
Yale University

Department of Computer Science

P.O. Box 208205
New Haven, CT 06520–8285

Self-stabilizing Leader Election in
Networks of Finite-State Anonymous Agents1

Michael Fischer Hong Jiang2

YALEU/DCS/TR-1370
October 2006

1 This is a slightly-revised preprint of a paper to appear in A. Shvartsman (Ed.): OPODIS 2006, LNCS
4305. c©Springer-Verlag Berlin Heidelberg 2006.

2 Supported by NSF grant ITR-0331548



Self-stabilizing Leader Election in
Networks of Finite-State Anonymous Agents?

Michael Fischer and Hong Jiang??

Department of Computer Science, Yale University

Abstract. This paper considers the self-stabilizing leader-election prob-
lem in a model of interacting anonymous finite-state agents. Leader elec-
tion is a fundamental problem in distributed systems; many distributed
problems are easily solved with the help of a central coordinator. Self-
stabilizing algorithms do not require initialization in order to operate
correctly and can recover from transient faults that obliterate all state
information in the system. Anonymous finite-state agents model systems
of identical simple computational nodes such as sensor networks and bi-
ological computers. Self-stabilizing leader election is easily shown to be
impossible in such systems without additional structure.
An eventual leader detector Ω? is an oracle that eventually detects the
presence or absence of a leader. With the help of Ω?, uniform self-
stabilizing leader election algorithms are presented for two natural classes
of network graphs: complete graphs and rings. The first algorithm works
under either a local or global fairness condition, whereas the second re-
quires global fairness. With only local fairness, uniform self-stabilizing
leader election in rings is impossible, even with the help of Ω?.

Keywords: anonymous, failure detector, fairness, finite-state, impossibility re-
sult, leader election, population protocols, ring network, self-stabilization, sensor
networks.

1 Introduction

Leader election is a fundamental problem in distributed systems. Many prob-
lems that are hard otherwise become easy to solve once a central coordinator
is available. In reality, the availability and reliability of a leader both depend
on a variety of factors: the feasibility to deploy or elect a leader, the possibility
that an existing leader crashes, and the possibility that transient faults generate
multiple leaders.

In many scenarios, a reasonable expectation is that when the network even-
tually becomes well-behaved and remains so, a leader is elected and remains
reliable. This behavior is captured by failure detector Ω [1] also known as an

? This is a slightly-revised preprint of a paper to appear in A. Shvartsman (Ed.):
OPODIS 2006, LNCS 4305. c©Springer-Verlag Berlin Heidelberg 2006.

?? Supported by NSF grant ITR-0331548



2 M. Fischer and H. Jiang

eventual leader elector. With Ω, every process i has a local oracle leaderi. When
invoked, leaderi returns a process ID which process i considers to be its current
leader. Ω guarantees that there is a time after which all processes have the same
non-faulty leader. Ω is important because it was shown to be the weakest failure
detector required to solve consensus in the conventional model of asynchronous
distributed systems [1], and it has been used in many other algorithms.

Ω presupposes a model in which agents have unique process ID’s. In this pa-
per, we study a model of distributed systems called population protocols which
was developed in a series of papers [2–4]. A network consists of an unbounded
but finite population of identical anonymous finite-state agents. The protocols
we present are uniform over natural classes of networks: They are independent
of the network size, and the agents do not need to know the size of the network.
The agents in our model are strongly anonymous. Not only do agents lack unique
process ID’s, but an agent cannot even determine whether two distinct messages
are from the same process, nor can it direct two outgoing messages to the same
recipient. By way of contrast, some related work on anonymous networks assumes
an underlying port-to-port communication model in which processes are perma-
nently assigned to ports, and a process sends and receives messages through
distinguished ports. Such a model gives agents the ability to tell whether a set
of messages come from different neighbors and to direct messages to the same or
distinct neighbors, which is generally impossible in our model. Identical devices
are easy to manufacture in large quantity. In addition, population protocols use
O(1) space per node, which is highly desirable in networks of memory-limited
devices such as ad hoc mobile networks.

We introduce Ω?, an analog of Ω appropriate to anonymous networks, which
we call an eventual leader detector. Instead of electing a leader, Ω? simply reports
to each agent a guess about whether or not one or more leaders are present in
the network. The guess may be correct or not, and different inconsistent guesses
may be reported to different agents. The only guarantee is that from some point
onward in any infinite execution, if there is continuously a leader, or if there is
continuously no leader, Ω? eventually accurately reports that fact to each agent.

Using Ω?, we give uniform self-stabilizing leader election algorithms for fully
connected networks (assuming local fairness) and for rings (assuming global
fairness). We also show that uniform leader election is impossible in rings with
only local fairness, even with the help of Ω?. The different fairness conditions
are defined in section 3.1

2 Related work

A self-stabilizing algorithm does not depend on initialization of process states,
and an execution of a self-stabilizing algorithm converges to a set of pre-defined
stable configurations starting from any arbitrary configuration. The first self-
stabilizing algorithms are introduced by Dijkstra[5]. Schneider[6] presents a sur-
vey on early research on self-stabilization.



Self-stabilizing Leader Election 3

Itkis, Lin, and Simon [7] present a deterministic constant-space self-stabilizing
protocol for leader election on uniform bidirectional asynchronous rings of prime
size. In their model, there is a central daemon that picks an enabled proces-
sor each time to make an atomic move. The chosen processor can read the
states of its two neighbors at the same time to determine its next state. Higham
and Myers [8] give a randomized self-stabilizing algorithm that solves token
circulation and leader election on anonymous, uniform, synchronous, and uni-
directional rings of arbitrary but known size, in which each processor state and
message has size in O(log n). Dolev, Israeli, and Moran [9] present a random-
ized self-stabilizing leader election protocol that tolerates addition or deletion
of processors and links. Their protocol uses O(log n) bits per node. Beauquier,
Gradinariu, and Johnen [10] present a silent and deterministic self-stabilizing
leader-election protocol requiring constant memory space on unidirectional, ID-
based rings where the ID values are bounded. They also prove that a non-
constant lower bound on space is required by a (deterministic or randomized)
self-stabilizing leader-election protocol on unidirectional anonymous rings under
an unfair daemon. Based on the observation that in a stabilized system, a tran-
sient fault usually affect a small number of processes, Ghosh and Gupta [11]
introduce a self-stabilizing leader-election algorithm that recovers quickly from
small scale transient faults. Their algorithm assumes the existence of unique
IDs. Fernández, Jiménez, and Raynal [12] present two eventual leader-election
algorithms in networks where nodes have limited global information. Their al-
gorithms are implementations of Ω in a hybrid model and require unique and
totally-ordered IDs. Angluin et al. [4] present a non-uniform leader-election al-
gorithm for rings in the population protocols model. They also show in the
same paper that there does not exist a self-stabilizing leader-election protocol
for general connected networks.

Chandra and Toueg [13] introduce the concept of unreliable failure detectors
and study how they can be used to solve the asynchronous consensus problem
with crash failures. In a related paper, Chandra, Hadzilacos, and Toueg [1] prove
that one of the failure detectors in [13] is the weakest failure detector for solving
asynchronous consensus with a majority of reliable processes. They also show
that Ω is a weakest failure detector with which one can solve consensus. Aguilera
et al. present an algorithm to implement Ω and to solve consensus in partially
synchronous systems [14]. Ω can be implemented in a system with up to f
process crashes, if there exists some correct process with f outgoing links that
are eventually timely. The focus of these papers is the consensus problem, so the
underlying network is assumed to be fully connected.

3 Model and Definitions

We introduce the population-protocol model to the extent required to present
the results in this paper. A more detailed description is available in [4].

We represent a network by a directed graph G = (V,E) with n vertices
numbered 0 through n−1 and no multi-edges or self-loops. Each vertex represents



4 M. Fischer and H. Jiang

a finite-state sensing device called an agent, and an edge (u, v) indicates the
possibility of a communication between u and v in which u is the initiator and
v is the responder. An “undirected” network refers to a communication graph
in which edge (v, u) is present if and only if edge (u, v) is present. The number
associated with each node is used solely for the ease of description and is not
known to the agents.

A protocol P (Q, C, X, Y, O, δ) consists of a finite set of states Q, a set of initial
configurations C, a finite set X of input symbols, an output function O : Q → Y ,
where Y is a finite set of output symbols, and a transition function δ mapping
each element of (Q×X)× (Q×X) to a nonempty subset of Q×Q. If (p′, q′) ∈
δ((p, x), (q, y)), we call ((p, x), (q, y)) → (p′, q′) a transition. A transition does not
necessarily cause either of the nodes to change its state. The transition function,
and the protocol, is deterministic if δ((p, x), (q, y)) always contains just one pair
of states. The inputs provide a way for a protocol to interact with an external
entity, be it the environment, a user, or another protocol. In this paper, an agent
i interacts with its leader detector through the input port.

A configuration is a mapping C : V → Q specifying the state of each device
in the network, and an input assignment is a mapping α : V → X. A trace
TG(Z) on a graph G(V,E) is an infinite sequence of assignments from V to the
symbol set Z: TG = λ0, λ1, . . . where λi is an assignment from V to Z. The set
Z is called the alphabet of TG. If Z = X, then each λi is an input assignment,
and we say TG is an input trace of the protocol.

An action is a pair σ = (r, e), where r is a transition ((p, x), (q, y)) → (p′, q′)
of δ and e = (u, v) is an edge of G. Let C and C ′ be configurations, α be an
input assignment, and u, v be distinct nodes. We say that σ is enabled in (C,α)
if C(u) = p, α(u) = x, C(v) = q, and α(v) = y. We say that (C,α) goes to C ′

via σ, denoted (C,α) σ→ C ′, if σ is enabled in (C,α), C ′(u) = p′, C ′(v) = q′,
and C ′(w) = C(w) for all w ∈ V −{u, v}. In words, C ′ is the configuration that
results from C by applying the transition rule r to the node pair e. Finally, we
say that (C,α) can go to C ′ in one step, denoted (C,α) → C ′, if (C,α) σ→ C ′

for some action σ, and we say that σ is taken during that step. It is possible for
more than one action to be taken during the same step.

Given an input trace IT = α0, α1, . . . we write C
∗→ C ′ if there is a sequence

of configurations C = C0, C1, . . . , Ck = C ′, such that (Ci, αi) → Ci+1 for all i,
0 ≤ i < k, in which case we say that C ′ is reachable from C given input trace
IT .

An execution is an infinite sequence of configurations and input assignments
(C0, α0), (C1, α1), . . . such that C0 ∈ C and for each i, (Ci, αi) → Ci+1. In the
rest of this paper, all occurrences of “execution” refer to an infinite sequence
as defined here. We extend the output function O to take a configuration C
and produce an output assignment O(C) defined by O(C)(v) = O(C(v)). Let
E = (C0, α0), (C1, α1), . . . , (Ci, αi), . . . be an execution of P . We define the
output trace of an execution as OT (E) = O(C0), O(C1), . . . , O(Ci), . . ..



Self-stabilizing Leader Election 5

3.1 Fairness

We consider fairness conditions of different strengths. Let E = (C0, α0), (C1, α1),
. . ., (Ci, αi), . . . be an execution. The following conditions apply to E.

Strong global fairness For every C, α, and C ′ such that (C,α) → C ′, if
(C,α) = (Ci, αi) for infinitely many i, then (Ci, αi) = (C,α) and Ci+1 = C ′

for infinitely many i. (Hence, the step (C,α) → C ′ is taken infinitely many
times in E.)

Strong local fairness For every action σ, if σ is enabled in (Ci, αi) for in-
finitely many i, then (Ci, αi)

σ→ Ci+1 for infinitely many i. (Hence, the
action σ is taken infinitely many times in E.)

Global fairness asserts that each step (C,α) → C ′ that can be taken infinitely
often is actually taken infinitely often. By way of contrast, local fairness only
asserts that each action σ that can be taken infinitely often is actually taken
infinitely often. This differs from global fairness in the case of an action that is
enabled infinitely often in more than one context. Global fairness would insist
that it be taken infinitely often in all such contexts, whereas local fairness only
requires that it occur infinitely often in one such context. For example, if σ is
enabled in both (C1, α1) and (C2, α2), where (C1, α1) 6= (C2, α2), an execution
in which σ was never taken from (C2, α2) would not be globally fair, but it would
be locally fair if σ were taken infinitely often from (C1, α1).

Theorem 1. Global fairness implies local fairness.

Proof. Suppose E satisfies strong global fairness. Because there are only finitely
many distinct (Ci, αi) pairs in E, if σ is enabled in (Ci, αi) for infinitely many i,
then σ is enabled in some particular (C,α) that occurs infinitely often in E. Let
(C,α) σ→ C ′. By strong global fairness, the step (C,α) → C ′ is taken infinitely
many times in E; hence, E satisfies strong local fairness.

These fairness definitions talk about certain steps that must be taken in-
finitely many times in E. For many purposes, it is immaterial whether a goal
configuration C ′ is reached in one step or in many. This leads us to define cor-
responding weak fairness conditions.

Weak global fairness For every C, α, and C ′ such that (C,α) → C ′, if (C,α)
occurs infinitely often in E, then C ′ occurs infinitely often in E.

Weak local fairness For every action σ, if σ is enabled infinitely often in E,
then there exist C,α,C ′ such that (C,α) σ→ C ′, (C,α) occurs infinitely often
in E, and C ′ occurs infinitely often in E.

The weak forms of fairness do not insist that particular steps occur infinitely
often in E but only that the configurations that would result from those steps
occur infinitely often. Thus, whereas strong fairness insists that a particular
action occurs in a single step, weak fairness allows the configuration that would
result from that action to be reached in many steps.

Obviously, the weak forms of fairness are implied by the corresponding strong
forms. But the relationship between the weak and strong forms is even closer.



6 M. Fischer and H. Jiang

Theorem 2. Every execution sequence that satisfies weak global (resp. local)
fairness has an infinite subsequence that satisfies strong global (resp. local) fair-
ness. Moreover, the sets of infinitely occurring pairs (C,α) are the same in both
sequences.

Proof (Sketch). The intuition is that if (Ci, αi) → Cj for j > i, then the segment
(Ci+1, αi+1), . . . , (Cj−1, αj−1) can be removed from E and the result is still an
execution sequence. In the new sequence, (Ci, α) is adjacent to Cj , so (Ci, αi) →
Cj occurs as a single step as required by strong fairness. Details are left to the
full paper.

Discussion A fair question to ask is, “Which is the ‘right’ definition of fair-
ness?” In light of Theorem 2, it makes little difference whether one works with
the strong or weak forms of fairness, for a weakly fair execution has embed-
ded in it a corresponding strongly fair execution. In subsequent sections, we do
not explicitly distinguish between the strong and weak versions of the fairness
conditions when the difference is immaterial.

Whether global or local fairness is more realistic depends on how scheduling
decisions are made. If the next step to take is chosen randomly, with each possible
step having a non-zero probability of being chosen, then a globally fair execution
will result with probability 1.

However, systems are often viewed as consisting of a collection of semi-
autonomous components. The scheduler activates each component infinitely of-
ten, but the scheduling decision is not assumed to be independent of the states
of the other components. Thus, component A might be permitted to execute
when component B is in state 1 but not when it is in state 2. As long as A is
given infinitely many chances to run, the scheduler would be considered to be
fair, even though A never gets to run at a time when B is in state 2. For such a
system, local fairness (in one of its many varieties) is the appropriate notion of
fairness.

3.2 Behavior, Implementation and Self-stabilization

A self-stabilizing system can start at an arbitrary configuration and eventually
exhibit “good” behavior. We define a behavior B on a network G(V,E) to be a set
of traces on G that have the same alphabet. We write B(Z) to be explicit about
the common alphabet Z. A behavior B is constant if every trace in B is con-
stant. If the output trace of every fair execution of a protocol P (Q, C, X, Y, O, δ)
starting from any configuration in C is in some behavior Bout(Y ), we say P is an
implementation of output behavior Bout. Given a behavior B(Z), we define the
corresponding stable behavior Bs(Z): T ∈ Bs if and only if Z is T ’s alphabet,
and there exists T ′ ∈ B such that T ′ is a suffix of T . Thus, an execution in
a stable behavior may have a completely arbitrary finite prefix followed by an
execution with the desired properties. If P (Q, C, X, Y, O, δ) is an implementa-
tion of Bs, and C is the set of all possible configurations, we say that P is a
self-stabilizing implementation of B.



Self-stabilizing Leader Election 7

The leader-election behavior LE on graph G = (V,E) is the set of all constant
traces β, β, . . . such that for some v ∈ V , β(v) = L and for all u 6= v, β(u) = N .
Informally, there is a static node with the leader mark L, and all other nodes
have the non-leader mark N in every configuration.

3.3 Eventual Leader Detector Ω?

A failure detector is a kind of oracle that provides some information to the
system that it is unable to compute on its own, thereby extending the power
of the system. Traditionally, failure detectors have been viewed as diagnostic
devices that test nodes and inform the system when failures are detected, hence
the name. However, failure detectors are a more general concept. In this paper,
we use them to supply global semantic information about the protocol, namely,
whether or not a leader is present in the system. Our failure detectors are weak
in the sense that they do not respond immediately to the presence or absence of
a leader but only after some indeterminate delay. Moreover, they do not report
their findings to all nodes simultaneously, so some nodes might learn of the loss or
gain of a leader before others do. Traditionally, failure detectors are modeled as
local procedure calls in each process. In this paper we model a failure detector as
a black box. Instead of each node invoking a local procedure, the failure detector
feeds inputs to each node at each step.

The eventual leader detector Ω? supplies a Boolean input to each process at
each step so that the following conditions are satisfied by every execution E:

1. If all but finitely many configurations of E lack a leader, then each process
receives input false at all but finitely many steps.

2. If all but finitely many configurations of E contain one or more leaders, then
each process receives input true at all but finitely many steps.

3.4 Implementation of Ω?

The weak guarantees of Ω? allow it to be simply implemented in practice using
timeouts. Each leader periodically propagates a “keep-alive” signal. Each agent
keeps a timer and resets the timer whenever it receives a signal from a leader.
On timeout, the agent sets the leader detector flag to false to indicate the
absence of a leader. It sets the flag back to true whenever it receives a signal
from a leader. In a good environment where the links are reliable and timely,
each agent will eventually detect the absence or presence of leaders correctly. In
an adverse environment where nodes malfunction and links may drop or unduly
delay messages, the leader detector may give incorrect answers and the system
may become unstable. (For example, multiple leaders may be generated.) How-
ever, eventually after the environment becomes good again, the leader detector
will produce correct information and the system will become stable.



8 M. Fischer and H. Jiang

4 Leader Election in Complete Network Graphs

We give a simple leader-election algorithm for complete network graphs using a
leader detector Ω?. Each node has a memory slot that can hold either a leader
mark “ x ” or nothing “−” for a total of two states. Each node receives its current
input true (T) or false (F) from Ω?. A non-leader becomes a leader, when the
leader detector signals the absence of a leader, and the responder is not a leader.
When two leaders interact, the responder becomes a non-leader. Otherwise, no
state change occurs.

We formally describe the algorithm by pattern rules which are matched
against the state and input of the initiator and responder, respectively. If the
match succeeds, the states of the two interacting nodes are replaced by the re-
spective states on the right side of the rule. In performing the match, “ ∗ ” is a
“don’t care” symbol that always matches the slot or the input. On the right hand
side, “ ∗ ” specifies that the contents of the corresponding slot do not change. If
no explicit rules match, a null transition in which neither node changes state is
implied. Therefore every (configuration, input assignment) pair has an admissi-
ble successor.

Algorithm 1

Rule 1. (( x , ∗ ), ( x , ∗ )) → (( x ), (−))
Rule 2. ((−,F), (−, ∗ )) → (( x ), (−))
Rule 3. ((−,T), (−, ∗ )) → ((−), (−))

Each node outputs L when it holds a x , otherwise it outputs N .

To establish the correctness of a self-stabilizing algorithm, we define a notion
of “safe configuration” and prove two things:

1. Starting from an arbitrary configuration, a safe configuration will eventually
be reached.

2. Starting from an arbitrary safe configuration, the output traces of all possible
executions have a suffix in the desired behavior.

For Algorithm 1, the desired behavior is the leader-election behavior LE, and
the safe configurations are those in which at least one agent outputs L.

Lemma 1. Let E be an execution of Algorithm 1 starting from an arbitrary
configuration. Then E contains a safe configuration.

Proof. Suppose no configuration of E is safe. This means there are no leaders in
E, so from some point on, every node receives false from the leader detector.
By rule 2, the initiator of the next interaction will declare itself a leader, a
contradiction. Hence, E contains a safe configuration.

Lemma 2. Let E be an infinite globally or locally fair execution of Algorithm 1
starting from an arbitrary safe configuration. Then the output trace of E has a
suffix in LE.



Self-stabilizing Leader Election 9

Proof. Notice that the only way for the number of leaders to decrease is via
rule 1. The number of leaders decreases by one only when two leaders interact,
so there is always at least one leader in subsequent configurations. Eventually all
agents will receive true from the leader detector, after which new leaders cease
being generated. By either local or global fairness, every two agents interact with
each other infinitely often, so eventually the number of leaders will decrease to
one. The last leader cannot disappear, no new leaders are created, and the leader
status cannot be transferred to another agent. Hence, the output trace of the
suffix of E from this point on is in LE.

Theorem 3. Given Ω?, Algorithm 1 is a self-stabilizing implementation of the
leader-election behavior LE that is correct under both global and local fairness.

Proof. The correctness of Theorem 3 follows from Lemma 1 and Lemma 2.

5 Leader Election in Rings

The ring is an important network topology. The leader-election problem in rings
has been extensively studied in the literature [4, 7, 8, 10, 11]. Most of those results
assume local fairness or a similar fairness condition. It has been shown that there
is no uniform1 self-stabilizing leader-election algorithm in anonymous rings under
the assumption of local fairness.

We refine these results in two ways. First, we show that uniform leader elec-
tion in anonymous rings remains impossible under local fairness, even with the
help of the leader detector Ω?. Second, we exhibit a uniform self-stabilizing
leader election algorithm using Ω? that works in rings of arbitrary size under
the assumption of global fairness. We leave open the question of whether such
an algorithm exists without the help of Ω?.

5.1 Impossibility under Local Fairness

Theorem 4. No uniform leader-election algorithm exists in a ring assuming
local fairness, even with the help of leader detector Ω?

Proof. Assume to the contrary that there is a uniform leader-election algorithm
for rings that works under local fairness with the help of Ω?. We consider the
type of ring that is the most powerful in terms of computation: The ring is a
directed cycle, so each node in an interaction knows whether it is talking to its
next or previous neighbor in clockwise order around the ring.

For any n ≥ 2, we look at two rings: R1 has n nodes labeled 0, 1, . . . , n − 1
and R2 has 2n nodes labeled 0, 1, . . . , 2n − 1. Given a locally fair execution E1

of R1, we describe a locally fair execution E2 of R2 such that all but finitely
many configurations of E2 have exactly two leaders. Hence, any algorithm with
correct leader-election behavior on R1 fails to have leader-election behavior on
R2, showing that there is no uniform leader-election algorithm.
1 An algorithm is uniform if it works in rings of all sizes.



10 M. Fischer and H. Jiang

Intuitively, we regard R2 as two copies of R1 spliced together into a single
ring, as is shown in Figure 1. Each step of E1 is applied separately to the two
copies of R1 in R2. After every such pair of steps, the two copies of R1 that
comprise R2 will be in the same configuration as each other and as R1. Hence,
if R1 has one leader, then R2 has two leaders.

n+1

0

n-1

1

0

n-1 n

2n-1

1

0’/0"

1’

n-1’ 0’/0"

1"

n-1"

R 1 R 2

Fig. 1. The rings R1 and R2.

Formally, node u of R1 corresponds to the two nodes u and u + n of R2. An
edge e = (u, v) of R1 corresponds to the two edges e′ = (u′, v′) and e′′ = (u′′, v′′)
of R2 such that u corresponds to u′ and u′′ and v corresponds to v′ and v′′. For
example, if n = 7, then (2, 3) of R1 corresponds to (2, 3) and (9, 10) of R2, and
(6, 0) of R1 corresponds to (6, 7) and (13, 0) of R2.2 We say that configurations
C of R1 and D of R2 are compatible if C(u) = D(u) = D(u + n) for each
u = 0, . . . , n− 1, i.e., the states of corresponding nodes are the same.

Let E1 = (C0, α0), (C1, α1), . . . be a fair execution of R1. Let D0 be a config-
uration of R2 that is compatible with C0. We construct an execution

E2 = (D0, α0), (D′
0, α0), (D1, α1), (D′

1, α1), . . .

of R2 such that Ct and Dt are compatible for all t. We then argue that E2

is locally fair and satisfies Ω?, from which we derive a contradiction to the
assumption that a uniform leader-election algorithm exists.

At each stage t of the construction, we assume that Ct and Dt are compatible.
Let σt = (rt, et) be an action such that (Ct, αt)

σt→ Ct+1, where rt is a transition
of δ and et = (ut, vt) is an edge of R1. Let σ′t = (r, e′) and σ′′t = (r, e′′) be
actions, where e′t = (u′t, v

′
t) and e′′t = (u′′t , v′′t ) are the two edges of R2 that

correspond to et. Both σ′t and σ′′t are enabled in Dt. This is because σt is enabled
in Ct, and since Ct is compatible with Dt, Dt(u′t) = Dt(u′′t ) = Ct(ut) and
Dt(v′t) = Dt(v′′t ) = Ct(vt).

Let D′
t be the unique configuration such that (Dt, αt)

σ′
t→ D′

t. Because n ≥ 2,
the nodes u′, u′′, v′, v′′ are all distinct, so the states of u′′ and v′′ are the same
in Dt and in D′

t. Hence, σ′′t is also enabled in D′
t. Let Dt+1 be the unique

2 Note that (6, 0) does not correspond to pairs (6, 0) and (13, 7) obtained by inter-
changing the second components since these latter pairs are not edges of R2.



Self-stabilizing Leader Election 11

configuration such that (D′
t, αt)

σ′′
t→ Dt+1. It is easily shown that Ct+1 and Dt+1

are compatible. By induction, Ct and Dt are compatible for all t.
It remains to show that E2 is a locally fair execution of R2. It is obviously

an execution (since each configuration follows from the previous one by a legal
action). We must argue that it is locally fair and that the inputs are consistent
with Ω?. Local fairness follows from the correspondence between steps of R2

and R1. If some action σ′ of R2 is infinitely often enabled in E2, then the corre-
sponding action σ of R1 is infinitely often enabled in E1. By local fairness of E1,
σ is taken infinitely often in E1. By the above construction, σ′ is taken infinitely
often in E2.

Finally, we argue that the inputs in E2 satisfy the conditions for Ω?. For each
t, if configurations Ct and Ct+1 both have leaders, then Dt, D′

t, and Dt+1 all
have leaders. Similarly, if Ct and Ct+1 both lack leaders, then Dt, D′

t, and Dt+1

all lack leaders. Hence, if all but finitely many configurations of E1 lack leaders,
then all but finitely many configurations of E2 lack leaders, and similarly, if all
but finitely many configurations of E1 have leaders, then all but finitely many
configurations of E2 have leaders. Hence, the sequence of input assignments
α0, α0, α1, α1, . . . in E2 is correct for Ω?.

It follows that E2 is a locally fair execution of R2 with leader detector Ω?.
However, the output trace of E2 is not in LE since all but finitely many config-
urations of E2 have two leaders. Thus, the assumed algorithm is not a uniform
leader-election algorithm.

5.2 Leader Election under Global Fairness

A non-uniform self-stabilizing leader-election algorithm assuming global fairness
was given in [4]. Here we give a uniform algorithm with the help of Ω?.

We assume that the ring is directed, which means each node has a sense of
“forward” (clockwise) and “backward” (counter-clockwise), and every interac-
tion takes place between the initiator and its forward neighbor. A self-stabilizing
algorithm to direct an undirected ring was given in [4], so our algorithm can be
applied to any weakly connected cycle, whether directed or not.

Each node can store zero or one of each of three kinds of tokens: a bullet
“¶”, a leader mark “ x ”, and a shield “ ”, for a total of eight possible states.
Corresponding to each kind of token is a slot which is empty if the corresponding
token is not present, and full if it is present. An empty slot is denoted by “−”;
a full slot is denoted by the corresponding token. The slots in each node are
ordered with the bullet first, leader mark second, and shield third. Extending
this to a clockwise ordering of all slots in the ring, the shield slot of one node is
followed by the bullet slot of the next node in clockwise order.



12 M. Fischer and H. Jiang

Algorithm 2

Rule 1. (( ∗ ∗ ∗ ,F), ( ∗ ∗ ∗ , ∗ )) → ((¶ x ), ( ∗ ∗ ∗ ))
Rule 2. (( ∗ − ,T), ( ∗ ∗ ∗ , ∗ )) → (( ∗ −−), (− ∗ ))
Rule 3. (( ∗ x ,T), ( ∗ ∗ ∗ , ∗ )) → ((¶ x −), (− ∗ ))
Rule 4. (( ∗ x −,T), (− ∗ ∗ , ∗ )) → ((¶ x −), (− ∗ ∗ ))
Rule 5. (( ∗ ∗ −,T), (¶ ∗ ∗ , ∗ )) → ((¶−−), (− ∗ ∗ ))

Each node outputs L when it holds a x , otherwise it outputs N .

When two nodes interact and the initiator’s input is false (F), a leader and
a shield are created. At the same time, a bullet is fired (rule 1). This is the only
way for leaders and shields to be created. When the initiator’s input is true (T),
the following rules apply: Shields move forward around the ring (rules 2 and 3),
and bullets move backward (rule 5). Bullets are absorbed by any shield they
encounter (rules 2 and 3) but kill any leaders along the way (rule 5). If a bullet
moves into a node already containing a bullet, the two bullets merge into one.
Similarly, when two shields meet, they merge into one. A leader fires a bullet
whenever it is the initiator of an interaction (rules 3 and 4).

A node i in a configuration is called a protected leader, and node j is called
its protecting shield, if i has a leader mark, j has a shield, and all of the slots
between i’s leader mark and j’s shield in clockwise order are empty. A node
can be both a protected leader and its own protecting shield. We show that
eventually there is exactly one protected leader, one protecting shield, and no
unprotected leader.

Let E be an execution. Define SE to be the maximal suffix of E such that
every (configuration, input assignment) pair in SE occurs infinitely often. SE is
well-defined and infinite since there are only finitely many distinct (configuration,
input assignment) pairs. Define IRCE

3 to be the set of configurations that occur
in SE .

The follows lemmas are all qualified by “for any execution E”.

Lemma 3. If any configuration in IRCE has a protected leader, then every con-
figuration in IRCE has a protected leader.

Proof. Let C ∈ IRCE be a configuration with a protected leader, and suppose
(C,α) → C ′. We show that C ′ has a protected leader, regardless of which tran-
sition rule was applied.

– Rule 1 creates a new protected leader.
– Rule 2 moves the shield forward. If the responder is a leader, it becomes

protected. If not, the protected leader is still protected after the move.
– Rule 3 fires a bullet and moves the shield forward. If the responder is a

leader, it becomes protected. If not, the initiator remains a protected leader.

3 IRC stands for Infinitely Recurring Configurations.



Self-stabilizing Leader Election 13

– Rule 4 fires a bullet. This does not affect the protected leader, for the bullet
cannot be the only non-empty slot between the protected leader and its
protecting shield.

– Rule 5 moves a bullet from the responder to the initiator. If the initiator is
a leader, it is killed by the bullet. However, the initiator was not protected
beforehand since there was no shield between the leader mark and the bullet
token. This rule does not affect the protected status of any other leader.

Thus, every configuration in SE following the first one having a protected leader
also has a protected leader. Because every pair in SE occurs infinitely often, all
configurations in IRCE have a protected leader.

Let αF and αT be input assignments such that αF assigns false and αT

assigns true to every node.

Lemma 4. If no configuration in IRCE has a leader, then every input assign-
ment in SE is αF. If every configuration in IRCE has a leader, then every input
assignment in SE is αT.

Proof. Immediate from the definition of leader detector and the fact that every
pair in SE occurs infinitely often.

Lemma 5. Every configuration in IRCE has at least one leader.

Proof. Suppose some configuration C ∈ IRCE lacks a leader. There are two
cases: If no configuration in IRCE has a leader, then by Lemma 4, every input
assignment in SE is αF, so every step in SE is via rule 1. On the other hand,
if some configuration C ′ ∈ IRCE has a leader, then there is a sequence of steps
in SE that goes from (C,α) to (C ′, α′) for some input assignments α and α′

since both C and C ′ occur infinitely often in SE . One of the steps must be via
rule 1 since it is the only leader-creating rule. In either case, the application of
rule 1 creates a configuration with a protected leader. Lemma 3 then implies that
all configurations in IRCE have protected leaders, contradicting the assumption
that C lacks a leader.

Lemma 6. Every input assignment in SE is αT.

Proof. By Lemma 5, every configuration in IRCE has a leader. The result follows
from Lemma 4.

Lemma 7. Suppose C ∈ IRCE, C = C0, C1, . . ., Cr = C ′ are configurations,
and (Ci, αT) → Ci+1, for i = 0, . . . , r − 1. Then C ′ ∈ IRCE.

Proof. An easy induction shows that each Ci ∈ IRCE . Suppose Ci ∈ IRCE .
By Lemma 6, every pair in SE has input assignment αT. Since (Ci, αT) occurs
infinitely often in SE , Ci+1 ∈ IRCE by global fairness.

Lemma 8. Every configuration in IRCE contains the same number of leaders
and the same number of shields.



14 M. Fischer and H. Jiang

Proof. By Lemma 6, every input assignment in SE is αT, so rule 1 is never
applied in SE . Therefore, no step can increase the number n of leaders or the
number m of shields. But also, no step can decrease n or m since otherwise
SE would contain only finitely many configurations with n leaders or m shields,
a contradiction to the definition of SE . Hence, no step changes n or m, so all
configurations have the same number of leaders and the same number of shields.

Lemma 9. No configuration in IRCE contains an unprotected leader.

Proof. Suppose C ∈ IRCE contains an unprotected leader. By Lemma 6, (C,αT)
occurs in SE . From (C,αT), there exists a finite sequence of steps to kill the
unprotected leader by applying the rules 3, 4, and 5. By Lemma 7, the resulting
configuration C ′ is in IRCE . By Lemma 6, no step in SE can create a new leader,
so C ′ has fewer leaders than C. This contradicts Lemma 8.

Lemma 10. Every configuration in IRCE contains exactly one shield and ex-
actly one leader.

Proof. By Lemmas 5 and 9, every configuration in IRCE contains at least one
protected leader. This implies that each configuration contains at least one shield.
There must be exactly one, for if any configuration has two or more shields,
there exists a finite sequence of steps to merge two shields by applying rules 2
and 3 (possible by Lemma 6), resulting in a configuration C ′ with fewer shields.
By Lemma 7, C ′ ∈ IRCE , contradicting Lemma 8. Finally, each shield is the
protecting shield of at most one leader, so each configuration contains exactly
one leader.

Theorem 5. Given Ω?, Algorithm 2 is a self-stabilizing implementation of the
leader-election behavior LE in rings under global fairness.

Proof. By Lemma 10, every configuration in IRCE has exactly one leader. The
same node is leader in every such configuration since none of the five rules
can move the leader mark from one node to another in a single step. Hence,
OT (SE) ∈ LE, and Theorem 5 follows.

Algorithm 2 is at the same time a self-stabilizing token-circulation algorithm.
After an execution stabilizes, there is exactly one shield moving around the ring,
which could provide a token-circulation service.

6 Conclusion

We study the problem of self-stabilizing leader election in a model of finite-state
anonymous agents. We consider this problem under two fairness conditions and
with two interaction graph topologies. Our protocols utilize a leader detector
Ω? that eventually correctly detects the presence or absence of a leader in the
network. We show that the difficulty of leader election in the population-protocol
model is due to the difficulty of detecting the presence and absence of leaders. It
is an open problem for future research whether Ω? can be implemented in rings
and other families of network graphs in the population-protocol model.



Self-stabilizing Leader Election 15

References

1. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 20(4) (1996) 685 – 722

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Twenty-Third ACM Sympo-
sium on Principles of Distributed Computing. (2004) 290–299

3. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
computable properties of network graphs. In Prasanna, V.K., Iyengar, S., Spirakis,
P., Welsh, M., eds.: Distributed Computing in Sensor Systems: First IEEE Inter-
national Conference, DCOSS 2005, Marina del Rey, CA, USE, June/July, 2005,
Proceedings. Volume 3560 of Lecture Notes in Computer Science., Springer-Verlag
(2005) 63–74

4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: Ninth International Conference on Principles of Distributed Systems.
(2005) 79–90

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11) (1974) 643–644

6. Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1) (1993) 45–67
7. Itkis, G., Lin, C., Simon, J.: Deterministic, constant space, self-stabilizing leader

election on uniform rings. In: Workshop on Distributed Algorithms. (1995) 288–302
8. Higham, L., Myers, S.: Self-stabilizing token circulation on anonymous message

passing rings. Technical report, University of Calgary (1999)
9. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.

IEEE Transactions on Parallel and Distributed Systems 8 (1997) 424–440
10. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-

stabilizing leader election protocols. In: Eighteenth ACM Symposium on Principles
of Distributed Computing. (1999) 199–207

11. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self-stabilizing leader
election. Information Processing Letters (59) (1996) 281–288

12. Fernández, A., Jiménez, E., Raynal, M.: Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. In: 2006
International Conference on Dependable Systems and Networks. (2006)

13. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2) (1996) 225–267

14. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Proceedings
of the Twenty-third ACM Symposium on Principles of Distributed Computing.
(2004) 328–337


