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Abstract

Inductive inference of total recursive functions by probabilistic and deter-
ministic strategies with a bounded number of mind changes is considered.

It is proved that for every nonnegative inte%er k each class of functions that
is identifiable with probability greater than %’g-ﬁ and at most £ mind changes
is identifiable deterministically with at most k£ mind changes.

It also is proved that for every nonnegative integer k¥ and every positive
integer n there exist classes of functions that are identifiable with probability
Py = (2’;:1;;_)*-7;-:12:111—1 and at most k£ mind changes but are not identifiable with
probability greater than p} and at most £ mind changes.

1 Introduction

This paper concerns inductive inference of total recursive functions by probabilis-
tic and deterministic strategies. The identifying strategies are given the values of
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the function at successive points and they may conjecture a hypothesis from time
to time—their guess about the function’s Gédel number. The Godel number of a
function is a Turing machine program for computing this function. The maximum
number of mind changes is bounded. A mind change for the identifying strategy is
a situation when it conjectures a new hypothesis which is not equal (as a number or
a string) to the previous one. Without loss of generality we consider only strategies
that never conjecture the same hypothesis as the previous one. So we can as well
say that the number of hypotheses is bounded. Then a bound of k¥ on the maximum
number of mind changes is equivalent to a bound of k£ + 1 on the total number of
hypotheses output.

Since all the finite length ordered tuples of nonnegative integers are efficiently
enumerable we can consider the identifying strategies to be functions from nonnega-
tive integers to nonnegative integers. Strategies have to be implementable on Turing
machines where probabilistic strategies have to be implementable on probabilistic
Turing machines (that is, those equipped with the simplest Bernoulli random number
generator with two equiprobable outputs, called a “fair coin”). When infinite com-
putation paths are allowed the Bernoulli random number generator (i.e., coin flips) is
sufficient to simulate a random number generator with any number of equiprobable
outputs. Therefore we may assume that this more general random number generator
is available.

If the last hypothesis of a strategy is a correct Gédel number of the given function
then the strategy is said to identify the function. For probabilistic strategies all the
possible computation paths generated by different outcomes of the random number
generator are considered. A probabilistic strategy is said to identify the function with
the probability corresponding to the total probability of all the computation paths
in which the last hypothesis is a correct Godel number of the function. A class of
functions is said to be identifiable (deterministically or probabilistically with a certain
probability) if there is a strategy (a deterministic or a probabilistic one, respectively)
that identifies every function in the class (deterministically or probabilistically with
the respective probability).

We will denote by EXj the class containing those classes of functions that are
identifiable deterministically with at most ¥ mind changes and by EXj(p) the class
containing those classes of functions that are identifiable with probability p and at
most k mind changes.

We fix the maximum number of mind changes and look at the power of prob-
abilistic and deterministic algorithms with this restriction. We find that when the




required probability of identification is sufficiently high probabilistic strategies are
not stronger than deterministic ones. We also find for every number & a sequence of
“critical probabilities” that have the following property. For each critical probability
P} there are classes of functions that are identifiable with probability p; and at most
k mind changes but are not identifiable with probability greater than p} and at most
k mind changes.

This work generalizes theorems 1 and 2 of Freivalds’ previous work [1] and the-
orem 3.1 in the work of Wiehagen, Freivalds and Kinber [4]. Theorem 3.2 of [4] is
in contradiction with Theorem 1 below and therefore seems to be erroneous. Re-
lated results have been obtained by Daley and Kalyanasundaram in [3]; these will be
discussed in Section 5.

2 Transition from probabilistic to deterministic
identification

In [1] it was proved that if a class of functions is identifiable with probability greater
than 2/3 and no mind changes then this class is identifiable deterministically with
no mind changes. A natural question is how the situation changes if we consider
identification with at most one, two, three, etc. mind changes. In each of these cases
there exists a certain number such that every class of functions that is identifiable with
probability greater than this number is identifiable deterministically. The following
theorem proves this assertion.

Theorem 1 For every nomuegati've;c integer k each class of functions that is identifi-
able with probability greater than %k:z_:f and at most k mind changes is identifiable
deterministically with at most k mind changes. More formally,

k+2

: : 2 2
Vk,p,U : UEEXk(p) & p>§7c+—2-——1=>UEEXk.

Proof. Assume that U is a class of functions that is identifiable by a probabilistic
strategy F' with probability greater than %:I%i— and at most £ mind changes. We will
construct a deterministic strategy to identify this class of functions with at most &
mind changes.

The deterministic strategy for identifying this class of functions will first simulate
the work of the strategy F'; however, instead of using the random number generator it




will follow all the computation paths of F' and remember their respective probabilities.
All the computation paths will be considered simultaneously, i.e. a step from each
one at a time. In other words, the deterministic strategy will follow the computation
tree of F.

Now we will describe the conditions when the deterministic strategy has to con-
jecture its first, second, etc. hypothesis, up to the k + 1 inclusive. Each hypothesis,
if conjectured, will be made on the basis of a finite amount of information. And at
least one hypothesis will be always conjectured.

In each computation path F will conjecture a different sequence of hypotheses:
some first one, then the second, third, etc. Our deterministic strategy will remember
these results and the probability of the computation path at the time when each
particular hypothesis is conjectured. :

The deterministic strategy will conjecture a hypothesis k; (to be described below)

whenever the total probability over all the computation paths of F' that have each
. 2k—i+3_2 o, . . .

output at least ¢ hypotheses reaches “5zz—* or more. If it is possible to conjecture

more than one hypothesis it will conjecture h; with the biggest possible index :. The

deterministic strategy will not necessarily conjecture hy, hy, etc., it will conjecture

those h; for which there are enough (2—2%‘1—2 i-th or later hypotheses of F' (with

respect to their probabilities over all the computation paths).

Now we will define the hypothesis k;. Since every intuitively computable function
is recursive, we do not have to give explicitly the Gédel number of the function to be
identified. It suffices to describe how to compute this function.

The hypotheses of F' are supposed to be Gddel numbers (i.e., programs) of the
function to be identified. Generally, over all the computation paths there should
appear sufficiently many correct Gédel numbers with respect to their probabilities.
Knowing a Godel number of a function it is possible to construct a Turing machine
that computes this function. Hypothesis k; will consist of constructing the Turing
machines corresponding to the hypotheses of F' on basis of which it was conjectured
and then running them. That is, from each computation path that has yielded ;7 >
hypotheses it will take the :** hypothesis, interpret it as a program and construct
the corresponding machine. Also each machine will be assigned a weight equal to the
probability of the respective computation path. In order to determine the value of
the h; at point = the Turing machines will be run simultaneously (that is, one step
of one machine, one of another, etc.) on argument z until they have returned one

value the total weight of which is at least % So, it will look for the value that




is given by a weighted majority of the initial basis hypotheses.

We cannot claim that every h; will be correct. But we will now prove that the
last h; will.

So, let us assume that the deterministic strategy has conjectured h; and is never
going to conjecture a different hypothesis. ThlS 1mphes that among the hypotheses of
F (that all have order ¢ or higher) less than 2 —2k+2—— (with respect to their probability)
can be changed in all the computation paths of F. Otherwise the strategy would be
forced to conjecture hiyy.

Since strategy F' identifies class U with probability exceeding 2k+2“2 the total
probability of absolutely 1ncorrect hypotheses of F' (the ones that are not correct but
are never changed) is less than 5zb—. Therefore among all the hypotheses of strategy
F on basis of which the h; is conjectured there must be less than

2k—i+2 -9 1 _ 2k—z’+2 -1
2k+2 _ 1 +2k+2__1 - 2k+2 1

incorrect ones in terms of probability. Hence eventually these Turing machines will
return the value f(z) with the total weight exceeding 7}2——— and the last hypothesis
always will be correct.

So we have proved that there is a deterministic strategy that identifies class U
with at most k£ mind changes. O

3 Critical Probabilities

In the previous section we found numbers p; such that identification with probability
exceeding py and at most ¥ mind changes was not stronger than deterministic iden-
tification with at most k¥ mind changes. But we do not yet have any guarantee that
the same cannot be said for some other smaller number. Therefore in this section we
will show that there are classes of functions that are identifiable with probability p
but are not identifiable deterministically (with at most ¥ mind changes).

In fact we will prove a much stronger theorem, namely, for each fixed number &
of allowed mind changes we will find a sequence p} = px, pZ, p}, . . . of numbers (called
“critical probabilities” in [1]) converging to 1 — 57 with the following property:
there exist classes of functions identifiable with probability p? but not identifiable
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Figure 1: Critical probabilities

with probability greater than p} for each positive integer n. The situation is depicted
in Figure 1.

Theorem 2 For every nonnegative integer k and every positive integer n there exist
k+1 k+1

classes of functions that are identifiable with probability p} = (22: +'1'2|_"2','ﬁ1t1'1 and at

most k mind changes but are not identifiable with probability greater than p} and at

most k mind changes. More formally,

Yk Vn>0 3U : (U€ EXi(py) & Y(p>p}) : U € EXi(p)),

_ (2ki-1)ny2ktig
where py = “rraETo

Proof. To prove the theorem we will need a lemma which actually is the Smullyan
form of the fixed point theorem (see [2]).

Lemma 1 Let j be a positive integer and hy,ha,...,h; be total recursive functions
of 3 arguments. Then there exist positive integers my,ma,...,m; such that

Om, = Phi(mi, mz, ., mj)s Pma = Pha(ma, ma, «y mj)y * o Pm; = Phj(ma, m2, ..., m;)s
where ¢, denotes the function whose Godel number is g.




Now we will begin the proof of the theorem. First let us fix some arbitrary k£ and

n. We introduce the following notation to enhance the readability of the formulae in
the proof: N = 2*(n +1), § = {1,2,...,2N — 1}. Thus, pj = ZFEH).

2N-1

We will consider the following class of total recursive functions U. It will consist
of functions f such that:

1.Vie S : {z|f(z) =7 (mod2N)}| < k+1, ie., for every ¢ from the set S
there are at most k + 1 points = such that f(z) =7 (mod 2N);

2. |{i € SIf = vgn}l =2 2N — (n+1), where z7 = maz{z|f(z) =: (mod 2N)}

and g;(z) = ﬁ%i, i.e., there are at least 2N — (n + 1) different 7 from the set

S such that f(—z‘;% is a correct G6del number of the function f.

In other words, all the values of a function that are not divisible by 2N will be
considered as possible encodings of a Gédel number for this function. If division by
2N gives the remainder a # 0 we will call this value a “type a code”. These functions
will not have more than k£ 4+ 1 encoded values in each code type and, furthermore,
at least 2N — (n + 1) of the possible 2N — 1 code types will have the property that
the last value encoded this way is an encoding of a correct Godel number for this
function.

First we prove that this class of functions is identifiable with probability

N —(n+1) (2 —Dn2kl_1
N —1  okipgoeri_7 Pk

and at most k mind changes. We can assume that the inductive inference machine
is equipped with a random number generator that has 2N — 1 equiprobable outputs
and therefore to identify the function it can choose a random number z from S and
then find the type ¢ codes among the values of the function. Each code found results
in a new hypothesis; namely, if f(z) = ¢ (mod 2N) then the hypothesis will be
the number g;(z) = ﬂ;F If the machine guesses a good code type the hypothe-

sis conjectured last will be right. The probability that this will happen is at least
2N —!n+1! — p;cz
2N-1 _ Pk-

Now we will prove that the class U cannot be identified with probability exceeding
pr. Let us assume the contrary. Suppose there is a strategy F' that identifies class U
with probability p > p} and at most k¥ mind changes. Let p > p’ > pf. We will now
find a function in class U such that F' does not identify it correctly with probability
p and at most k£ mind changes.



We associate every ordered N-tuple of nonnegative integers with N particular
functions in the way to be described below. We will be able to use the lemma to get
the result that there exists an ordered N-tuple such that the functions corresponding
to it all belong to the class U. The definition of the functions for a given N-tuple
depends on the possible computation paths of F on initial segments of the functions
to be defined. Eventually we will come to the conclusion that not all of these functions
can be identified correctly and with probability p.

Now we will describe in detail the construction of the N functions corresponding
to an ordered N-tuple of nonnegative integers. In defining the functions we will use
a “guiding table” which will have many useful properties. So now we will make a big
digression and first describe what the guiding table is and how it can be constructed.

3.1 Construction of the Table

The table consists of N horizontal rows and is split into k + 2 zones by vertical
separating lines. The zones are numbered 1,2,...,k + 2 from left to right. We will
frequently refer to a “lane” in the table, so we will now introduce the concept of a
lane. We start with zone 1 and declare that there is one lane (i.e., all the rows in zone
1 belong to only one lane). For zone 2 we separate the table into n + 1 equally sized
and nonintersecting lanes (i.e., each lane consists of 2F adjacent rows). For zone 3
and further we introduce lanes inductively. We take every lane in the left neighboring
zone and split it in equal halves. Continuing such splitting to the right end of the
table we finally see that zone k + 2 consists of N lanes that each occupies one row.
An example of an empty table is given in Figure 2.

Now let us describe the contents of the table more precisely. The table holds
ordered pairs of positive integers. The right components of the pairs are numbers
from the set S and the left components are from the set {1,2,...,N}. The number
of pairs is not necessarily the same in every row of the table. It does not have to be
the same in every row even within the boundaries of a particular zone. However, the
table has the following useful properties:

Property 1 For every particular zone z and lane [ in it, every row that belongs to that
lane has the same pairs in the same order in that zone. That is, within the
boundaries of both a particular zone and a particular lane the contents of every
row are exactly the same.




Figure 2: Empty table: k =2,n =2

Property 2 In every particular row of the table there are at most k + 1 pairs with the same
right components.

Property 3 Let us define an indicator function I, ,((u,v)) for each particular zone z and
row 7, which will be 1 if and only if the pair (u,v) is the rightmost pair with
the right component v in row r and zones 1 through z. Let row r belong to
lane [ in zone z and let lane ! consist of rows r; through r;. Then the number
of pairs whose indicator function is 1 and whose left component is in [r;,r;] is

at least 2N — (n + 1). That is,

{(u,v) | L :((u,v))=1 & r; <u<rj}| > 2N —(n+1).

It is not obvious that such a guiding table exists. And if it does then there is a
question how to find it. Therefore we will now describe an algorithm to fill the table
with pairs and will prove that the resulting table satisfies all the requirements stated
above. We assume that there already are the N rows in the table and it is split in
zones and lanes as described. We also assume that writing takes place from left to
right, so we are able to immediately write down the next pair to the right of the
previous. We also assume that the horizontal size of the zones is sufficiently big, that
is, we will never write our pairs past any vertical zone separator.




Algorithm

1. In zone 1 and row 1 put 2N — (n + 1) pairs with dummy (to be specified later)
left components and different right components from the set S. Make the other rows
exactly the same.

(Zone 1 is filled out now; see Figure 3.)

2. For every lane l in zone 2 let R; be the set of those numbers in S that have not
been used as the right components for the pairs in any row of this lane.

(We call sets R; the sets on reserve. At this moment they contain numbers that can
be valid right components of the pairs but are not used yet. The sets on reserve are
the same for every lane of zone 2 now but later different lanes will have different sets;
see Figure 3.)

3. For each lane !l of zone 2 do

4. In the top row of lane [l cross out all pairs except the ones beginning with
the (2¥*1 — 1)(I — 1) + 1* pair and ending with the (2F*! — 1)I** one. Make
the other rows of lane | exactly the same.

(There will be blocks of uncrossed pairs along the diagonal of zone 1, if we
think of zone 1 as an array with dimensions N x (2%¥*! — 1); see Figure 3.)

5. In zone 2 of the top row of lane | put pairs with dummy left components
and right components taken from the set R;. Make the other rows of lane [
exactly the same.

6. Then in the top row of lane | put pairs with dummy left components but
right components taken from the set S, all pairwise different and also different
from right components of uncrossed pairs in this row. Put so many of them
that the total of uncrossed pairs in this row is 2N — (n +1). Make the other
rows of lane . exactly the same.

7. Enddo
(Zone 2 is filled out now; see Figure 4.)
8 Fori:=3tok+2step1 do

(Filling out zone ¢ in the table.)

9. Cross once more every pair in the table which is crossed just once.

10
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Figure 3: Zone 1 filled, sets on reserve for zone 2 and crossing pairs

Figure 4: Zone 2 filled and sets on reserve for zone 3
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(This is done to be able to distinguisil in the future between recently crossed
pairs and old crossings.)

10. For every lane | in zone i let R; be the set of those numbers in S that
have been used as the right components for the pairs in any row of this lane
less than 7 — 1 times and do not appear in the uncrossed pairs.

(See Figure 4.)

11. For each lane l in zone : do

12. Ifl is odd, then in the top row of lane I cross out half of the pairs
the right component of which is used ¢ — 1 times. Also cross out any
number (possibly none) of the pairs the right component of which is
used less than ¢ — 1 times. Make the other rows of lane | exactly the
same.

13. Ifl is even, then in every row of lane | cross out all those pairs that
remained uncrossed in the rows of lane | — 1.

(See Figure 5. The difference between the rows of odd lanes and even
lanes of zone ¢ will be introduced only now, after the crossing.)

14. In zone i of the top row of lane | put pairs with dummy left
components and right components taken from the set R;. Make the
other rows of lane | exactly the same.

15. Then in the top row of lane | put pairs with dummy left compo-
nents and right components corresponding to those of the pairs that
are crossed only once and used less than 1 — 1 times not counting this
usage. Make the other rows of lane | exactly the same.

16. Then in the top row of lane [ put pairs with dummy left components
but right components taken from the set S, all pairwise different and
also different from right components of uncrossed pairs in that row.
Put so many of them that the total of uncrossed pairs in that row is
2N — n — 1. Make the other rows of lane | exactly the same.

17. Enddo

(Zone 1 is filled out now; see Figure 5.)

18. Enddo
(The table is ready except for the left components; see Figure 6.)

19. For every uncrossed pair in the table set its left component equal to the number
of the row it is in.

12
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(,22)(, 23X 6N TG T8 R ED)
£22362HEDHE2H3)(4)(5)( 8 T RBII GG TG E)
(,22)(,23)(,1)( . 2 HBIHEHE TR T D)
TR TR IG I TG PG, 10)(,11)(,12)

TR R RS TG o009 1) (:8)(,9)6GH0)GHGE2)

(:8)(:9)(1)(:2)(:3)(: 4 )H0363X(,12)(,13)

(,14)(,15)(,5)(,6)(,7)(,22)(,23)(;16)(,17)(,18)

GHESIEHEREEH(,10)(,11)632)633)

(,14)(,25)(,19)(,20)(,21)(,8)(,9)(;1)(;2)(,3)(,4)

(:8)(:9)(;5)(,6)(;7)(,22)(,23 }6H6)62¥)(,18)(,19)

(:20)(,21)(,1)(,2)(,3)(,4)(,10)(,11)(,12)(,13)

EHEHEHIEHETE221623)(,16)(,17)G18)G29)

(,20)(,21)(;14)(,15)(,8)(,9)(;5)(,6)(,7)(,22)(,23)

(,20)(,21)(,13)(,14)(,22)(,23)6HH62(,3)(,4)

(,5)(,6)(,8)(,9)(,10)(;11)(,12)(;7)(,15)(,16)

£20X62HGERGIHG22)6283(,1) (2563564

(,5)(,6)(,17)(,18)(,19)(,20)(,21)(,13)(,14)(,22)(,23)

626362685693(,10)(;11)(, 12 )6H6E5)(,16)(,17)

(,18)(,19)(,13)(,14)(,22)(,23)(,20)(,21)(,8)(,9)

(,20)(,21)(,8)(,9)GEOYEDEE2)(, 7)(, 155262

(,18)(,19)(,1)(,2)(,3)(,4)(;5)(,6)(;10)(,11)(,12)

EIIGHOHEEIEIEN17)(,18)(,19)6H68)(,9)(,10)

(,11)(,12)(,20)(,22)(,23)(,1)(,2)(,13)(,14)(,15)(,16)

(,13)(,14)(,15)(,16)6HHGEIGTRY(, 7)(,8)683:28)

(,11)(,22)(,21)(,3)(,4)(,5)(,6)(,17)(,18)(,19)

(,13)(,14)(,20)(,21)(,22}623¥63X4)(,5)(,6)

(:1)(,2)(,25)(,16)(,17)(,18)(,19)(,7)(,8)(,9)(,23)

GEIGHIG0G25)622)(,23)(,3)(,4)65)66)

(,1)(,2)(,10)(,11)(,12)(,13)(,14)(,20)(,21)(,22)

Figure 6: Table ready except for the left components
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20. For every crossed pair that is in some zone z, lane | and position j from the
left side of zone z set its left component equal to the left component of the unique
uncrossed pair in zone z, lane | and position j.

(The table is ready; see Figure 7.)

3.2 Correctness of the Construction

Now we will prove that this algorithm really produces a table with all the required
properties. The crossed pairs are not different from the uncrossed ones, they are valid
pairs and have to be considered when proving the properties of the table. Crossing
just helps to build the table and will help to-analyse it.

Claim 1 For any zone z, lane | and position j from the left side of zone z there is
ezactly one uncrossed pair.

Proof. Let us look at lane ! and zone z > 1 in the table immediately after it is filled
out with pairs containing dummy left components. It has 22~ rows and no pair is
crossed in it. However it has k + 2 — 2z zones to the right of it and with filling out
each of these zones (with pairs containing dummy left components) the number of
uncrossed pairs in zone z and position j is reduced to half its previous value. That
is because each lane is split in two equaly sized lanes and step 13 says:“If [ is even,
then in every row of lane [ cross out all those pairs that remained uncrossed in the
rows of lane [ — 1.” Hence, when all zones are filled out just one uncrossed pair will
remain in lane ! zone z and position j. For the first zone the argument is similar.
The difference is only in that we first apply step 4 for crossing out pairs in it which
leaves it having 2* uncrossed pairs in every position. Step 4 is needed for filling out
the second zone and since then each lane is being split in two with each new zone, for
k remaining zones and only steps 12 and 13 are applied for crossing pairs. Therefore
the same argument as for zones z > 1 can be used. So the claim is true for any zone
z, lane [ and position j. i

This claim is a justification for step 20 of the algorithm. And, in fact, there is
no need to do the crossing in step 4 so regularly. It would suffice to cross any pairs
as long as rows (¢ — 1)2F + 1 through i2* have the same pairs crossed, for every 1,
1<i<n+1 and in every row exactly 2*! — 1 pairs remain uncrossed.
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(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(41 )(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,13)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)
(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14)(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)

(4:1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14 )(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)

(4,1)(4,2)(4,3)(4,4)(2,5)(2,6)(2,7)(6,8)(6,9)(6,10)(6,11)(6,12)(8,13)(8,14 )(12,15)(12,16)(12,17)(12,18)(12,19)(10,20)(9,21)

(2,22)(2,23)(4,10)(4,11)(4,12)(4,13)(3,14)(3,15)(2,16)(2,17)(2,18)(1,19)(1,20)(1,21)
(2,22)(2,23)(4,10)(4,11)(4,12)(4,13)(3,14)(3,15)(2,16)(2,17)(2,18)(1,19)(1,20)(1,21)
(2,22)(2,23)(4,10)(4,11)(4,12)(4,13)(3,14)(3,15)(2,16)(2,17)(2,18)(1,19)(1,20)(1,21)

(2,22)(2,23)(4,10)(4,11)(4,12)(4,13)(3,14)(3,15)(2,16)(2,17)(2,18)(1,19)(1,20)(1,21)

(8,22)(8,23)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(6,7)(6,15)(6,16)(5,17)(5,18)(5,19)
(8,22)(8,23)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(6,7)(6,15)(6,16)(5,17)(5,18)(5,19)
(8,22)(8,23)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(6,7)(6,15)(6,16)(5,17)(5,18)(5,19)
(8,22)(8,23)(7,1)(7,2)(7,3)(7,4)(7,5)(7,6)(6,7)(6,15)(6,16)(5,17)(5,18)(5,19)
(10,22)(10,23)(10,1)(10,2)(9,3)(9,4)(9,5)(9,6)(12,7)(12,8)(12,9)(11,10)(11,11)(11,12)
(10,22)(10,23)(10,1)(10,2)(9,3)(9,4)(9,5)(9,6)(12,7)(12,8)(12,9)(11,10)(11,11)(11,12)

(10,22)(10,23)(10,1)(10,2)(9,3)(9,4)(9,5)(9,6)(12,7)(12,8)(12,9)(11,10)(11,11)(11,12)

(10,22)(10,23)(10,1)(10,2)(9,3)(9,4)(9,5)(9,6)(12,7)(12,8)(12,9)(11,10)(11,11)(11,12)

(2,8)(1,9)(1,1)(1,2)(1,3)(1,4)(2,10)(2,11)(1,12)(1,13)

(2,8)(1,9)(1,1)(1,2)(1,3)(1,4)(2,10)(2,11)(1,12)(1,13)

(1,14)(2,15)(1,5)(1,6)(1,7)(1,22)(1,23)(1,16)(1,17)(1,18)

(2,14)(2,15)(2,19)(2,20)(2,21)(2,8)(2,9)(2,1)(2,2)(2,3)(2,4)

(3,8)(3,9)(3,5)(3,6)(3,7)(3,22)(3,23)(4,16)(4,17)(3,18)(3,19)
(3,8)(3,9)(3,5)(3,6)(3,7)(3,22)(3,23)(4,16)(4,17)(3,18)(3,19)

(3,20)(3,21)(3,1)(3,2)(3,3)(3,4)(3,10)(3,11)(3,12)(3,13)

(4,20)(4,21)(4,14)(4,15)(4,8)(4,9)(4,5)(4,6)(4,7)(4,22)(4,23)

(5,20)(5,21)(5,13)(5,14)(5,22)(5,23)(6,1)(6,2)(5,3)(5,4)
(5,20)(5,21)(5,13)(5,14)(5,22)(5,23)(6,1)(6,2)(5,3)(5,4)

(5,5)(5,6)(5,8)(5,9)(5,10)(5,11)(5,12)(5,7)(5,15)(5,16)

(6,5)(6,6)(6,17)(6,18)(6,19)(6,20)(6,21)(6,13)(6,14)(6,22)(6,23)

(8,20)(8,21)(8,8)(8,9)(7,10)(7,11)(7,12)(8,7)(8,15)(7,16)(7,17)
(8,20)(8,21)(8,8)(8,9)(7,10)(7,11)(7,12)(8,7)(8,15)(7,16)(7,17)

(7,18)(7,19)(7,13)(7,14)(7,22)(7,23)(7,20)(7,21)(7,8)(7,9)

(8,18)(8,19)(8,1)(8,2)(3,3)(8,4)(8,5)(8,6)(8,10)(8,11)(8,12)

(10,13)(10,14)(10,15)(10,16)(9,17)(9,18)(9,19)(10,7)(10,8)(9,9)(2,10)

{10,13)(10,14)(10,15)(10,16)(9,17)(9,18)(9,19)(10,7)(10,8)(9,9)(8,10)

(9,11)(9,12)(9,20)(9,22)(9,23)(9,1)(9,2)(9,13)(9,14)(9,15)(9,16)

(10,11)(10,12)(10,21)(10,3)(10,4)(10,5)(10,6)(10,17)(10,18)(10,19)

(11,13)(11,14)(11,20)(11,21)(11,22)(12,23)(12,3)(12,4)(11,5)(11,6)

(11,13)(11,14)(11,20)(11,21)(11,22)(12,23)(12,3)(12,4)(11,5)(11,6)

(11,1)(11,2)(11,15)(11,16)(11,17)(11,18)(11,19)(11,7)(11,8)(11,9)(11,23)

(12,1)(12,2)(12,10)(12,11)(12,12)(12,13)(12,14)(12,20)(12,21)(12,22)

Figure 7: Table ready, crossing removed
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Claim 2 Within the boundaries of a particular zone and particular lane the contents
of every row are ezactly the same (property 1).

Proof. Let us look at any step of the algorithm that writes pairs with dummy left
components and certain right components in some zone and lane. These steps are
always related to the whole lane in that zone. And it always says: “Put this and
this in the top row of the lane. Make the other rows of the lane exactly the same.”
Therefore we can be sure that the right components of the pairs are the same within
the boundaries of a particular zone and lane. Now let us look at the steps that write
the left components of the pairs. By claim 1 it follows that step 19 applies only
to one pair in a particular zone, lane and position. And for all the other pairs in
that zone, lane and position step 20 applies which sets the left components equal to
the left component of the pair to which step 19 was applied in that zone, lane and
position. Therefore neither writing the right components nor the left ones introduce
any difference within the boundaries of one zone and lane. (|

Claim 3 The cardinality of the sets on reserve is always n.

Proof. The algorithm requires that in any row after filling out a new zone (with
pairs having dummy left components) there must be 2N — (n + 1) uncrossed pairs
with pairwise different right components. Since we may use as right components
|S| = 2N —1 different numbers but have used only 2N — (n + 1) of them when filling
out the first zone, it follows that after filling it out |R;| = n for every lane I of zone
2. Now let us look at filling the other zones. Before filling out any new zone we cross
out a certain number of the uncrossed pairs. Then we obviously have to add as many
pairs as we just crossed out, since there have to be 2N — (n + 1) uncrossed pairs with
different right components. The next useful observation is that at any time there
cannot be more pairs with the same right components in any row than the number
of zones filled out. That again is because of the requirement that when we add pairs
to the table they all must have different right components and different from those of
the uncrossed pairs in the table as well. So only with a new zone we may use some
right component one more time. From this it follows that the right component of any
pair that is crossed out immediately before filling a new zone will either be used in
this new zone or else be put in the set on reserve for the appropriate lane in the next
zone. From all the above it follows that the new sets on reserve will again contain
exactly n numbers. a

Claim 4 In every particular row of the table there are at most k + 1 pairs with the
same right components (property 2).
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Proof. We will prove the claim by induction. The inductive hypothesis is the fol-
lowing: for every ¢ > 1 when the ** zone is filled out with pairs having dummy left
components there are exactly (2¥~*+3 — 2)n pairs the right components of which have
been used : times. First we can observe that when the second zone is filled out with
pairs having dummy left components there are exactly (2N —(n+1))—n—(2¥*1—-1) =
2 (n+1)—n—1—n—2¥1 41 = (251 — 2)p pairs the right components of which
have been used twice. The numbers in this equation mean the following: 2N — (n+1)
is the required number of uncrossed pairs in the table at any time; n is the cardinality
of the set on reserve before filling out zone 2; and 2! —1 is the number of uncrossed
pairs in any row of zone 1 before filling out zone 2. This will be the base case for the
induction.

Now let us assume that the inductive hypothesis is true for zone 7 and let us prove
it for zone ¢ + 1. Let us look at the actions performed in order to fill out zone z + 1.
First thing we need to be concerned about is crossing the pairs in zones 1 through .
We will have to add as many new pairs as we cross out right before filling out zone
¢+ 1. However we need not be concerned about crossing pairs that have been used
less than ¢ times. When filling the table, step 15 requires us to use pairs with these
right components before those that have been used 7 times and so they will appear in
zone ¢+ 1 as being used less than ¢+1 times. But for simplicity of our argument let us
denote the number of pairs that have just been crossed but have the right components
used less than ¢ times by z. Crossing the pairs with right components that have been
used ¢ times is simple—step 12 requires to cross exactly half of them in odd number
rows and step 13 requires to cross the other half in even number rows. So by the
inductive hypothesis in zone 1+ 1 we have to compensate for z + (2¥~*2 —1)n crossed
pairs. And we have n pairs from the set on reserve for this purpose; z pairs that have
been just crossed out and have the right components used less than 7 times; and the
pairs that have the right components used z times. The algorithm requires that the
former two types of pairs are used entirely before the latter may be used. Hence from
the latter pairs exactly (2F'+2 — 2)n will appear in zone 7 4+ 1 and then they will
have right components that have been used :+1 times. So the inductive hypothesis is
proven. The claim follows trivially, setting : = k+2 and plugging it into the inductive
hypothesis. We get that when the last zone is filled out there are no pairs in it the
right components of which have been used k + 2 times. Remembering that at any
time there cannot be pairs with right components used more times than the number
of zones that are filled out, we get that there are no more than k + 1 pairs with equal
right components. |
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Here it is worth to note that when filling out zone k + 2 the cardinality of the set
on reserve is the same as the number of pairs that have right components used & + 1
time and are crossed immediately before filling out zone k + 2. So we use the set on
reserve to compensate for them and there is no need to use these pairs any more (and
it is not allowed either). And there are no more sets on reserve.

Claim 5 For every particular zone z and row r that belongs to lane | in this zone
the number of pairs whose indicator function is 1 and whose left component is equal
to some row number for rows that belong to lane I in zone z is at least 2N — (n + 1)

(property 8).

Proof. Let us fix an arbitrary zone z and row r in lane ! of zone 2. Let us look at
the pairs that are uncrossed immediately after zone z is filled out. Their number is
2N — (n 4+ 1) and their right components are all different by the construction of the
table. Furthermore, since the uncrossed pairs always appear to the right of the crossed
pairs with the same right components during the construction and the uncrossed pairs
have all different right components, it follows that these pairs are the rightmost ones
with such right components in zones 1 through z. The only thing which still has to
be proved is that their left components are row numbers for rows that belong to lane
l of zone z. This is trivially true for z = 1. We will prove this for 2 > 1. As we
already noted in the proof of claim 1, there are 2¥*2~% rows in every lane of zone z
and there are k + 2 — z zones to be filled out to the right of it. Each of these pairs
will remain uncrossed in exactly one row belonging to lane ! of zone z, because each
crossing separates the uncrossed pairs of the whole lane into two disjoint sets—one
that contains pairs that remained uncrossed in one of lanes of the new zone and the
other that contains pairs that remained uncrossed in the other of the lanes of the
new zone. And since the crossed pairs get the same left components as the unique
uncrossed pair in that position in their lane and zone; and since these components
are row numbers; and since every lane of zone z — 1 includes at least two lanes of
zone z for z = 2,3,...,k + 2; and since claim 1 holds, these pairs can get only such
left components as are row numbers for the rows in lane [ of zone z. O

3.3 Back to the Proof

With these 5 claims we have finished the proof that the above algorithm produces
a guiding table with all three properties. So now we end our digression and finally
concentrate on defining the N functions associated with every ordered N-tuple of
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nonnegative integers. Recall that we assumed that F identifies the class of functions
U with probability p > pr and at most k£ mind changes, and we chose an arbitrary
p’ such that p > p' > pf. We now show that this leads to a contradiction, proving
that U cannot be identified with any probability greater than p} and at most & mind
changes.

We now describe the values of the N functions fi, fo,..., fy associated with the
ordered N-tuple (mi,m2,...,my) in the first 2N — (n + 1) points, i.e., define f,(z)
forz =0,1,...,2N —(n+1)—land r =1,2,...,N. We will refer to this stage of
definition as phase 1. Let (a.;,b,,;) denote the pair in the r** row and j* position
of zone 1 in the guiding table. Then f.(j — 1) is defined to be 2Nm,,; + b,;. In
other words, left components of the pairs in the table tell which element of the given
N-tuple to encode in the value of the function and the right components tell which
code type to use for encoding. Row r in the guiding table corresponds to function
fr to be defined, not only at this phase of definition, but at any time. When the
first 2N — (n 4 1) values of the functions are defined we have used all the pairs in
zone 1 of the table. By property 1 of the table all the NV functions are still the same,
i.e., have the same initial segments. We end phase 1 of the definition by simulating
strategy F' on these functions setting one more of the undefined values to zero with
every step of strategy F'. We follow all the possible computation paths of F and wait
for the first or higher hypotheses of F' to reach the total probability of p’. That is,
fr(2N —(n+1) +1) gets defined to zero unless F has given first or higher hypothesis
with total probability of p’ over all its computation paths in its first ¢ steps, for
t=0,1,2,...and 1 < r < N. We do it in parallel for all N functions, that is, we
take N copies of strategy F' and run on different functions. Since all the functions
still have the same initial segments all N simulations should be identical. As soon
as F' conjectures the first or higher hypotheses with total probability at least p’ we
suspend the simulation and define the functions further as follows. For functions that
correspond to rows belonging to lane ! of zone 2 in the guiding table we set the next
[ values to be zero. That is, the first 2% functions are defined with one more zero,
the next 2% functions get two more zeros, etc. Therefore unless we later define some
more points of the first functions to be zero (but we will not) we have introduced a
difference between the functions corresponding to different lanes of zone 2. Then we
go on to phase 2 of the definition.

Instead of describing phase 2 of the definition we will generalize the method and
describe phase z for 2 < z < k + 2. Phase z can be applied only for functions that
have phase z — 1 completed. To define the next values of function f, we take the
pairs that are in row r and zone z of the table. Suppose the function was defined
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up to value f,(w) inclusively during the first z — 1 phases of definition. Then, as
in phase 1, f,(w + j) is defined to be 2Nm,, ; + b, ; for 1 < j < |S, .|, where |S,.|
denotes the number of pairs in row r and zone z of the table and (a, ;, b, ;) is the pair
located in row r and position j of zone z. Since all the functions that corresponded
to the rows of the same lane in zone z — 1 as f, had the same initial segments when
the simulation was resumed in phase z — 1, the results of the simulation had to be
identical and therefore phase z could be applied to them as well. By property 1 of the
table all functions belonging to the same lane of zone z will still have the same initial
segments. We end phase z of the definition by defining all the rest of the undefined
values to be zero if z = k 4 2 or by resuming the simulation of strategy F' in parallel
for all the functions that still have the same initial segments from the place where we
suspended it at the end of phase z — 1 if z < k + 2. And, of course, the strategy is
simulated on the functions that we are defining; we are deciding on new values for the
functions maybe just a little bit before strategy F' needs to input them. We do it now
separately for every lane in zone z where the phase z of definition is applied, since
phase z — 1 need not necessarily end simultaneously for all lanes of zone z — 1. That
is, we might be in different phases of definition for different functions. Synchronous
simulating is only for the functions that still have the same initial segments. We follow
all the possible computation paths of F' and wait for the z** or higher hypotheses of
F to reach total probability at least
2> (n+1)-1,
== Tt P
While this does not happen we define one more value to be zero with every step of F.
When F conjectures the 2% or higher hypotheses with total probability g, we define
the respective functions for which it happens further as follows. Each lane is split into
two beginning with the next zone. If row r belongs to the upper one of these lanes
in zone z + 1 we set one more value of the function f, to be zero; if row r belongs to
the lower lane in zone z 4+ 1 we set two more values of f, to be zero. We do this for
each f, that F gave the z** or higher results with probability ¢, on. Again, this is the
point where we introduce a difference between functions corresponding to different
lanes (in fact an irretrievable difference will be introduced in the very beginning of
the phase z + 1 when we add nonzero values to these functions). Now we go on to
phase z + 1 of the definition.

— 24 9%2,

See Figure 8 and Figure 9 for a possible situation in function definition. (Functions
are represented by their values in successive points. The N-tuple elements used in
values are determined by the left components of the pairs in the table. The upper
indices correspond to the right components and show which code type is used to
encode an element.)
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Phase 1:

fi = mimimimimimimImEmImi®mi mZmPmit mmiSmiImIsm3m2m2100...0 0
f2 = mimimimimimimImEmImi®miimZmBEmitmiimiSmiImismIm29m2100...0 0
fu = mimimmmgmsm g Sttt st b brfinfio0 0 0
fu = mimimimimimm im0 0 o
fs = mimimimimimimImEmimi®miimiZmBEmitmimiSmiImism19m2%m2100. ..0 00 ’
fo = mimimimimimimImEmimi®mi miZmBmitmiimiSmiImismidm?9m2100...0 00
fr = mimimimimimimimgmimi®miimimBmitmiimiSmiImiEmidm9m2100...0 00
fs = mymimimimimimIimgmimi®miimim B mitmiimiSmiImi8miImm2100...0 00
fo = mymimimimimimimgmim®miimi mBEmitmiimISmIm8m19m2m2100...0 000
fro= mymimimimim§mImEmimi®miImZmBPmit miimiSmiImiEmIIm29m2100. .. 0 000
fu= mimimimimimimimEmimPmiimIm B mitmiimiSm i Imi8m1dm29m2100... 0 000
fiz= mymimimimimSmImEmgmPmiimimBmitimIimiSmiImismiimm?2100. .. 0 000

Waiting for the
1" hypotheses to
reach p’

Phase 2:

(f1 continued) mZ2m2®m’mtmPPmPmitmimismi miEmi®m®m2100. . .
(f2 continued) m22m2®m’mitmPmPmitmi misml miimi®m®m2100. . .
(fs continued) mP2mPBm’mImIEmPmitmiPmiemi mEmi®m®m00. ..
(fs continued) mPZmPBmP’m I mIZmPmitmIPmiemi mEmi®m®m3100. . .
(fs continued) mZ2mZmi m2 m2 m? m3 mé m mPmi®ml'mi*m1°00...00

(fe continued) mZ2mZmi m2 m3 m? m mé m mPmiml'mi*m1°00...0 0
(fr continued) mZ2m2mi m2 m3 m? md m§ m] mIPmlml'mi®ml®00...0 00
(fs continued) m22m2®m} m2 m3 m? m3 m$ ml mIPmi®mli mi®m1®00...0 00
: 2223 1 2,3 7,008 09,10, 11, 12
(fo continued) mizmipzmiomiyms m§ mg m§ mI,mé,md,miImilmi200...

(fiocontinued) m22m23ml

o
LYNTN
Y- 3]

2.3 7., 8,9 10,11, 12
10M10M1pMy Mg Mg Mg MMM ymy;myymy00. ..

: 22,231 ,.2 .3 7.8.9,10,.,11, 12
(f ucontmued) MMM MMy Mg Mg Mg MyMyMmymy;miymy00. ..

: 22,23 1,2 3 4 . 5,6,7 8 9 10 11,12
(fizcontinued) mizmzmiomiomd m§ m§ m§ mI,m8,mI,miImiimi200...
Waiting for the
2™ hypotheses to

reach ¢,

Figure 8: Defining the functions for (mq,m,,...,my) w.r.t. the table
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Phase 3:

(fs continued) m§°m§1m13m14m22m5 mg mZm3 mi  00...00
(fe continued) mPmImBEmitmBmBml mimi m¢  00...000

(f7 continued) mPmm§ md m®mi'miZmiml® m7 m3700. .

(fs continued) m2®mZm§ md mI®mi'miZmIiml® mi®ml’00..
Waiting for the

3" hypotheses to

reach g3
Phase 4:
(fs continued) mimémE mg mi®milmi*m? ml*mi®  00..

(fe continued) m¢mgmi mBEmPmPmImBEmi*mZm300. .

Figure 9: Continuation of Figure 8

So we have described in detail the definition of the functions fi, fs,..., f& asso-
ciated with every ordered N-tuple (mq,m,,...,my). Let us now consider functions
hi,hs,. .., kN, where h, is the Gédel number of f,, for r = 1,2,...,N. That is,
©h, = fr, or in other words h, is a program for a Turing machine that computes
fr- In order to simplify things we may assume that A, is our description of how
to define f,. We can now assume that the functions ki, hs,..., Ay are functions of
arguments my,my,...,my, since our definition of fi, f5,..., fy was dependent on
my,Ma,...,my. Now let us use Smullyan’s lemma. It says that there exist positive
integers mj,...,m)y such that Pm; = <ph1(m1, ey )y ees Pmby = Phy(ml, ..., mhy)-
That iS Pm} = fla <Pm2 = f2a RS Qom = fNa where we denote by flafZa afN
the functlons corresponding to the ordered N-tuple mj,m5,...,m}y. So it appears
that in the values of these particular functions we have not encoded just some mean-
ingless numbers from the N-tuple but quite frequently the Godel numbers of these
functions. And that is why all these N functions belong to class U, which we now
prove.

Claim 6 Functions f1, f3,..., fn belong to class U.
Proof. Let us look at any of these functions, for instance, f!. Let us assume that it
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has gone through z phases of definition, where 1 < z < k + 2, and not more. That
is, we have used the pairs from row r in the table up to zone z inclusively to define
its values and further it contains only zeros. Let row r belong to lane ! in zone z of
the table. The table is built in such a way that all rows in some lane of some zone
are contained in some bigger lane of the previous zone, or, in other words, each lane
of zone ¢ is split into two or more lanes in zone : + 1, for every 1 <: <k + 1. From
this fact and property 1 it follows that every function that corresponds to some row
belonging to lane ! of zone z is identical to f. For z = k+2 there is only one function
in each lane of zone z, that is, r = I. For z < k + 1 that is because the functions
have the same initial segments at any moment of definition and the simulation of
strategy F' on them is done synchronously. If F' did not give the expected results (in
terms of probability over all the computation paths) on f] it would not give them
on other functions corresponding to rows of lane [ in zone z. Synchronicity, in fact,
is not important; it is mentioned just to make the definition more understandable.
The strategy has to give the same results over all the computation paths on functions
with the same initial segments. Since the functions that correspond to rows of lane [
in zone z are the same they must have the same Goédel numbers. That is, any Godel
number of one of these functions is a Godel number for the others as well. From
property 3 it now follows that for the function f! there are at least 2N — (n + 1)
different code types such that the last encoded value in each code type is a Godel
number for f/. Property 2 insures that no more than k£ + 1 values are encoded in
each code type. Therefore f] belongs to class U. And since we picked an arbitrary
function f], all N functions fj, f3,..., fy belong to class U. a

The only thing that remains to be proven is that at least one of the functions
f1y--+, fiy cannot be identified correctly with probability p' and at most k£ mind
changes. We assumed that F' succeeds for any function of class U at the very beginning
of this proof. We will prove that for some two functions we always get to phase k+ 2
of the definition (except for the case ¥ = 0 which is special in that there are n + 1
functions) and that at least one of them cannot be identified with probability p and
at most k mind changes although it belongs to the class U.

Let us look at the definition of these functions at phase 1, particularly when
simulating F' on the initial segments of them. Suppose F' never gives its first or
higher hypotheses with total probability p’ over all the computation paths on the
initial segments of these functions, that is, we never get to phase 2 of the definition.
Then all the functions are continued with zeros to infinity and turn out to be exactly
the same. We already know that they belong to class U and so strategy F has to give
some results with total probability p. So we can conclude that at some finite time F’
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gives the first or higher results with probability p; > p’ on these initial segments.

First we have to look at the case when k = 0, that is, when phase 2 amounts to
just using all the pairs from zone 2 of the table and then setting all the remaining
values to be zeros. In this case we have obtained n + 1 different functions that all
belong to class U. There is at least one of these functions such that at most B of
the results of F' can be correct for this function, since F' gives these results before any
difference among the functions is introduced, i.e., these results are the same for all
n + 1 functions. This function will be the one that is not identified with probability
p. Suppose later strategy F' gives more correct results for this function and the total
of them over all computation paths reaches p.

But since in this case only one hypothesis is allowed for F' (no mind changes), it
can give no more than 1 — p; additional correct results. Hence, remembering that

P <p
h

n+1
n

/
p+n+1
2n+1 ,
1
n+1P< )

_ntl

But p’ > pg, so in case £ = 0 we have got a contradiction to the assumption that F
identifies U with probability p > p} and at most k¥ mind changes.

+1-p 2p>p,

p1<1,

Let us now assume k£ > 1 and look at the remaining phases of the definition.
We will inductively prove that for at least 2 functions we get to phase k + 2 of the
definition. For the base case we use the fact that we always get to phase 2 of the
definition and that strategy F' at that time has given its first or higher hypotheses
with total probability p; > p' over all its computation paths. Now let us assume that
for the functions corresponding to the rows of some lane / of zone z, where 1 < z < k,
the strategy F has given its 2** or higher results with total probability p, > g, over
all the computation paths (for completeness we set ¢; = p’). We will look only at the
functions corresponding to the rows of that lane and prove that for the functions that
correspond to the rows of some particular lane of zone z + 1 we get to phase z + 2 of
the definition, i.e., this is our inductive hypothesis. At phase z+ 1 we use the pairs of
zone z + 1 to define the next values of the functions and then resume the suspended
simulation of F' on these functions. Functions that correspond to different lanes of
zone z + 1 in the table are already made different. But the functions corresponding
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to the same lane of zone z + 1 are still the same (i.e., their initial segments are the
same). We are simulating F on them and waiting for it to give its z 4+ 1% or higher
hypotheses with total probability at least ¢,4;. Suppose this never happens for any
of these functions. Then all the functions are continued with zeros to infinity and the
ones belonging to the same lane in zone z + 1 are exactly the same (by property 1).

First we will prove that this is not possible in the case when z = 1. In this case
we have n 4 1 different functions that belong to class U. Therefore total probability
of correct results of F' over all the computation paths on any of them has to reach
p' in some finite time. Since the first or higher results that F conjectures with
probability p; are the same for the functions corresponding to different lanes of zone
2 (and therefore different) there must be at least one lane of zone 2 such that the
functions corresponding to it have at most ;25 (in terms of the probability over all
the computation paths) correct results among these. For any function there could
be still at most 1 — p; correct first hypotheses (in terms of probability over all the
computation paths) and some number of second hypotheses. From the assumption
that F' identifies every function with probability p there should appear at least

n 2n+1 ,
-1> —-1=
n+1P1 ..n+1P q2

correct second or higher hypotheses at some finite time. So in the case when z = 1
our assumption that it is possible for F' not to give its second or higher results with
probability ¢,4+1 over all the computation paths on any of these functions has failed.
Therefore there will be at least one lane of zone 2 such that for functions corresponding
to the rows of this lane we always get to phase 3 of the definition.

1_1__ _ﬂ__:l
pP—(1-pm) mer il s

Now we will prove the impossibility of this for 2 < z < k. In this case we look
at the functions that correspond to the rows of lane ! of zone z. We know that they
belong to class U. Therefore the total probability of correct results of F' over all the
computation paths on any of them has to reach p eventually. Since the functions
that correspond to rows of different lanes in zone z + 1 are different, one of these
lanes is such that the functions corresponding to it have at most p,/2 (in terms of the
probability over all the computation paths) correct z** or higher results among those
that F' conjectured at the end of phase z (which were the same for all the functions
belonging to the rows of the same lane in zone z). Even if all the other z** or lower
hypotheses were correct for these functions or eventually changed to such it would
add at most 1 — p, correct results (in terms of probability over all the computation
paths). Hence, over all the computation paths of F' on these functions there have to
appear at some finite time z + 1** or higher hypotheses with total probability at least
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P=(=p:)—p/2=p +p./2—-12p +¢/2-1=

2> n+1)-1
= / /
P iy ?
_2?(n+1)-1
T 2e1(n 4 1)
Therefore our assumption that F' never givés its z + 1°* or higher hypotheses with

total probability at least ¢.,; has failed for 2 < z < k as well and we will get to phase
z + 2 of the definition.

—14277 1=

pl -9 + 21--2 = @p1.

So we have proved by induction that for the functions that correspond to the rows
of some lane [ in zone k + 1 we will reach phase k + 2 of the definition. Let us assume
that F' conjectured its k + 1 hypotheses with probability

N -1
> = r_ 9 21—k
Pk+1 2 Gk+1 N3 72 +

at the end of phase k+1. There are exactly two rows in every lane of zone k+1 (since
we now consider only £ > 1) and we will look at both functions that correspond to
the rows of lane [ of zone k + 1. At phase k + 2 they both get values according to
the pairs of zone k£ + 2 in their respective rows and the rest of their values are defined
to be zero. We know that both functions belong to class U and so F' should identify
them with total probability p over all the computation paths. At least one of these
functions has at most pr41/2 (in terms of the probability over all the computation
paths) correct k + 1 results among those that F' conjectured at the end of phase
k +1 (which were the same for both functions). Let us assume that for this function
all the hypotheses of lower order are correct or will eventually change to correct ones.
In any case, it cannot have more than 1 — pi4; (in terms of probability over all the
computation paths) correct results in addition to those conjectured at the end of
phase k + 1. Suppose that these results suffice for F' to identify this function with
probability p. Then:

1 —pry1 +Pe41/22p > P,
1- pk+1/2 > p,’

1 —q1/2>p,
N-1 _
ﬂ<1——ﬁ—ﬂ+1—2ﬁ

N

pl+ pl<2—2—k)
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2N -1
2N
, _ 2N(1—27%1)
2N-1 ~°
. 2H(n 4 1)(1 —27F1)
P< 9N —1 ’
< 2Ml(n+1)—(n+1)
2N -1 ’
2N—-(n+1)
oN—1 ¥
But p’ > pg, so this is a contradiction to our assumption that strategy F identifies

class U with probability p > p} and at most £ mind changes and the theorem is
proved. ]

pl < 1— 2—]6—-1’

/

p <
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5 Conclusions

The results obtained in this work are summarized in Figure 1. At first we hoped to
prove the generalization of theorem 3 in [1] for the critical probabilities in Figure 1.
However, the recent work of Daley and Kalyanasundaram [3] shows that this is not

possible. In particular, they prove the following theorem that does generalize theorem
3 of [1].

!Department of Computer Science, Yale University
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Theorem (Daley and Kalyanasundaram(3])

. k+2_ n k+2__ n
a) For all integers n >0, k > 0, EXk(%H.g—_g)n%) C EXA%%%%&%%);

b) For all integers n > 0, k > 0, zf%’:—:}g%%—i—} <p< %’,:—z:%%, then
EXk(p) C EXk( (2k+2—3 n+1 )

282 22)nt1

Note that the critical probabilities for 0 mind changes in this theorem are the
same as in Figure 1 and that all of the critical probabilities for £ > 1 mind changes

. . . (2F+2-3)41 (2%¥+2-3)2+1 (2F+2-3)3+1 (2%+2-3) .
in this theorem (i.e., e 2k+2—2)2+1 ) SFFEgjatio 0 T SRy ) are contained

between the two critical probabilities 3;;2—7 and —I,:i—g:f for £ > 1 mind changes in

Figure 1. This suggests that quite possibly the situation is more complicated than
one might first think.
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