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ON THE DISCREPANCY OF JITTERED SAMPLING
FLORIAN PAUSINGER AND STEFAN STEINERBERGER

ABSTRACT. We study the discrepancy of jittered sampling: a jittered sampling set P C [0, 1]¢
is generated for fixed m € N by partitioning [0, 1]d into m? axis aligned cubes of equal measure
and placing a random point inside each of the N = m® cubes. We prove that, for N sufficiently
large, .

L4 <Epy(p) < YEI?

10 y2+3a Nzt3a
where the upper bound with an unspecified constant Cy was proven earlier by Beck. Our proof
makes crucial use of the sharp Dvoretzky-Kiefer-Wolfowitz inequality and a suitably taylored
Bernstein inequality; we have reasons to believe that the upper bound has the sharp scaling
in N. Additional heuristics suggest that jittered sampling should be able to unconditionally
improve known bounds on the inverse of the star-discrepancy in the regime N > d¢.

)

1. INTRODUCTION

1.1. Introduction. Given a set X = {z1,...,2x} of N points in [0,1]? we define, as usual, the
star discrepancy
" #{i:x; € R
Dy(x)= sp [FAELER g
RC[0,1]¢

where the supremum ranges over all rectangles having all sides parallel to the axes and anchored
in the origin. It is easy to see that a regular grid of N points has discrepancy D3 ~ N —1/d 1y
contrast, if we take X to be a collection of N independently and uniformly distributed random
variables, then it is known (see [17]) that D% ~ N~1/2 with some nonzero probability. Jittered
sampling combines the best of both worlds by partitioning [0, 1]¢ into m? axis aligned cubes of
equal measure and placing a random point inside each of the N = m¢ cubes; see Figure 1.

FIGURE 1. The regular grid and a point set obtained by jittered sampling.

This idea seems to have first been explored in 1981 by Bellhouse [3], where he shows ’that a
stratified sampling design, although less convenient to implement than systematic sampling, is
usually more efficient.” The point sets make a reappearance in computer graphics in a 1984 paper
of Cook, Porter & Carpenter [8] by the name of jittered sampling. The bound
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was proven by Beck [4] (see also the book Beck & Chen [5] or the exposition in Chazelle [6]).
Beck actually derives the result for the more general notion of discrepancy w.r.t. to rotations of
a convex set; the proof does not give any information about the constant or how it grows as a
function of the dimension. There exist deterministic lower bounds valid for all sets of points (see
Chen & Travaglini [7]). We are exclusively concerned with the behavior of random points.

1.2. Main result. We restrict ourselves to the notion of star-discrepancy, where our contribution
is a proof yielding explicit control on the constant as a function of dimension. We hope that our
paper will spark interest in jittered sampling as a possible avenue towards improved bounds for
the inverse of the star-discrepancy.

Theorem 1.1. For a random set P C [0, 1]d with N = m® points obtained from jittered sampling,
we have, for N sufficiently large,

1 d d(log N2

———1 <EDy(P) < \/>(17g1)

10 Nz2t2a Nztza
We have reasons to believe that the upper bound is sharp as N — co up to a constant depending
on d. These considerations are detailed at the end of the paper where we comment on a possible
approach to improve the lower bound and carry out corresponding back-of-the-envelope estimates.
We believe our main contribution is

(1) to show that jittered sampling is amenable to being analyzed at a very fine level;

(2) to point out that jittered sampling might be a natural way to establish improved bounds
on the inverse star discrepancy; and, in that spirit,

(3) to ask whether the upper bound really requires N to be large (we believe not).

Obviously we expect the discrepancy of jittered sampling to be smaller on average than the av-
erage discrepancy of the same number of purely random points (our result establishes a strong
quantitative form of this intuition for IV sufficiently large; some numerical experiments for N small
can be found in Section 6).

1.3. Relationship with prior results. Let us compare our result with the celebrated result of
Heinrich, Novak, Wasilkowski & Wozniakowski [17] who showed the existence of a set of N points
in [0,1]¢ with

d

Dn(P)<c N for some universal constant c.

Aistleitner [1], using a result of Gnewuch [16], has shown that we can take ¢ = 10 and Doerr [11] has
shown this to the correct order of magnitude EDy(P) 2 /d/N. Furthermore, we refer to papers
of Gnewuch [15] and Hinrichs [18] (see also [30]) as well as the recent comprehensive monographs
of Novak & Wozniakowski [26, 27, 28]. If the upper bound were to hold unconditionally for all
N (possibly with a different absolute constant ¢ in front), then this would improve the known
estimate (see [17]) on the inverse of the star discrepancy

log N
disc, (n,d) < c 4 to  disci (n,d) < c\/d min {1, j\%l}

N N

This new bound improves on the old one if N is slightly bigger than d? (’slightly bigger’ being
understood on a logarithmic scale). Even though N ~ d? is fairly large, we do not know of any
better constructions in that regime (Section 6 contains a heuristic comparison with upper bounds
on the discrepancy of Hammersley point sets). There exists a natural reason why one would expect
jittered sampling to suddenly gain in effectiveness around N ~ d?, this is also detailed in Section
6. Section 6 furthermore contains a heuristic argument suggesting

S d+ (1ogN)5.
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1.4. Organization of the paper. We start by giving a proof of the result in two dimensions in
Section 2. The argument introduces the Dvoretzky-Kiefer-Wolfowitz inequality as well as the cru-
cial geometric partition and should be helpful in understanding the higher-dimensional argument.
Section 3 gives a precise definition of the geometric partition and contains our adapted Bernstein
inequality. Section 4 and Section 5 give a proof of the upper and lower bound, respectively, and
Section 6 contains additional remarks and comments.

2. THE PROOF IN TWO DIMENSIONS

We start by giving a simplified proof of the two-dimensional case. This case is substantially easier
than the higher-dimensional case (additionally, we are not tracking the constants), but it conveys
the main structure of the argument. We will not yet employ the adapted Bernstein inequality,
hence the constant in the result is actually worse (2 instead of v/2) than what is achieved by the
main result.

Proof. We denote the discrepancy function by

o= [HEPOLE 0

Following the definition of our point sets, we see that computing the discrepancy function reduces
to understanding two strips, see Figure 2, because for all cubes fully contained inside [0,x] the
contribution to the discrepancy is 0 by construction. The idea of arranging points in such a way
that the computation of discrepancy reduces to sets other than full hyperrectangles is certainly
not new and started the classical theory of (¢, s)—sequences (see Niederreiter [25]).

__________ F-®--—-—------

FIGURE 2. Strips of interest for a particular point (z,y).

We are interested in the pair (z,y) yielding the largest absolute value, i.e. the discrepancy of the
point set. This can be rewritten as

sup |[f(z,y)] = max  sup |f(z,y)|-
0<z,y<1 1<4,j<m i—1 i

Consider i, j to be fixed from now on. As Figure 2 shows, it suffices to compute discrepancy arising
from the two strips and the strips are almost independent from each other (and become fully
independent after removing one point). We introduce two local discrepancy functions (associated
to the two strips). Note that z,y are again numbers between 0 and 1 now parametrizing the short
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side of the strip.

'#{1<k<N;0<xk<i—mlAJ F<y <Y

m m

1P| m2 Y

f1Gi, 4, y) = fi(y)

b

f2(iajv l’) = f2($)

#{1§k§N:%gxk§i*}%A0§yk§%}_j—1x
I m? |

First of all, we note that by construction there is precisely one point contained in [%, #] X
[Z=1) 1], such that

m ’m

1
sup  |f(z,y)| = sup [fi(y)l = sup [fa(2)]| < -
i=loocid 0<y<1 0<e<1

i—1
o Sy<

o

Iz

3

For fixed i,j the functions fi, fo measure the maximal deviation from the (uniform) limiting
distribution (or, put differently, the discrepancy of the projection of the point sets within each
strip). Recall the Dvoretzky-Kiefer-Wolfowitz inequality [13] (with the sharp constant due to
Massart [24]): if 21, 29,...,2; are independently and uniformly distributed random variables in
[0, 1], then

#{1<l<k:0<z <z}
k

—z

2
IP’( sup > 5) < Qe 2ke”
0<2<1

The result is purely one-dimensional and sharp (the tail bound corresponds to the first term of the
Kolmogorov distribution). We use this inequality to bound f; and f. Note that the computation
of fi corresponds to k = (i —1) and then rescaling the domain by a factor of (i —1)/m?. Therefore

. |
P( sup |f1(y)] > i 5) < 9e—2(i=1)<?
0<y<1 m

or, by setting § = (( — 1)/m?)e and using i < m

—2(i— 52md
P( sup |f1(y)| > 5) < 2¢ MTVEET < g2t
0<y<1
Setting
(log N)'/2
§=2"—"—5—,
N1
we get that
1) 2
P( su > < —.
(s, 190> 5) <

The same inequality holds, by symmetry, for fo. Suppose now that all fi, fo are bounded from
above by 6/2 for all ¢, j. Then, by construction,

1
Dn(P) <o+ N

There are 2NN strips: using the union bound, we see that the probability of one of them being
bigger than §/2 is bounded from above by 2N ~! and therefore

2(log NYY/2 4 1
(log N) n

< — 4.
EDn(P) < NT N + N
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3. TOOLS FOR THE GENERAL CASE

The proof of the multi-dimensional case follows the same ideas as the proof of the two-dimensional
case, where we were able to decompose things into two essentially independent strips. The main
complication is that the d—dimensional case requires a decomposition into 2% cases, all of which
need to be accounted for (and d of those continue to play the role of strips and yield the main
contribution). We always assume that N = m? for some m € N and keep m fixed throughout the
argument. For ease of notation, we now define [] : R — R to be

[z] .= |[mz+1].
Furthermore, applied to a vector x € [0,1]¢, we want [x] to act component-wise. [x] should be

thought of as giving the coordinates of the tiny cube with side length M~ = N~1/¢ to which x
is associated; see Figure 3. Note that

[]:00,1]¢ = {1,...,m}

except for a set of measure 0 (the boundary), which we ignore.

d

(1,3) (2,3)/(3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

FIGURE 3. [-] is merely the classical way of enumerating entries of matrices.

3.1. Decomposition. Let P be a point set obtained by jittered sampling. We have to find a way
of analyzing

#{peP:p<x} ﬁ
- Tif,
=1

sup

[x]=k 1P|
where k € {1,... ,m}d is a fixed string of coordinates fixing one of the small cubes, < is to be
understood component-wise and x = (x1,...,24). Consider now k fixed: we ignore the one point

p € P for which [p] = [k] (thereby increasing the discrepancy by at most N~!). In the two-
dimensional case, the problem decoupled into 4 different elements: the big rectangle contributing
nothing to discrepancy, the one point in small square itself that could be ignored and the two
strips. In higher dimensions, the situation is not quite as simple but a similar argument can be
applied: for every x with [x], we construct a decomposition of {p € P : p < x} into 2¢ sets

2d
{peP:p<x}=|J{peP:pecix)}
j=1
where the A;(x) are a partition of the hyperrectangle [0,x]. We describe the sets A;(x) explicitely

and identify j with an element from {0,1} (i.e. a string of 0/1 of length d): we have z € Aj(x) if
z < x and if additionally [z;] = [z;] for all 1 < i < d where the string j has a 1 at position ¢ and

[2:] < [%;] whenever the string j has a 0 at that position. Put differently, for a string L € {0, 1}d7
Ap(x):={z€[0,x]:V1<i<d:|z]=[x;] iff L,=1.}.

It is clear that this induces a partition of {z:z < x}: for every z we can simply check for each
coordinate whether [z;] = [x;] and write down a 1 if this is the case or a 0 if not, thus obtaining the
corresponding vector L. We use |L| to denote the sum of all components and state some simple
properties of this decomposition. An elementary counting argument shows

#(PNAL(x)) <mdIH,
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This follows immediately from the more precise bound

otherwise.

d
#(PnAu) <[] {E”]

The biggest set is therefore L = (0,0, ...,0), which corresponds to the union of all cubes fully
contained inside [0, x] (which, by construction, has discrepancy 0). As we will see in the proof, the
main contribution comes from the d sets indexed by (1,0,...,0),(0,1,0...,0),...,(0,0,...,0,1).

3.2. A projection agument. Let now k be fixed and assume furthermore that L is fixed. The
purpose of this section is to point out that the computation of

#{peAL(x):p<x}
— [AL(x)]
P
is precisely the classical problem of estimating the discrepancy of random variables. The set Ap,(x)
fixes |L| entries of [x] and requires that the remaining d — |L| entries do not exceed [x].

sup
[x]=k

g

Qlo==cto——-F=-===

FIGURE 4. The worst strip can be found by finding the point maximizing the star
discrepancy of the projection.

By construction of jittered sampling it follows therefore that whether or not a point p € P is
contained in Ar,(x) depends only on the |L| fixed coordinates. We define a projection

i {p € AL(x):p < x} - [0,N 4]
by projecting onto the fixed coordinates given by L; see Figure 4. Maximizing the quantity

#{peceAr(x):p<x

up |FREALCIPEX) g

[x]=k P
over all x satisfying [x] = k is therefore akin to determining the discrepancy of a fixed number of
random points in [0, N_l/d]‘”. The actual number of random points in question (being at most

N=IL1) as well as the volume [0, N~/9]ILl both decrease as |L| increase, therefore the case |L| = 1
is the most interesting one.

3.3. An adapted Bernstein inequality. Our proof requires the use of a Bernstein inequality;
the classical Bernstein inequality assumes that a certain random variable is compactly supported.
We are dealing with a situation where the random variable is compactly supported but is with
very high likelihood contained in an interval much smaller than the support. We therefore return
to the original derivation of the Bernstein inequality and exploit that it merely uses the existence
of exponential moments. We start with the following basic lemma.

Lemma 3.1. Let 2q,...,2¢ be i.i.d. uniformly distributed random variables on [0,1]. For every
t>0
1<l<k:0<2< t t2
Eexp<t sup #ilsls Ozez}z>§2+\/27rexp(>.
0<2<1 n vn 8n

Proof. Clearly, the expectation is maximized if we pretend that
1<i<k:0<z<
]P’(Sup #il=l< _ZZ_Z}— >8):2€_2n62
0<2<1

n
for every € (even though this may not be satisfied by any probability distribution). The desired

answer can then be written as
o0 d 1</¢<k:0< < > d
/ el® (—]P’ ( sup #llstsk:0sz<z) > x)) dz < / el® (—262”2) dz.
0 dr \o<-<1 0 dz

n

z

—ZzZ
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A simple integration by parts shows that

> tx d —2na? * te—2na?
e ——2e der =242t e dx.
0 dx 0

This integral can actually be evaluated in terms of the error function erf; we only require the most
trivial estimate, which is

t2
) t te—2nz? d < 2 / v
" /o ‘ r=sT fexp<8n)

Let X now denote an arbitrary R—valued random variable satisfying
Eexp (tX) <2+ V2 ! e r
X V2r—exp | —
P - Vvn P\ 8n

and consider the sum of d independent copies Sg; = X1 + -+ + Xg.

d 2
P(Sq>y) < <2 + 1132/77) exp <27;y > :

Proof. Clearly, for any ¢t > 0 we have that whenever

Lemma 3.2. We have

Sq >y then etBa=y) > 1
and therefore
P(Sq>y)=E 15,5, <E ey,

It remains to exploit that Sy is the sum of d independent copies and therefore, for every t > 0

d - N
P(Sq>y) <E etBa=Y) < oW ¢tSe = oty H EetXi < e WSt (2 + V27T\/ﬁ) .
Setting ¢ = (4ny)/d implies the result. O
3.4. Bounds on the discrepancy of random variables. The final ingredient is a bound on
the probability of the discrepancy of N independently and uniformly distributed random points

in [0, 1]¢ exceeding a certain limit due to Heinrich, Novak, Wasilkowski & Wozniakowski [17]. Tt
states that

d
P(Dy >20) <2 (? + 2) exp (—6°N/2).

4. PROOF OF THE MAIN STATEMENT: UPPER BOUND

Proof. We start with a simple reduction: by definition, a complicated a way of writing discrepancy
is

#{DGP p <x}
P sz

We fix k = (m,m,...,m) and carry out the argument for this special case to avoid additional
notation; it is easy to see that this is the worst case for all our bounds (all of which remain true
for any other value of k; see also our proof for d = 2 where everything is explicit). This is not

Dy (P) = sup
ke{l,...,m}¢ [x]
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surprising at all: a larger number of random points increases the likelihood for large deviations.
We use the triangle inequality and get

#{pEP p<X} sz = sup Z #{peAL(X>:p§X/\[p]7é[k]}_|AL(X)|

[x]:k P =k | oy I
< sup Z #{pGAL(X)[;DSX/\[p]#[k]} 7|AL(X)|
K=k | L co1)d ‘ |
[L|=0
+ sup Z #{pEAL(X)pSXA[p]#[k]}_|AL(X)|
K=k | L oy P
|L|=1
+ sup Z #{pEAL(X):pSX/\[p]#[k]}_|AL(X)| ]
=k [ 1ya P
|IL|>2

The first expression, |L| = 0, is 0 by construction: it corresponds to a set of measure
(1- N_%)d while containing (Ni —1)? out of N points.

4.1. The main contribution. Now we analyze the case

sup Z #{pEAL(X)I;DFX/\[p]#[k]} —|AL(X)| ,
=k Le{0,1}d
|L|=1

which ultimately produce the main contribution. The sum extends over d independent random
variables; each single random variable corresponds precisely to the quantity estimated in the
Dvoretzky-Kiefer-Wolfowitz inequality with

# of points = (N% — 1)L

Additionally, there is a scaling factor of N i coming from the projection. Thus, for every § > 0
and fixed L with |L| =1

P sup #{p € Ar(x) : p <xA[p] # [k|}
x]=k ‘,P|

This bound is very useful to get a good intuition about the size of the arising quantity: the
threshold value of § required to make the exponential function on the right-hand side decay is

1
0~ ——F for N large.

2taq

—|AL(x)]

> 5> < 9o 2NH-DITION DY,

This is the correct expected value for a single such contribution. However, we are actually dealing
with the sum of d independent random variables of this type and employ the Bernstein inequality
(and later the union bound) to keep a good control on the arising constant. Computing the
exponential moment of our random variable and using the trivial estimate

the rescaling with a factor of NV —4 amounts to

(Né -1l < N for the number of points
p <
#1{p € AL(x) F;—X/\[p] # [k|} —|AL(x)

P i t t2

— ex .
=TV s TP s
Next, we consider the sum of d i.i.d. random variables

Sy = Z sup #{pEAL(X)ZPSX/\[p]#[k]}—‘AL(X)‘

Le{o0,1}d [x]=k ‘,P|
[L|=1

Eexp | t sup
[x]=k

)
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where each one satisfies a bound on the exponential moment as outlined above. Using our Bernstein
inequality directly (or repeating the derivation in this special case), we obtain

d
11N3+3a IN1+iy2
P(Sq > y) < (2 + ;Zdy> exp <_ddy> .

In particular, this implies
Vdlog N 110\ ? (log N)#
p(sy> YN o (5 1) loe M)
N3taa Vd N2C
By picking C =1 — ¢ and N sufficiently large depending on &, we have
11C\ ¢ (logN)% 1
(1+0(1)) (2 + \/g) N2—det2e? = N2—ie
The union bound implies now that the likelihood of any of the N cubes violating that bound is

bounded from above by N~114¢ for N sufficiently large; furthermore, the largest possible value of
the star-discrepancy is 1 and therefore

vdlog N 1 (¢ vdlog N
N e e

as N — oo.

for N sufficiently large.

EDN(P) < (1-¢) for N sufficiently large.

4.2. The remaining contributions. It remains to study the case |L| > 2 and show that the
additional contribution is small with high likelihood. Let now 2 < ¢ < d be arbitrary and consider

#{p € Ar(x) : p <xA|[p] # [k]}
P

sup
x]=k

— A (x)]

Le{0,1}d [
|L|=¢

Note that interchanging the sum with the supremum, as we did, strictly increases the quantity.
In the case of |L| = 1, the geometric structure of the decomposition ensured that interchanging
those quantities has no effect; here, these quantities are actually intertwined in a complicated way
and we lose in the process of interchanging; however, since this is not the main term, the loss is
acceptable. The sum contains (?) terms (containing random variables that are independent) and
we treat all of them independently. Every single set contains at most

(N% —1)%* points, which we bound from above by N
As before, we can now project every set
{peAr():p<xnp]# K} —[0,N 4"

By employing the full strength of the inequality of Heinrich, Novak, Wasilkowski & Wozniakowski,
we get

P ( sup
x]=k

for some constant cq ¢ > 0 that could be explicitely computed. Since £ > 2, this probability decays
faster than any polynomial in N. Therefore, for N sufficiently large, the probability of this event
for any £ and any of the N cubes goes to 0. Therefore we can bound

#{p € AL(x) : p <xA[p] # [k]}
P

Z[S}lp > #{pEAL(X):l;FXMp]#[k]}—IAL(x)
P x|=k

Le{o0,1}d
|L|=¢

for all N cubes with a likelihood converging to 1 faster than 1 — N~¢ for every fixed ¢ > 0. This
implies the result by taking the union bound. O
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5. PROOF OF THE STATEMENT: LOWER BOUND

Our derivation of the lower bound comes from considering again only the cube with coordinates
(m,m,...,m). We have a relatively good understanding of the underlying processes: as N becomes
large, the main contribution comes from the d slices containing a large proportion of the points
whereas all other 2¢ — d — 1 slices have strictly smaller proportion of points that decreases as
their codimension increases. Furthermore, the d major slices are independent. This motivates
the structure of our argument: we compute the average discrepancy contribution of one slice in
isolation, show that we can pick a point attaining that lower bound simultaneously for all d slices,
show that at least d/2 have the same sign (which is trivial) and then show that with very high
likelihood the quantities contributed by the remaining sets in the partition are an entire order of
magnitude smaller.

Proof. We start by analyzing one major slice. Structurally, for |L| = 1, the quantity
‘#{p € AL(x) :p <xA[p] # [k}
Id
can be compared to the one-dimensional discrepancy
#{LU<U<k:0<z <z}
n

— AL (x)]

X, = sup
0<2<1

z

with the number of points being n = (N4 —1)?~* and then rescaled by a factor of N/4. Altogether,
if L] = 1,

#{p € Ar(x) : p <x A[p] # K]} _ Xavdopeer

— 1A
B Al = =

The quantity X,,, however, is rather well understood: it is actually known to converge in distri-
bution to the Kolmogorov distribution and thus

: _ < d - k—1_—2k*z?
nll,néo\/ﬁEX” —/0 S <—2Z(—1) e dx

k=1

I
—
—_
S~—
>
L
%\
m\
[~}
BN
8
QU
5

glogQ ~ 0.86873. ..

[

Note, furthermore, that for any 6 > 0 we have
(Né - > (01— (S)Nd%1 for N sufficiently large.

Therefore, the expected contribution of a single slice is (for e = (1 — §)~1/2)

X
(Nd—1)d-1 c 1 c
E >(1—e)—g5—1=0-¢)—7,

T >N% Na ( )N%ﬁ

for every ¢ < y/m/2log2 and every £ > 0 and every N sufficiently large depending on ¢,e. Note
that this is for the absolute value of one discrepancy function. However, we do not know which
sign will actually arise (whether there are too many or too few points). Among d slices we expect
d/2 slices to have too many points and d/2 to have too few points; since we can actually set entire
slices to zero by setting the coordinate of the corresponding slice to be (NN i— 1)/N (the lower
corner of the cube), we can therefore guarantee a total expectation of

(1—-¢)

C
d+1 °
2d

EDN(P) =

s

N
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This yields the main contribution. However, there are many other terms: by picking the point so
as to achieve the desired bound for the discrepancy from below, we fix the contribution coming
from all other sets and have no more wiggle room to change them. We use the argument from
the upper bound to show that the likelihood of any of those contributing a large value is actually
tiny. Note that the inequality of Heinrich, Novak, Wasilkowski & Wozniakowski implies that

P (Discrepancy contribution from a slice with |L| = ¢ > > < 2N%exp (fNZle*QE) .

N%+ﬁ+6
Whenever ¢ > 2, this means that we can actually put a positive e < 1/d and still get fast decay
to 0 as N — oo. This, however, is true for all slices and a simple union bound over all slices then
implies that the combined impact on the discrepancy is of smaller order with high probability. O

6. REMARKS AND COMMENTS

6.1. A change of regime. First, we explain why it is natural to expect a change of behavior in
the discrepancy of fully random points and the discrepancy of jittered sampling at N ~ d?. The
first heuristic is as follows: the construction allows us to discard all points in the 'big box’ and
merely consider the slices instead. The fraction of points in the big box is

(Né_l)d_(l_ 1>d 1 if N > d¢
N N 0 if N < dt’

Note that for N = d?, the fraction converges to 1/e. Put differently, for N = d?, there is a
constant fraction of the points in the big box but we still have to consider a constant fraction of
~ 1 —e! points. Let us now refine the heuristic somewhat: in our case, the primary contribution
comes from d random variables of size ~ 1/N/2+1/(2d) whereas N independently and identically
distributed random variables give rise to a discrepancy of \/d/N. Altogether, we have to compare

d . d d Vd
~ with 11 A\~
N Nz2t2a N N3za

where the last factor is = 1 for N = d¢.

6.2. Explicit point sets in the large regime. Assuming our upper bound to hold uncondi-
tionally, we improve on fully random points as soon as N > d?. The purpose of this section is
a short heuristic suggesting that deterministic constructions are not yet (provably) better. We
compare our results with the leading term in the best known bound on the discrepancy of Ham-
mersley point sets derived from recent results of Atanassov [2]. Following [9, Theorem 3.46], the
star discrepancy of the Hammersley point set H consisting of N points in [0, 1]¢ is bounded by

7 log N)4-1 log N)4—2
D (H) < 2d—1(d—1)( V) +O(<gN>>,

if H is generated from the first d — 1 prime numbers. (Replacing the first d — 1 prime numbers
by a set of larger coprime integers increases the constant.) Altogether, for N = (2d)2? points, we
thus get a bound of roughly

1 (log(2d))*~! dv2/log2d
2d—1 (Zd)d‘H (Qd)d+1 :

This suggests that the known discrepancy bound for the Hammersley point set is a superexponen-
tial factor 1/d (log (2d)/2)?~3/2 bigger than our bound.

whereas our bound yields

6.3. Some numerical results. The following conjecture seems exceedingly natural: the expected
discrepancy of N = m? independently and uniformly distributed points in [0, 1]¢, should always
be bigger than the expected discrepancy of N = m¢ points obtained from jittered sampling. This
conjecture is supported by the results of our numerical experiments shown in Table 1. For the
computation of the star discrepancy we used a recent implementation of the Dobkin-Eppstein-
Mitchell algorithm [10] by Magnus Wahlstrom, which is freely available online [31] and which
computes the star discrepancy exactly; for details on the implementation we refer to [12].
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d=2 d=3 d=5
m=5 m=10 m=20m=5 m=10|m=3 m=>5
Jittered Sampling | 0.1518 0.0629  0.0243 | 0.0932 0.0279 | 0.1046 0.0259
Random Sets 0.2180 0.1232 0.0624 | 0.1318 0.0542 | 0.1200 0.0331

TABLE 1. Mean discrepancy of 10 experiments with N = m? points in [0, 1]¢.

6.4. The lower bound should not be optimal. The main heuristic for why the lower bound
should not be optimal lies in its derivation: we computed the expected discrepancy that we
could expect by restricting ourselves to rectangles [0,x] with = being in the cube indexed by
(m,m,...,m). However, we could very well repeat the same computation with another cube on
the diagonal, say, the cube (m —1,m—1,...,m —1).

FI1GURE 5. Computing discrepancy w.r.t. many different cubes on the diagonal.

The construction of jittered sampling implies that the discrepancy that can be attained for each
single one of these cubes is an independent random variable. Moreover, the random variable
computed for a single cube had an expectation of

d

E(contribution of a single cube) ~ ——.
N3tsza

We recall that this discrepancy arose (in leading order) from the contribution of d slices and the
Dvoretzky-Kiefer-Wolfowitz inequality suggests that each slice contributes a random variable that
decays essentially like a Gaussian. This suggests the following heuristic for the random variable
d+N(0,Vd) d+VdN(0,1)

Nitza  Nitm
We recall the Fisher-Tippett-Gnedenko theorem (see e.g. [14]) which implies that for X7, Xo,..., X,
independent N (0, 1)—distributed random variables, we have that

Emax(Xy,...,X,) ~ y/logn,

where ~ hides some absolute constants. There are N4 cubes on the diagonal, which suggests

contribution of a single cube ~

d+Vd\/logNi  § (log N)3
N A NBE

sup E(contribution of Q) ~
cube @ on the diagonal

This heuristic might actually be very close to the truth. Note that, as we move down the diagonal,
the number of random points influencing the discrepancy is actually decreasing and large deviations
become increasingly unlikely. This decrease is slight if N is big but not so slight for small IV,
which is why all of this should be a gross overestimation for N < d?. The difficulty in making this
reasoning precise is that one seems to require an inverse Dvoretzky-Kiefer-Wolfowitz inequality,
which guarantees that the likelihood of single slices contributing large values is comparable with the
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Gaussian bound from above; it seems conceivable that a suitable application of the Komlos-Major-
Tusnady approximation [20, 21] could be helpful in making further progress in that direction.
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