs that one-wayness of the next-
state function is a necessary but not a sufficient condition to ensure backtracking resistance. We
have only begun to explore the complex notion of backtracking resistance and different ways of
achieving it. We leave to future work the important question of whether backtracking resistance is
achievable, either in theory or in practice.

9



References

[1] Elaine Barker and John Kelsey. Recommendation for random number generation using deter-
ministic random bit generators. Technical report, National Institute of Standards and Technol-
ogy, 2012.

[2] Lenore Blum, Manuel Blum, and Michael Shub. A simple unpredictable pseudo random num-
ber generator. SIAM J. Comput., 15(2):364–383, May 1986.

[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer Verlag, Berlin, Heidelberg, New York, 2002.

[4] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, 2001.

[5] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on pseudo-
random number generators. In FAST SOFTWARE ENCRYPTION, FIFTH INTERNATIONAL
PROCEEDINGS, pages 168–188. Springer-Verlag, 1998.

[6] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code in C.
John Wiley & Sons, Inc., New York, NY, USA, 1995.

[7] Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82, pages 80–91, Washington,
DC, USA, 1982. IEEE Computer Society.

10


