Abstract: We survey numerical techniques for solving the nonlinear and linear
systems arising from applying continuation methods to tracing solution manifolds of
parameterized nonlinear systems of the form G(u,\) = 0. We concentrate on large and sparse
problems, e.g. discretizations of partial differential equations, for which this part of the
computation dominates the overall cost. The basic issue is a tradeoff of the exploitation of the
sparsity structure of the Jacobian G and the numerical treatment of its singularity. Among the
techniques to be discussed are: Newton and quasi-Newton methods, low rank correction methods,
implicit deflation techniques, Krylov subspace iterative methods and multi-grid methods.
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1 Introduction
In this paper, we are concerned with the numerical solution of parameterized
nonlinear systems of the form

G(U,X) =0, (1)

where u € R", A € R™ and G: R™ x R™ — R". Such systems arise in many problems in scientific
computing. In the modelling of nonlinear physical phenomena, u may correspond to a field
variable and \ to a set of physical parameters. Another source of such parameterized systems is
the class of homotopy continuation methods [32] for improving the global convergence of locally
convergent methods (e.g. Newton's method) for solving nonlinear sytems and fixed point
problems. In these homotopy techniques, one transforms a nonlinear system F(u) == 0 by a
homotopy, e.g. G(u,\) = (1-A)(u-ug) + AF(u) == 0, so that one starts from the known solution
u, at X = 0 and trace the solution curve of G(u,A) until A = 1 to obtain the solution of F(u) =
0.

In general, the equation G(u,\) = 0 defines a m-dimensional manifold in R®**™. Very
often, in addition to obtaining the solution u at a few selected parameter values, more physical
insight can often be gained by knowing some general features of the solution manifold as a result
of varying the parameters. A continuation procedure can generally be defined as a method for
tracing parts of the solution manifold [2, 48, 63, 73]. The design of such a procedure would be
straightforward if the solution manifold can be parameterized by the naturally occuring
parameters \. However, this cannot always be done because the solution manifold may contain
singular points where the Jacobian G _ is singular and where this parameterization breaks down.
Most continuation methods overcome this problem by using a different parameterization of the
solution manifold implicitly defined by an additional set of equations

N(w,\) =0, (2)

where N: R x R™ — R™, so that a solution (u,\) of (1) is always a regular solution of the
coupled system (1) and (2), even at points where G, is singular. Conventional methods can then
be used to solve this coupled system, e.g. Newton’s method, in a predictor-corrector fashion in
which a nearby computed solution (uo,)\o) is used to generate an initial guess.

In this paper, we shall concentrate on large and sparse problems, for example, where
G{u,\) may represent the discretization of nonlinear partial differential equations. For these
problems, the solution of the coupled nonlinear system (1) and (2) constitutes the major
computational cost of the continuation procedure. It is therefore important to exploit sparsity
and structures in G (or G ) so as to increase the computational efficiency. This can be achieved
by any algorithm for solving (1) and (2) each step of which involves solving a subproblem
involving G (or G ) with X fized. However, this approach conflicts with the desire to avoid
dealing with the possible singularity of G, which was the reason for introducing the new
parameterization in the first place. Therein lies the basic issue: how does one find a way to
exploit the structures in G without running into numerical problems with the singularity of G !

This basic conflict not only occurs in the basic continuation procedure, but also in
many related algorithms. For example, many types of singular points of the soluticn manifold,
such as turning points, bifurcation points and cusp points, can be characterized as regular
solutions to coupled systems of the form of (1) and (2) [1, 8, 44, 51, 53, 55, 57, 60, 62, 67, 68] and
consequently computational algorithms derived from this approach must deal with the same
conflict. Many techniques to be discussed here have straightforward applications to these
problems as well.



We note that it is possible to avoid dealing with such singularities if one stays away
from singular points of the solution manifold. It then becomes possible to use G‘.u'l explicitly in a
computational algorithm and exploit the structures in G . Many large problems using
continuation methods have been solved using this approach [19, 48, 50, 71] and we shall not
elaborate on them in this paper. We feel that the regularization of the problem by introducing
the N-equation presupposes the necessity of dealing with possible singularities of G and thus it is
desirable to have computational procedures that automatically handle such singularities.
Moreover, such a capability becomes indispensable if one is interested in computing the singular
points themselves, such as locating turning points and bifurcation points and following folds in
the solution manifold [84]. It is one of the themes in this paper to show that the extra cost in
doing so is not too high for many numerical techniques suitable for solving large problems.

For ease of presentation, we shall restrict our discussions to the special case of m =1
(i.e. one parameter). This case is also the most common because in practice one often alternately
freezes all parameter values except one in tracing the solution manifold. We shall alsc only treat
the case where the dimension of the null space of G is at most one. All of the techniques to be
presented can be generalized to the higher dimensional cases in a straightforward manner.

2 Nonlinear Techniques
The coupled nonlinear system (1) and (2) can be considered as a single nonlinear
system in the variable z = (u,\), namely:

G(u,\) 0

I

F(z) = (3)

N(u,\) 0

Since we are seeking a regular solution of (3), a regular nonlinear iterative methods can be
applied. Most of the methods to be presented here are of this nature.

An obvious approach is to use Newton’s method or one of its its many variants
(chord, damped, discrete, truncated ...) [59], applied directly to the coupled system (3). At each
iteration, a linear system involving the Jacobian:

must be solved. If the parameterization N is chosen appropriately, the Jacobian M is
nonsingular [46] and thus Newton’s method has local quadratic convergence, even when G is
singular. The usual drawback of lack of global convergence for Newton’s method is not severe in
continuation methods because the continuation step size can be controlled to insure local
convergence. Newton’s method, however, does require evaluation and storage of the Jacobians of
G and N. For sparse problems, sparse estimation techniques can be used [20, 22, 61].

Georg [35] and Kearfott [45] have considered dense quasi-Newton methods [24] for
solving (3). No Jacobian is needed and only evaluations of G and N are required. Superlinear
rate of convergence is usually achievable. For problems where the Jacobians are not available or
costly to evaluate, this represents an advantage. However, since the Jacobian plays a central role
in bifurcation problems, it may be needed for other purposes anyway, for example, for branch
switching [46]. For large and sparse problems, sparse update of the approximate Jacobian is




needed and experience has shown that these do not perform as efficiently as Newton-like
methods [36]. The successful application of these methods to large continuation methods remains
to be proven.

A very interesting idea has been proposed in [37] and later used in [11]. The
nonlinear system (3) is transformed into a least squares minimization problem for the functional
G? + N2, and a preconditioned nonlinear conjugate gradient method [31, 36] is used for finding
the minimum. This technique is especially convenient in situations where a least squares method
is already used in a finite element variational setting for solving the system G = 0 with fixed X.
However, since the use of least squares approach squares the condition number of G, it is
extremely important for efficiency reasons to use a good preconditioning.

Lastly, nonlinear relaxation techniques can be attempted. For example, point
nonlinear SOR methods [59] can be applied. Another possibility is to use block nonlinear SOR by
relaxing u with the G equation and A with the N equation alternatingly. By design, these
methods exploit sparseness in G. However, straightforward application usually encounters
convergence difficulty because the Jacobian M is often not positive definite or diagonally
dominant. The point nonlinear SOR method, however, can be used as a smoother in a nonlinear
multi-grid method (see Section 4).

3 Linear Techniques

Among the nonlinear methods discussed in the last section, the class of Newton-like
methods is by far the most commonly used. It is the most general method and has fast local
convergence. The need to evaluate Jacobians is compensated by the central role the Jacobians
play in bifurcation problems. In the rest of the paper, we shall only deal with this class of
methods.

In each iteration of a Newton-like method, a linear system of the form

X A b X f
M = T = (4)
y ¢ d y g ,

needs to be solved, where the n by n matrix A ( = G_ ) is bordered by the vectors b and ¢ to
form a larger system of dimension (n+1) by (n+1). When A is large and sparse, one would like
to exploit the structures in A when solving this system. However, M does not necessarily inherit
desirable structures of A, such as bandedness, symmetry, positive definiteness and separability
(for fast direct solvers). It is thus natural to consider algorithms for solving (4) that do exploit
these structures in A. On the other hand, dealing with A directly necessarily leads to numerical
problems with its possible singularity. These two competing goals constitute the fundamental
issue that must be resolved by any practical algorithm. In this section, we shall discuss how some
commonly used linear algorithms for large problems can be modified to handle this problem.

3.1 The Deflated Block-Elimination Algorithm
An algorithm that fully exploits structures in A is the following block-elimination
algorithm (corresponding to block Gaussian Elimination on M):




Algorithm BE [46]

(1) Solve Av=b, (5)
Aw=Tf (8)

(2) Compute y=(g-clw)/(d-cTv).

(3) Compute x=w-yvV.

Note that only a solver for A is needed. This solver could use any method that is
appropriate for the particular problem, for example, sparse Gaussian Elimination, a fast direct
solver, an iterative method or a multi-grid method. The last two cases will be discussed in more
detail in later sections. In this section, we shall only consider methods based on Gaussian
Elimination.

In general, the work consists mainly of one factorization of A and two backsolves with
the LU factors of A. Moreover, for problems with many right hand sides (e.g. in chord-Newton
methods), the factorization needs to be computed only once. However, since we use Al
explicitly, we can expect problems when A is nearly singular [12]. Consider the following simple
example (n = 2):

110 1 2
0 € 1 1] =] 1+e
01 0 1 1 ;
where |e| is smaller than the machine epsilon of the computer, i.e. 1 + ¢ = 1 in floatmg point

arithmetic. In exact arithmetic, v = ( -1/¢, 1/e )T and w = (1-1/e, 1 + l/c )T. In floating
point arithmetic, w = ( -1/¢, 1 / e )L. Assumlng that this is the only round-off error committed,
Algorithm BE would givex = (0,0 ) which obviously has a large relative error.

In [12], deflation techniques are proposed for stabilizing Algorithm BE. Instead of
computing v and w directly from (5) and (6), numerically stable representations for them are
computed by working in subspaces orthogonal to approximate null vectors ¢ and ¢ of A. Based
on these deflated decompositions of v and w, stable variants of Algorithm BE are derived, one
version of which is:

Algorithm DBE: Deflated Block-Elimination Algorithm [12].

1. Compute an approximate normalized left singular vector ¢ of A.

2. Compute ¢ = 6 A'ly), where 6§ =1 / ||JAY]].

3. Compute ¢, = (¥Tb) and ¢ = (¥Ti).

4. Solve Avy = b - ¢, ¢ for vj. (v is represented as: v =v, + (c,/8)$ )

5. Solve Aw,; = - ¢; ¢ for w;. ( w is represented as: w = w, + (c;/6)¢ )

6. Compute h, =g - cde, h,=d- chd, hy = h,c, - hyep, by = (cT¢) ¢-6h, D =
(™) c, -

7. Compute y = h, / D and x = w, + (hy¢ - hv,) / D.
Note that only two solves with A is needed, exactly the same as in Algorithm BE. The major




overhead for performing the deflation is the computation of ¢ and one backsolve for ¢. The
vector ¢ can be computed with only one or two backsolves. One possibility is to use a few steps
of an inverse iteration [12, 13, 89]. Another algorithm that has been used in the literature is
based on computing a LU-factorization of A with a small n-th pivot [16, 47, 49]. Although the
usual pivoting strategies (partial and complete pivoting) [25] will exhibit such a LU-factorization
for most nearly singular matrices, it is well known that there are counter-examples to this
commonly assumed fallacy [16, 38, 74]. An algorithm that is guaranteed to produce such a
factorization is given in [16]. This extra work in computing ¢ and ¢ is compensated by the fact
that they can be reused for several continuation steps and are also useful for switching branch at
bifurcation points [46].

In [47, 49], a similar algorithm is independently proposed, but one that works only for
the case where A is exzactly singular. Errors occur if A is nearly but not exactly singular. On the
other hand, Algorithm DBE can be proven to be numerically stable [12] independent of the
singularity of A. Because of its robustness and low overhead, Algorithm DBE can be used at all
continuation steps without necessitating a check on the singularity of A.

3.2 Sparse Matrix Methods

If A is sparse, then so is M. Therefore a sparse matrix solver [26, 28, 29, 34] can be
used directly on M. However, even if A has a sparse LU factorization, M does not necessarily have
a factorization that is just as sparse. This is because if A is nearly singular then some pivoting
with the last row or column of M is needed for numerical stability when factoring M which may
adversely affect the fill-ins. This is especially severe if a pivot with the last column or row cccurs
early in the elimination process, as the following simple example shows:

X X X X .... X
x 0 «x X X
(a) .. m]. . o
0 0
X X ... X X X

Without pivoting, matrix (a) produces no fill-in, whereas pivoting with the (n+1,n+1)th element
gives matrix (b) which produces a complete fill-in.

Fortunately, there are situations where it can be shown that the last row or column of
M does not have to be pivoted until towards the end of the elimination process. This is true, for
example, ¢ f a pivoting strategy can be found to produce a sparse LU factorization of A with a
small n-th pivot. Using the same pivoting sequence for factoring M, possibly with the last row
and column of M appropriately scaled, we obtain at the last stage of the elimination process, a
coefficient matrix of the form:

[= 2= I end
w o

u
€
q ,

where U is sparse and ¢ is the small pivot. Using complete or partial pivoting for the lower right
hand 2 by 2 submatrix now will handle the singularity.




3.3 Banded Matrices

Discretizations of differential equations often give rise to banded rather than generally
sparse matrices. If a banded LU factorization with a small n-th pivot can be found, then the
method outlined in Section 3.2 can be used. This is possible for some two point boundary value
problems where the parameter A occurs in the boundary conditions [49].

For a general banded matrix, Rheinboldt [65] proposed the following method. The
matrix M is splitted according to M = S + R, where S has the same form as M except the
vectors b and ¢ are both replaced by the k-th unit vector and R is a rank 2 matrix. The index k
is chosen so that S is as well-conditioned as possible. Using the Sherman-Morrison-Woodbury
formula [42], for every system in M, one can equivalently solve three systems in S. By taking
advantage of the special form of S, it can be shown that a system in S can be reduced to one for
A with sts k-th row and column deleted, which preserves bandedness. Since it requires working
with the (possibly complicated) storage structures of A, this algorithm is not as modular as
Algorithm DBE. Moreover, generally one more backsolve is required.

3.4 Iterative methods

For many large and sparse problems, e.g. multi-dimensional PDEs, iterative methods
may become competitive with direct methods, both in terms of storage and computational time.
One of the most successful iterative methods is the class of Krylov subspace iterative
methods [3, 18, 21, 27, 30, 40, 41, 43, 52, 66, 72, 75]. In addition to sparseness, the symmetry of
the coefficient matrix often plays a critical role in both the efficiency and the convergence of
these iterative methods. In general, efficient methods and rather complete thecries exist for
symmetric and positive definite problems, whereas the situation for indefinite and nonsymmetric
problems are not as well-understood. We shall assume in this section only that A is symmetric.

Although M inherits the sparseness properties of A, M may be nonsymmetric while A
is symmetric. Therefore the obvious approach of applying a nonsymmetric iterative method
directly to (4) may fail to exploit the symmetry of A.In [17], some alternative algorithms are
proposed. One approach that does exploit the symmetry in A is to use Algorithm BE. However,
two linear systems of dimension n have to be solved for each system involving M. Mereover,
deflation techniques may have to be used to handle the singularity of A. In principle, deflation
techniques for conjugate gradient type methods can be obtained by applying the techniques
developed in [13] to the tridiagonal factor produced by the underlying Lanczos process. This is
currently under development. Another method that exploits symmetry of A is a low rank
correction method. For example, if we split Mas M =S + uvT, where S has the same form as
M except that the vector b is set to be equal to c, then the solution of (4) can easily be obtained
via the Sherman-Morrison formula [42] by solving two systems with the symmetric and
nonsingular matrix S. Mittelman [54] has even considered choosing the parametrization N in the
continuation method so that N = G, to produce a symmetric M. Finally, one can apply a
symmetric positive definite method to the normal equations derived from the M-system.
However, it is well-known that the convergence rate will suffer. In short, the alternatives are
solving one nonsymmetric system or two symmetric systems or one symmetric positive definite ill-
conditioned system.

Another issue is the choice of a good preconditioning, which is often essential for the
successful application of Krylov subspace based iterative methods. Assume that a good
preconditioning is available for the matrix A in the form of a symmetric matrix B such that B!
~ A7l and such that the matrix-vector product B lx is easy to compute. The use of



preconditioning in Algorithm BE is straightforward, because the preconditioning B! can be
applied directly to the systems with A as coefficient matrix. Next, consider the matrices M and
S. One way to obtain a preconditioning is to first express the exact inverse in terms of Aland
then replace A~! by BL. Thus, for example, we have

ol A oo -
J oo
where
y=cTAlb-d,u=Ale/y,v=Alb/y. (8)

Replacing A™! by B! in (7) and (8), one obtains the following preconditioner for M:

8 lz-b5") ¥
P, = (9)

where the "hatted” quantities are defined by analogy to (8), but with A7l replaced by Bl In
addition to P, we can use the following simpler preconditioning:

In [17], numerical experiments were carried out to compare some of the above
techniques. We applied them to the model nonlinear elliptic problem G(u,\) = Au + Ae" =
with zero Dirichlet boundary condition on a unit square. This problem has a simple turning point.
For the preconditioning, we use B = A. We briefly summarize the results here. It was found
that the use of a good preconditioner is extremely important. In particular the methods that do
not use preconditioning are slow and sensitive to nonsymmetry near the turning point whereas
symmetry is not as important for preconditioned systems. If a good preconditioning is available,
it seems best to work directly with the nonsymmetric M than with the symmetric systems. In
fact, the method P,M gives the best results in execution time. As expected, the normal equations
approach is not competntlve

Lastly, we point out that a Newton-Krylov subspace method can be implemented by
directional differencing techniques without computing or storing the Jacobian matrix [14, 33, 58]
and can be used in conjunction with inexact Newton algorithms [23].

4 Multi-Grid Methods

If G is a discretization of a differential or integral operator, then one may consider
using a multi-grid (MG) methed [10] for solving (3). For this, we need a hierarchy of nested grids
on which the discretizations of the operators G, N and their Jacobians are defined. In addition,
we need a smoother on each grid, for example, a point relaxation method or a conjugate gradient
method. For the MG method to work, the operators and smoothers on the grids must be
appropriately chosen to work together in a concerted manner. Although this is rather standard



procedure for a large class of differential systems, very little of the theory and literature on MG is
on solving coupled systems. It must be noted that the operator N may have very different
smoothing and approximation properties on the hierarchy of grids than G and thus it is not
obvious that MG can be made to work as efficiently on the coupled system (linear or nonlinear)
directly as on G itself.

There are at least two ways in which multi-grid methods can be applied: (1) solve the
linear systems that arise in Newton's method, or (2) solve the coupled nonlinear system directly.
Consider case (1) first. The most straightforward approach is to use MG as the black box solver
for A in Algorithm BE. However, the singularity of A again causes problems. It was first
reported in [15] that MG diverges when A is nearly singular. This divergence is not caused by
round-off errors but by the corrections from a coarse grid on which A is nearly singular. As a
result of this singularity, the magnitude of the component of the correction in the null vector ¢
direction could be completely wrong. This could happen even if A on the finest grid is reasonably
nonsingular. Fortunately, deflation techniques together with Algorithm DBE can be used to
overcome this problem [6, 7]. The basic idea is to compute the deflated decompositions of the
vectors v and w in Algorithm DBE by MG methods. Similar in spirit to algorithms proposed in

[15], approximate null vectors ¢ and ¢ are computed on all grids and the iterates on all grids
except the finest are purged of these components after smoothing but before a transfer to another
grid. The ¢ component on the finest grid is accumulated by a projection process. Again the
overhead is low and the algorithm can be used without a check on the singularity of A. Another
natural idea for handling the singularity of A is to add a small diagonal shift to M to make A
nonsingular [5]. However, besides losing quadratic convergence in the Newton process, the shift
has to be chosen carefully and thus is not as easy to implement robustly as the deflation
techniques.

In addition to being used on A in conjunction with Algorithm BE, with modifications
standard MG techniques can be applied to M directly. Such an idea was proposed by Mittelmann
and Weber [56]. On all the grids except the coarsest, smoothing is done only to x using the Ax +
yb = f equation with a fixed value for y. On the coarsest grid, a direct solver is used to solve the
M-system with pivoting and y is updated there.

Now consider case (2). It is kuown that a version of MG, called the Full
Approximation Scheme [10] (FAS), can be applied directly to a nonlinear system without first
applying a linearization. Hackbusch [39] proposed a technique similar to Mittelmann and
Weber’s [56] except that a FAS is used on G(u,\) to smooth u on all the grids except the coarsest
and \ is updated only on the coarsest grid. Stuben and Trottenberg [70], based on an idea of
Brandt, proposed a slightly different algorithm in which both u and M\ are updated on all grids.
After a FAS smoothing step on a particular grid, u is scaled such that the constraint equation N
is satisfied with the current X\, after which X is updated by "averaging” the G equations on that
grid. Recently, Bolstad and Keller [9] have combined the FAS with the rextrapolation
technique [10] for solving similar problems.

The above techniques of applying MG methods to continuation algorithms compute
the solution (u,\) on the finest grid as a solution of the coupled nonlinear system (3). This
presupposes that a fine grid solution is needed on all points on a solution branch. Very often it
suffices to compute the qualitative behaviour of the solution manifold, perhaps on a coarser grid,
and a fine grid solution at a few selected points. If the main features of the solution manifold
can be captured by a coarse grid, then a direct method based on Gaussian Elimination can be
used on it without incurring a large computational effort. At a point where high accuracy is
desired, a MG algorithm can be used to refine the solution. This idea is implemented in the MG-



Continuation program PLTMGC [6]. This package can handle a general class of self-adjoint
mildly nonlinear elliptic problems with a parameter dependence on a general two dimensional
domain, and can compute target values in A and ||u|| with an adaptive stepping algorithm, detect
and locate simple turning points and bifurcation points and switch branch at simple bifurcation
points. It is based on an earlier package PLTMG [4] and uses Rayleigh-Ritz Galerkin techniques
on piecewise linear triangular elements with adaptive mesh refinements. For refining the coarse
grid solution using MG, MG deflation techniques [7] and Algorithm DBE are applied to ensure
numerical stability.




1]
2]
8]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

10

References

J.P. Abbott. An Efficient Algorithm for the Determination of Certain Bifurcation Points.
Journal of Computational and Applied Mathematics 4 :19 - 27, 1978.

E. Allgower and K. Georg. Simplicial and Continuation Methods for Approximating Fixed
Points and Solutions to Systems of Equations. SIAM Review 22(1):28 - 85, 1980.

O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems
of linear equations. Lin. Alg. Appl. 29:1-16, 1980.

R.E. Bank. PLTMG User’s Guide, June, 1981 version. Technical Report, Dept. of
Mathematics, University of Calif. at San Diego, 1¢32.

Randolph E. Bank. Analysis of a Multilevel Inverse Iteration Procedure for Eigenvalue
Problems. SIAM J. Numer. Anal. 19:886-898, 1982.

R.E. Bank and T.F. Chan. PLTMGC: A Multigrid-Continuation Program for
Parameterszed Nonlinear Elliptic Systems. Technical Report 261, Dept. of Computer
Science, Yale Univeristy, 1983.

R E. Bank and T. F. Chan. Multi-Grid Deflation. 1983. In preparation.

W. Beyn. Defining Equations for Singular Soluticns and Numerical Applications. In
T. Kupper, H. Mittelmann and H. Weber, Editors, Numerical Methods for Bifurcation
Problems, Birkhauser Verlag, Basel, 1984 .

J. Bolstad and H.B. Keller. A Mulii-Grid Contsnuation Method for Elliptic Problems
with Turning Points. 1983. Paper presented at the Siam Fall Meeting, Norfolk, Virginia.

A. Brandt. Multi-level Adaptive Solution to Boundary Value Problems. Math. Comp.
31:333-390, 1977.

M.O. Bristeau, R. Glowinski, J. Perriaux, G. Poirier. Non unique sclutions of the transonic
equation by arc length continuation techniques and finite element least squares methods. In
Proceedings of 5th international con ference on finite elements and flow problems, Austin,
Tezas, , Jan. 23-26, 1984 .

T.F. Chan. Deflation Techniques and Block-Elimination Algorithms for Solving Bordered
Singular Systems. Siam J. Sei. Stat. Comp. 5 (1 ) March 1984.

T.F. Chan. Deflated Decomposition of Solutions of Nearly Singular Systems. Technical
Report 225, Computer Science Department, Yale Univ., 1982. To appear in Siam
J. Numer. Anal., 1984.

T.F. Chan and Ken Jackson. Nonlinearly Preconditioned Krylov Subspace Methods for
Discrete Newton Algorithms. Technical Report 259, Dept. of Computer Science, Yale
Univ., 1983. To appear in Siam J. Sci. Stat. Comp., 1984.

T.F. Chan and H.B. Keller. Arclength Continuation and Multi-Grid Techriques for
Nonlinear Eigenvalue Preblems. SIAM J. Ses. Stat. Comp. 3(2):173-194, June 1982.

T.F. Chan. On the Existence and Computation of LU-factorizations with Small Pivots.
Math. Comp. 42 (166 ) April 1984.

T.F. Chan and Y. Saad. [Iierative Methods for Solving Bordered Systems with
Applications to Continuation Methods. Technical Report 235, Computer Science Dept.,
Yale University, 1982. To appear in Siam J. Sci. Stat. Comp., 1984.

R. Chandra. Conjugate gradient methods for partial ds fferential equations. Ph.D. Thesis,
Dept. of Computer Science, Yale Univ., 1978.



[19]
[20]

[21]

[29]

0]
1]
32
33
34
5]
50

[37]

11

B. Chen and P. Saffman. Numerical Evidence for the Existence of New Types of Gravity
Waves of Permanent Form on Deep Water. Studies sn Applied Math. 62:1-21, 1980.

T.F. Coleman and J.J. More. Estimation of Sparse Jacobian Matrices and Graph Coloring
Problems. Stam J. Numer. Anal. 20:187-209, 1983.

P. Concus, G.H. Golub and Dianne P. O’leary. A Generalized Conjugate Gradient Method
for the Numerical Solution of Elliptic Partial Differential Equations . In J.R. Bunch and
D.J. Rose, Editor, Proceedings of the Symposium on Sparse Matriz Computations,
Academic Press, New York, 1975, pp. 309-332.

A.R. Curtis, M.J.D. Powell and J.K. Reid. On the Estimation of Sparse Jacobian Matrices.
J. Inst. Maths. Applics. 13:117-119, 1974.

R.S. Dembo, S. Eisenstat and T. Steihaug. Inexact Newton Methods. SIAM J. Numer.
Anal. 18(2):400-408, 1982.

J.E. Dennis and J.J. More. Quasi-Newton Methods, Motivation and Theory. SIAM
Review 19:46 - 89, 1977.

J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart. LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

I. Duff. A Survey of Sparse Matrix Research. Proc. IEEE 65:500-535, 1977.

Stanley C. Eisenstat, Howard C. Elman and Martin H. Schultz. Variational iterative
methods for nonsymmetric systems of linear equations. SIAM Journal on Numerical
Analysis 20:345-357, 1983.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman. Yale sparse matriz package
I: The symmetric codes. Technical Report 112, Dept. of Computer Science, Yale Univ.,
1977.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman. Yale sparse matriz package
II: The nonsymmetric codes. Technical Report 114, Dept. of Computer Science, Yale
Univ., 1977.

Howard C. Elman. Iterative Methods for Large, Sparse, Nonsymmetric Systems of
Linear Equations. Ph.D. Thesis, Yale University, 1982. Techreport # 229.

R. Fletcher and C.M. Reeves. Function Minimization by Conjugate Gradients. Comput. J.
7:149-154, 1964.

C.B. Garcia and W.I. Zangwill. Pathways to Solutions, Fized Points and Fquilibria.
Prentice-Hall, Englewood Cliffs, N.J., 1981.

W. C. Gear and Y. Saad. Iterative Solution of Linear Equations in ODE Codes. Siam
J. Sci. Stat. Comp. 4(4) December 1983.

A. George and J.W. Liu. Computer Solution of Large Sparse Posstive Definite Systems.
Prentice Hall, New Jersey, USA, 1981.

K. Georg. On Tracing an Implicitly Defined Curve by Quasi-Newton Steps and Calculating
Bifurcation by Local Perturbations. Siam J. Sci. Stat. Comp. 2(1) March 1981.

P.E. Gill, W. Mwrray and M. Wright. Practical Optimszation. Academic Press, New
York, 1981.

R. Glowinski, H.B. Keller and L. Reinhart. Continuation-Conjugate Gradient Methods for
the Least Squares Solutson of Nonlinear Boundary VAlue Problems. Technical Report,
Institut National de Recherche en Informatique et en Automatique, 1982.




[38]

[39]

0]
1)
l42)
&

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]
[63]
[54]

[55]

12

G.H. Golub, G.W. Stewart and V. Klema. Rank Degeneracy and Least Squares Problems.
Technical Report STAN-CS-76-559, Computer Science Dept., Stanford University, 1976.

W. Hackbusch. Multi-Grid Solution of Continuation Problems. In R. Ansorge, T. Meis and
W. Torning, Editors, Iterative Solution of Nonlinear Systems, Springer-Verlag, Berlin,
1982 .

Louis A. Hageman and David M. Young. Applied Iterative Methods. Academic Press, New
York, 1981.

M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradient for solving Linear Systems.
Journal of Research of the National Bureau of Standards 49:409-436, 1952.

A.S. Householder. Theory of Matrices in Numertical Analysis. Blaisdell Pub. Co.,
Johnson, Colo., 1964.

Kang Chang Jea. Generalized Conjugate Gradient Acceleration of Iterative Methods.
Ph.D. Thesis, University of Texas at Austin, 1982.

A. Jepson and A. Spence. Singular Points and Their Computations. In T. Kupper,
H. Mittelmann and H. Weber, Editors, Numerical Methods for Bifurcation Problems,
Birkhauser Verlag, Basel, 1984 .

R.B. Kearfott. A Derivative-Free Arc Continuation Method and a Bifurcation Technique.
In E.L. Allgower, K. Glashoff and H.-O. Peitgen, Editors, Numerical Solution of
Nonlinear Equations, Springer Verlag, New York, 1981 .

H.B.Keller. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In
P. Rabinowitz, Editor, Applications of Bi furcation Theory, Academic Press, New York,
1977, pp. 359-384.

H.B. Keller. Practical Procedures in Path Following Near Limit Points. 1982. In
Computing Methods in Applied Sciences and Engineering, eds. Glowinski and Lions,
North-Holland Pubs. Inc.

H.B. Keller and R. Meyer-Spache. Numerical Study of Taylor-Vortex Flows Between
Rotating Cylinders. J. Comp. Phys. 35(1):100-109, 1980.

H.B. Keller. The Bordering Algorithm and Path Following Near Singular Points of Higher
Nullity. SIAM J. Sci. and Stat. Comp. 4(4) 1983.

H.B. Keller and R. Schreiber. Accurate Solutions for the Driven Cavity. J. Comp. Phys.
49(2):310-333, 1983.

M. Kubicek ad M. Holodniok. Numerical Determination of Bifurcation Points in Steady
State and Periodic Solutions - Numerical Algorithms and Examples. In T. Kupper,
H. Mittelmann and H. Weber, Editors, Numerical Methods for Bifurcation Problems,
Birkhauser Verlag, Basel, 1984 .

Thomas A. Manteuffel. The Tchebychev Iteration for Nonsymmetric Linear Systems.
Numer. Math. 28:307-327, 1977.

R.G. Melhem and W.C. Rheinboldt. A Comparison of Methods for Determining Turning
Points of Nonlinear Equations. Computing 29:201-226, 1932.

H.D. Mittelmann. An Efficient Algorithm for Bifurcation Problems of Variational
Inequalities. Math. Comp. 41:473-485, 1983.

H.D. Mittelmann and H. Weber, Editors. Bifurcation Problems and thesr Numerical
Solution. Birkhauser, Basel, 1980.



[56]

157)
/58]
/59)
[60]
f61)

f62)

/63]
jo4)
/65)
(o8]

[67]

[68]
[69]

[70]

[71]

[72]

[73]
[74]

i3

H.D. Mittelmann and H. Weber. Multi-Grid Solution of Bs furcation Problems. Technical
Report 65, Abteiling Mathematik, Universitat Dortmund, 1983. To appear in Siam J. Sci.
Stat. Comp.

G. Moore and A. Spence. The Calculation of Turning Points of Nonlinear Equations.
SIAM J. Numer. Anal. 17:567-576, 1980.

Dianne P. O'Leary. A Discrete Newton Algorithm for Minimizing a Function of Many
Variables. Math. Progr. 23:20 - 33, 1982.

J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, 1970.

G. Ponisch and H. Schwetlick. Computing Turning Points of Curves Implicitly Defined by
by Nonlinear Equations Depending on a Parameter. Computing 26:107-121, 1981.

M.J.D. Powell and Ph. L. Toint. On the Estimation of Sparse Hessian Matrices. SIAM
J. Numer. Anal. 16:1060-1073, 1979.

G.W. Reddien. Computation of Turning and Bifurcation Points for Two Point Boundary
Value Problems. In T. Kupper, H. Mittelmann and H. Weber, Editors, Numerical Methods
for Bs furcation Problems, Birkhauser Verlag, Basel, 1984 .

W.C. Rheinboldt and J.V.Burkardt. A Locally Parameterized Continuation Process. ACM
Trans. Math. Soft. 9(2):215-235, June 1983.

W.C. Rheinboldt. Computation of Critical Boundaries on Equilibrium Manifolds. Stam
J. Numer. Anal. 19:653-669, 1982.

W.C. Rheinboldt. Numerical Analysis of Continuation Methods for Nonlinear Structural
Problems. Computers and Structures 13:103-113, 1981.

Y. Saad. Krylov Subspace Methods for Solving Large Unsymmetric Linear Systems. Math.
Comp. 37:105-126, 1981.

H. Schwetlick. Algorithms for Finite Dimensional Turning Point Problems from Viewpoint
to Relationships with Constrained Optimization Methods. In T. Kupper, H. Mittelmann
and H. Weber, Editors, Numerscal Methods for Bs furcation Problems, Birkhauser Verlag,
Basel, 1084 .

R. Seydel. Numerical Computation of Branch Points in Nonlinear Equations. Numer.
Math. 33:339-352, 1979.

G.W. Stewart. On the Implicit Deflation of Nearly Singular Systems of Linear Equations.
SIAM J. Sci. Stat. Comp. 2(2):136-140, 1981.

K. Stuben and U. Trottenberg. Multi-Grid Methods: Fundamental Algorithms, Model
Problem Analysis and Applications. In W. Hackbusch adn U. Trottenberg, Editors,
Multigrid Methods, Springer Verlag, Berlin, 1982 .

K.K. Tung, T.F. Chan and T. Kubota. Large Amplitude Internal Waves of Permanent
Form. Studies in Applied Math. 66:1-44, February 1982.

P.K.W. Vinsome. ORTHOMIN, an iterative method for solving sparse sets of simultaneous
linear equations. In Proceedings of the Fourth Symposium on Resevoir Simulation,
Society of Petroleum Engineers of AIME, , 1976 , pp. 149-159.

H. Wacker, Editors. Continuation Methods. Academic Press, New York, 1978.

J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, London,
1965.



14

[75] David M. Young and Kang C.Jea. Generalized conjugate gradient acceleration of
nonsymmetrizable iterative methods. Linear Algebra and Its Applications 34:159-194,
1980.




