Lifestreams: A Storage Model for Personal Data

Eric Freeman and David Gelernter
Research Report YALEU/DCS/RR-1096
January 1996

To appear in ACM SIGMOD, March 1996.




Lifestreams: A Storage Model for Personal Data

Eric Freeman and David Gelernter
Department of Computer Science
Yale University
New Haven, CT 06520

Abstract—

Conventional software systems, such as those based on the “desk-
top metaphor,” are ill-equipped to manage the electronic informa-
tion and events of the typical computer user. We introduce a new
metaphor, Lifestreams, for dynamically organizing a user’s personal
workspace. Lifestreams uses a simple organizational metaphor, a
time-ordered stream of documents, as an underlying storage system.
Stream filters are used to organize, monitor and summarize infor-
mation for the user. Combined, they provide a system that sub-
sumes many separate desktop applications. This paper describes the
Lifestreams model and our prototype system.

I. INTRODUCTION

NEXPERIENCED users are right to be confused by to-

day’s operating systems; they aren’t well suited to most
users needs and they require too many separate applica-
tions, too many file and format translations, the invention
of too many pointless names and the construction of or-
ganizational hierarchies that too quickly become obsolete.
They are built on ideas like named files (an invention of
the 50s) in hierarchical directories (60s) that were brilliant
when they were new but have long since become obsolete.
Consider, for example, the “desktop metaphor,” which at-
tempts to simplify common file operations by presenting
them in the familiar language of the paper-based world (pa-
per documents as files, folders as directories, the trashcan
for deletion). Although this metaphor has been successful
to a point (one usually has to explain to a new user how
the computer desktop is like a real desktop), its use has
some unfortunate consequences: the paper-based model is
a rather poor basis for organizing information! and con-
strains our choices in creating new information systems
[15].

We’ve developed “Lifestreams” in an attempt to do bet-
ter. Lifestreams, first proposed in [9] and described in
[8], is a new model and system for managing personal
electronic information. Lifestreams uses a time-ordered
stream as a storage model and stream filters to organize,
locate, summarize and monitor incoming information. To-
gether, streams and filters provide a unified framework that
subsumes many separate desktop applications to accom-
plish and handle personal communication, scheduling, and
search and retrieval tasks. The prototype that exists today
realizes many of the system’s defining features and has al-
lowed us to experiment with the model’s key ideas. We’ve
developed our system as a machine-independent, client-
server architecture that is open so users can continue to

This work was partially supported by ASSERT grant F49620-92-J-
0240.
1Where the state of the art is still a messy desktop.

use the document types, viewers and editors they are ac-
customed to. In this article we describe the model, our
current implementation, its use in context, and the direc-
tion our system is headed.

II. THE IDEA

Lifestreams is based on the following observations:

1. Storage should be transparent. “Naming” a file as it
is created and choosing a location for it is unneeded
overhead. Names should be required only when users
feel like inventing them and storage should be handled
automatically by the system. When you grab a piece
of paper and start writing, no-one demands that you
bestow a name on the sheet or find it a storage loca-
tion. Online, many filenames are not only pointless
but useless for retrieval purposes. Storage locations
are effective only as long as the user remembers them.

2. Directories are inadequate as an organizing device.
Software is too faithful to the paper-based world; pa-
per can’t be in more than one place, but electronic doc-
uments can (or can appear to be). Conventional sys-
tems force users to store new information in fixed cat-
egories (namely, directories). But information should
be organized as needed, not once and for all when it
is created. Directories should be created on demand
and documents should belong to as many of them as
seems reasonable, or to none.

3. Archiving should be automatic. Data archiving is an
area where electronic systems fail miserably compared
to paper-based systems. Paper-based systems are first
and foremost archiving systems, yet data archiving is
difficult in conventional desktop systems. Often, users
throw out old data rather than undertaking the task
of archiving it (and remembering how to get it back).
If software systems make archiving and retrieval more
convenient, old information could be reused more of-
ten.

4. The system should provide sophisticated logic for
summarizing or compressing (and where appropriate,
for picturing or animating) a large group of related
documents of which the user wants a concise overview.
No matter how many documents fall into a given cat-
egory, the system should be capable of summarizing
the whole lot on a single screen. For some types of




documents, pictures or animations will be good vehi-
cles for summaries.

5. Computers should make “reminding” convenient.
Reminding is a critical function of computer-based sys-
tems [13][12], yet current systems supply little or no
support for it. Users are forced either to use loca-
tion on their graphical desktops as reminding cues or
to use add-on applications such as calendar managers.
We have argued that the former is a mere coping strat-
egy (for lack of a better method) [6], while the latter
could clearly be improved if operating systems helped.

6. Personal data should be accessible anywhere and
compatibility should be automatic. Computers will
eventually be used not as independent data storage
devices, but as “viewports” to data stored and main-
tained on the Net. Users should be able to access
their personal information worlds from any available
platform—from a Unix machine at work, a Mac or PC
at home, a PDA on the road, even a set-top box via
cable. Data should be accessible everywhere, regard-
less of the viewing device.

Some of these observations point to areas where soft-
ware systems don’t match the flexibility of paper-based
systems. Others suggest areas where our software systems
can do better. We will return to these observations (goals)
throughout this paper, describing how Lifestreams realizes
each of them. Our current work realizes a fair bit of goals
1, 2, 4, and 5, some of 3 and 6. But all these goals are
central to the project.

III. THE MoODEL

A lifestream is a time-ordered stream of documents that
functions as a diary of your electronic life; every document
you create and every document other people send you is
stored in your lifestream. The tail of your stream con-
tains documents from the past (starting with your elec-
tronic birth certificate). Moving away from the tail and
toward the present, your stream contains more recent doc-
uments — papers in progress or new electronic mail; other
documents (pictures, correspondence, bills, movies, voice
mail, software) are stored in between. Moving beyond the
present and into the future, the stream contains documents
you will need: reminders, calendar items, to-do lists.

In this section we describe Lifestreams in terms of
its basic operations: new, clone, transfer, find and
summarize. In the process we show how Lifestreams pro-
vides transparent storage, organization through directories
on demand, and the ability to create overviews. We then
examine the underlying time-based storage model and, in
the process, show how Lifestreams accomplishes archiving
and reminding in a natural way.

Document Creation and Storage

Users create documents by means of new and clone. New
creates a new, empty document and adds it to your stream.

Clone takes an existing document, creates a duplicate and
adds it to your stream. Documents can also be created
indirectly through transfers, which copy a document be-
tween streams. Creation is always “transparent” because
documents, by default, are always added to the end of the
stream and don’t have names unless users want them to.

Directories on Demand

Lifestreams are organized on the fly with the find oper-
ation. Find prompts for a search query, such as “all email I
haven’t responded to,” or “all faxes I’ve sent to Schwartz,”
and creates a substream.

Substreams, like virtual directories [10][14], present the
user with a “view” of a document collection. The view con-
tains all documents that are relevant to the search query.
Substreams differ from conventional directory systems in
that, rather than placing documents into fixed, rigid direc-
tory structures, they create virtual groups of documents
from the stream. Documents aren’t actually stored in
them; a substream is a temporary collection of documents
that already exist on the main stream. Substreams may
overlap and can be created and destroyed on the fly with-
out affecting the main stream or other substreams.

Substreams are dynamic. If you allow one to persist, it
will collect new documents that match your search criteria
as they arrive from the outside or as you create them. The
result is a natural way of monitoring information— the
substream acts not only as an organizational device, but as
a filter for incoming information. For example, a substream
created with the query “find all documents created by other
people” would subsume your mailbox and automatically
collect mail as it arrives.

Overviews

The last operation, summarize, takes a substream and
compresses it into an overview document. The content of
the overview document depends on the type of documents
in the substream. For instance, if the substream contains
the daily closing prices of all the stocks and mutual funds in
your investment portfolio, the overview document may con-
tain a chart displaying the historical performance of your
securities and your net worth. If the substream contains a
list of tasks you need to complete, the overview document
might display a prioritized “to-do” list.

Chronology as a storage model

Given that we use substreams to organize documents,
why bother with the underlying time-based ordering? For
several reasons: time is a natural guide to experience; it is
the attribute that comes closest to a universal skeleton-key
for stored experience (Malone, for example, suggests the
utility of time-based organization in his early studies [13].)
The stream adds historical context to a document collec-
tion; all documents eventually become read-only (in the
past, set in stone for history), and the stream preserves
the order and method of their creation. Like a diary, a
stream documents work, correspondence and transactions.




Although historical context can be crucial in an organiza-
tional setting [4], most current systems do little to track
when, where, and why documents are created and deleted.

The three portions of the stream, past, present, and fu-
ture, mirror information categorization in user studies [12],
[2]. The “present” portion of the stream holds “working
documents;” this is also typically where new documents are
created and where incoming documents are placed. As doc-
uments age and newer documents are added, older docu-
ments recede from the user’s view and are “archived” in the
process (here we mean archiving in the conceptual sense;
users don’t have to worry about old information cluttering
their desktops or getting in the way; if at some future point
they need the archived information, it can be located with
find).

The “future” portion of the stream allows documents to
be created in the future. “Future creation” is a natural
method of posting reminders and scheduling information.
The system allows users to dial to the future and deposit a
document there—say a meeting reminder. When the date
arrives the reminder appears in the present.

IV. THE LIFESTREAMS INTERFACE

Our research prototype consists of a client/server ar-
chitecture that runs over the Internet. The server is
the workhorse of the Lifestreams system and handles one
or more streams—storing all stream documents and sub-
streams. Each viewport is a client of the server and pro-
vides the user with an interface to the document collection.
We believe the “look and feel” of the viewport interface will
differ radically over the range of computing platforms, from
set-top boxes to high-end workstations, but each viewport
will support the basic operations.

We have currently implemented three client viewports:
one using X Windows, one ASCII-based and one for
the Newton PDA. The X Windows viewport provides
a graphical interface and implements the full range of
Lifestream functionalities; the ASCII interface also imple-
ments the full-range Lifestreams but with a mail-like in-
terface; the Newton version implements a minimal stream-
access method, given its lack of internal memory and low-
bandwidth communications. In this paper we concentrate
on the X windows viewport (information on the Newton
version can be found in [7].)

Our X Windows viewport is shown in figure 1. The in-
terface is based on a visual representation of the stream
metaphor. Users can slide the mouse pointer over the doc-
ument representations to “glance” at each document, or
use the scroll bar in the lower left-hand corner to roll them-
selves back into the past.

Color and animation indicate important document fea-
tures. A red border means “unseen” and a bold one means
“writable”; open documents are offset to the side to indi-
cate they are being edited. Incoming documents slide in
from the left side, and newly created documents pop down
from the top and push the stream backwards by one docu-
ment into the past.

The user can view (or edit) a document by clicking on its

Fig. 1. The UNIX Viewport.

graphical representation. We rely on external helper appli-
cations to view and edit documents, which speeds the learn-
ing process significantly for Lifestreams users — they can
continue to use applications they are familiar with (such as
emacs, xv, and ghostview) to create and view documents,
while using Lifestreams to organize them and communi-
cate.

The interface prominently displays the primary sys-
tem operations — New, Clone, Xfer (i.e., transfer), Find,
Summarize and a few useful secondary operations (such as
Print and Freeze) — as buttons and menus. The New
button creates a new document and adds it to the stream.
The Clone button duplicates an existing document and
places the copy on the stream. The Freeze button makes
a writable document read-only. Xfer first prompts the user
for one or more mail addresses and then forwards a doc-
ument. Print copies a selected document to a printer.?
Find is supported through a text entry box that allows the
user to enter a boolean search query, which results in a new
substream being created and displayed.

Menus are used to select from streams or existing sub-
streams, create summaries, initiate personal agents and
change the clock. The Streams menu allows the user to se-
lect from a list of locally available streams. Figure 2 shows
the Substreams menu; the menu is divided into three sec-
tions. The first contains a list of operations that can be
performed on substreams (such as remove). The next con-
tains one menu entry labeled “Your Lifestream,” and fo-
cuses the display on your entire Lifestream (i.e., all of your
documents). The last section lists all of your substreams.
Note that substreams can be created in an incremental
fashion that results in a nested set of menus. In this exam-
ple the nested menus were created by first creating a sub-
stream “lifestreams and david” from the main stream and
then creating two substreams from this substream, “sce-
narios” and “ben.” Substream “scott” was created from

2This could easily be implemented by transferring all documents
to a printer stream, where a stream agent forwards each new docu-
ment to the appropriate printer. Our implementation, however, uses
conventional methods of transferring documents to the printer.




Substreams | Su

Fig. 2. Selecting a Substream.

the “scenarios” substream. Semantically this incremental
substreaming amounts to a boolean and of each new query
with the previous substream’s query.

Figure 3 shows a list of possible summary types for this
substream. Choosing any of these menu options creates a
substream summary, and a new document containing the
summary is placed on the stream. The Personal Agents
menu lists a number of available agent types. (We discuss
personal agents in passing in the next section. They can be
added to the user interface in order to automate common
tasks: see [8] for more information.)

Fig. 3. The summarize menu item.

Finally, Lifestreams always displays the time in the up-
per right hand corner of the interface. This time display
also acts as a menu (figure 4) that allows the user to set the
viewport time to the future or past via a calendar-based
dialog box (figure 5). Imagine a cursor always pointing
to the position in the stream such that all documents be-
yond that point towards the head have a future timestamp
and all documents before it, towards the tail, have a past
timestamp. As time progresses this cursor moves forward
towards the head; as it slips past “future” documents they
are added to the visible part of the stream, just as if new
mail had arrived.

22T A

Fig. 4. Altering time in Lifestreams.

The effect of setting the time to the future or past is to
reset the time-cursor temporarily to a fixed position desig-

nated by the user. Normally the user interface displays all
documents from the past up to the time-cursor. Setting the
time-cursor to the future allows the user to see documents
in the “future” part of the stream. Creating a document
in this mode (i.e., “in the future”) results in a document
with a future timestamp. Once the user is finished time-
tripping, he can reset to the present by selecting the “Set
time to present” menu option in the time menu.

Fig. 5. Setting a time.

V. LIFESTREAMS IN PRACTICE

We now look at examples of how Lifestreams can be used
to accommodate common computer tasks, such as commu-
nication, creating reminders, managing scheduling, track-
ing contacts, and managing personal finances (to name a
few). While a detailed description of how Lifestreams is
used could fill a paper in itself, we will attempt to convey
a sense of how the system is used through a handful of
examples.

Sending and receiving Email; Automatic reminders

Using email in Lifestreams is not much different from
what users are already accustomed to. To send a message,
the user creates a new document (by clicking on the New
button) and then composes the message using a favorite
editor. The message can then be sent with a push of the
Xfer button. Similarly, existing documents are easily for-
warded to other users, or documents can be cloned and
replied to. While all mail messages (incoming and outgo-
ing) are intermixed with other documents in the stream,
the user can easily create a mailbox by substreaming on
documents created by other users; or, users can take this
one step further and create substreams that contain a sub-
set of the mailbox substream, such as “all mail from Bob,”
or “all mail I haven’t responded to.”

We have already mentioned how users can dial to the fu-
ture, depositing documents that act as reminders. A user
can also send mail that will arrive in the future. If he
“dials” to the future before writing a message, then when
the message is transferred it won’t appear on recipients’
streams until either that time arrives or they happen to
dial their viewports to the set creation date. In the present,
the document will be in the stream data structure but the
viewport won’t show it. We use this ability to send mail
to the future to post reminders to others about important
meetings, department talks, etc. By appearing “just-in-
time” and not requiring the user to switch to yet another




application, these reminders are more effective than those
included in a separate calendar or scheduling utility pro-
gram.

Tracking contacts, Making a phone call

There are a number of contact managers on the market
that store electronic business cards, the date and time of
contacts, and time spent on tasks for billing purposes. Our
research prototype currently supports an electronic busi-
ness card document type as well as a “phone call record”
document for noting the date and time of phone contacts.
In addition we have automated much of the task of creat-
ing a phone call record through a personal agent. The per-
sonal agent is automatically attached to the personal agent
menu, so anytime we want to make a call we choose “Make
Phonecall” from the personal agent menu. The agent is
spawned and the dialog box in figure 6 appears.

Fig. 6. The phone call agent.

Fig. 7. Phone record, automatically filled in by the agent.

The user types in the name of the callee; the agent then
searches the current stream for a business card with that
name and, if found, creates and fills in the appropriate
entries of a phone call record as seen in figure 7 (this func-
tionality is similar to the use of the personal assistant on
the Newton platform).

The user can then later use the Lifestreams summarize
operation to summarize over the phone calls. This results
in a report as shown below:

LU or AT ABOVT

432-6433
415 224-1912
432-1287

Port to PPC
Tcl/Java discussion
insurance

EDT 1995
EDT 1995
EDT 1895

Scott Fertig
Ward Hullins
Beth Freeman

Tue Aug 1 12:05
Tue Aug 1 11:57
Tue Aug 1 10:22

This could be extended to subsume the functionality of
a time manager (and we are in the process of doing this).
Time managers generally track the billable hours a profes-
sional spends on one or more projects. In Lifestreams this

is easily accomplished by creating a timecard that marks
the starting and ending time of each task (these timecards
are just thrown onto the stream as they are used). Then,
before each billing period, the stream is summarized by the
timecards, resulting in a detailed billing statement for each
contract.

Personal Finances

Online commerce is quickly becoming commonplace; a
large number of users already track their checking accounts,
savings, investments, and budgets with applications such
as Quicken. The types of records and documents used
in these applications — electronic checks, deposits, securi-
ties transactions, reports — can be conveniently stored and
generated by Lifestreams. We have just begun to explore
using Lifestreams to manage personal finances, having im-
plemented a fictional stock quote service that forwards the
daily closing prices of a fictional portfolio to our lifestreams
at the end of every business day.® These documents are
simple ASCII documents as shown below.

Quote-0-Matic Stock Service for 5/16/95

GVIL 14.00
LMASX 20.84
ODWA 18.50
SPLS 27.12
TSA 19.25
lmvtx 21.41

The document lists each stock and mutual fund along with
its closing price, giving the user a method of calculating
his assets on a specific day. But what if the user wants
“higher-level” view of his portfolio over time? This is where
summarize can be used. The user first selects a substream
containing his stock quote documents, and then he selects
the “summarize by portfolio” menu item. This compresses
the data into a single chart of historical data having sum-
marized over the portfolio documents in the substream. We
present the result in figure 8.

Closing Prics Portfolio Summary for 8/12/95

’ : i

-200.00 -150.00 -100.00 -50.00

Fig. 8. The portfolio summary.

3Many similar stock quote services already exist of the Internet.




This is just the beginning. A user could easily migrate his
checking account to Lifestreams so that each check written
creates a record on his stream. Some of these checks would
be electronic checks sent to companies with an online pres-
ence; others transcribed from written checks (just as many
people already do with Quicken). The user could then em-
ploy a personal agent to help balance his checkbook. At
year’s end he runs a tax summary which squishes the finan-
cial information in his stream down to a form 1040, which
could then be shipped electronically to the IRS.

Lifestreams could help with budgeting, tracking expen-
ditures, etc. Of course, many of these capabilities are al-
ready available in products like Quicken; it is worth point-
ing out, however, that Lifestreams contains everything a
person deals with in his electronic life (and in a convenient
and searchable location).

Interacting with the world: Web bookmarks

All of our previous examples made use of information
stored in Lifestreams. We have also found Lifestreams quite
useful for managing information outside of the system. For
example, our research group found it difficult to keep track
of our own Web bookmarks and inconvenient to pass inter-
esting bookmarks to one another. This was usually accom-
plished by copying a URL from a Web browser to an email
message, which the recipient would copy from email back
to their own browser and add as a bookmark. We were
able to solve both of these problems with Lifestreams.

We developed a system similar to “warm lists” [11],
whereby a daemon watches each user’s bookmark file, and
each time a new bookmark is added the same bookmark
i1s added to Lifestreams as a new “URL document.” The
effect of opening a URL document in Lifestreams is that
our web browser comes to the foreground and attempts to
connect to the URL. In this way we can use Lifestreams
to create a bookmark substream while at the same time
making the data in the bookmarks readily available to any
other searches we might make on our stream.

Passing URLs around is trivial. We merely copy the URL
document to another user’s stream (a one-step process)
and the URL is automatically included in his bookmarks
substream.

VI. STATUS AND FUTURE DIRECTIONS

Lifestreams is up and running on our local computing en-
vironment (a collection of SunOS, Solaris, and AIX work-
stations) and supporting a few local users. We plan to
expand this number as the software matures. Our initial
implementation efforts have focused on providing a “proof
of concept” for the Lifestreams model. Based on feedback
from the initial users we judge the experiment to have been
a success — users find the system valuable and don’t want
to give it up. Given the nature of the system our work has
proceeded on many fronts, including user interface design,
system integration, indexing and retrieval, agent technolo-
gles, network access, security, and performance issues. The
goals of our first system have been modest; each server to
support three to four simultaneous users with stream sizes

on the order of 5,000 documents (perhaps a year or two of

documents for the average user). As of this writing, we are
making architecture changes that should allow lifestreams

of 20,000 documents; that may well be the limit for our

current architecture.

We are now considering design changes that will make
the system more scalable; previous work in the informa-
tion retrieval and database communities is encouraging.
Lifestreams incorporates ideas from both disciplines; but
focuses on personal storage rather than centralized data
collections.

Lifestreams already incorporates many current informa-
tion retrieval techniques. Substreaming is efficiently imple-
mented using an inverse index of the document collection
(maintained by the server). We’ve seen no real performance
problems with respect to retrieval and, given the very large
indices that are being used on the Internet, we believe our
retrieval scheme should scale to large document collections.

Lifestreams also has much in common with database sys-
tems. Substreams are related to a “views” in relational
databases [5]. “Triggers” are related to future documents
in Lifestreams (in Lifestreams, the trigger occurs when the
creation date of the document slides into the past). There
are also connections between Lifestreams and temporal
databases [18], temporal logic [1], and sequence database
systems [16] where time and/or logical sequences play a
crucial role in the system.

Our most immediate gain potential from database work
is in efficient handling of large document collections. Cur-
rently, both the client and server keep in core the records
of the entire document collection when a user views his
whole Lifestream. We need to borrow database technology
for large collections. There are HCI problems to solve here
too. Since no user can look at 10,000 documents at once
and discern any usable information,? it doesn’t make sense
to give users an entire document collection at once. A more
reasonable approach would be to use “cursors” to allow the
user to view segments of the document collection, and to
load in more segments as needed.

Our last problem area involves multi-user access to a
Lifestream. Our current implementation only provides a
single-threaded server (and thus a single point of access).
While we’ve found server performance reasonable for a
small number of users, clearly a multi-server and multi-
threaded approach present a more scalable architecture.
Our previous work in parallel computing has explored these
areas [3], but there is work still to be done in the integra-
tion of these techniques with basic information retrieval
and database functionality.

VII. ACKNOWLEDGMENTS

The authors wish to thank Scott Fertig, Michael
Franklin, Elisabeth Freeman, and Susanne Hupfer for their
comments and suggestions on drafts of this paper.

% Although recent work by Shneiderman [17] suggests how one
might, in principle, do so. His techniques still need work, through, to
scale beyond small databases of information.




(10]

(11]

(12]

(13]

(14]

(18]

(16]

(17]

18]

REFERENCES

James F. Allen. Maintaining knowledge about temporal inter-
vals. Communications of the ACM, 26(11):832-843, 1983.
Deborah Barreau and Bonnie A. Nardi. Finding and remind-
ing: File organization from the desktop. In SIGCHI Bulletin.
SIGCHI, July 1995.

Nicholas Carriero and David Gelernter. Linda in context. Com-
muntcations of the ACM, April 1989.

Terry Cook. Do you know where your data are? In Technology
Review. MIT, January 1995.

C. J. Date. Database Systems. Addison-Wesley, 1986.

Scott Fertig, Eric Freeman, and David Gelernter. Finding and
reminding reconsidered. In SIGCHI Bulletin, volume 28, Jan-
uary 1996.

Eric Freeman. Lifestreams for the Newton. PDA Developer,
3(4):42-45, July/August 1995.

Eric T. Freeman and Scott J. Fertig. Lifestreams: Organizing
your electronic life. In AAATI Fall Symposium: Al Applications
tn Knowledge Navigation and Retrieval, November 1995. Cam-
bridge, MA.

David Gelernter. The cyber-road not taken. The Washington
Post, April 1994.

David K. Gifford, Pierre Jouvelot, Mark Sheldon, and James
O’Toole. Semantic file systems. In 18th ACM Symposium on
Operating Systems Principles, October 1991.

Paul Klark and Udi Manber. Developing a personal internet
assistant. In ED-MEDIA ’95 World conference on educational
multimedia and hypermedia, June 1995.

M. Lansdale. The psychology of personal information manage-
ment. Applied Ergonomics, March 1988.

Thomas W. Malone. How do people organize their desks? Im-
plications for the design of office information systems. ACM
Transactions on Office Systems, 1(1):99-112, January 1983.
Udi Manber and Sun Wu. Glimpse: A tool to search through en-
tire file systems. Technical Report 093-34, Department of Com-
puter Science, The Univesity of Arizona, October 1993.
Theodor Nelson. The right way to think about software design.
In The Art of Human-Computer Interface Design (Ed.) Brenda
Laurel, 1990.

Praveen Seshadr, Miron Livny, and Raghu Ramakrishnan. Se-
quence query processing. In ACM SIGMOD Conference on Data
Management, 1984.

Ben Shneiderman. Dynamic queries for visual information seek-
ing. IEEE Software, pages 70-77, November 1994.

Richard T. Snodgrass. Temporal databases - status and research
directions. SIGMOD Record, 19(4):83-89, 1990.






