Abstract

A class of parallel scaled Givens rotations, to be applied to weighted multiple linear least
squares problems, is discussed.

In comparison to Fast Givens transformations, properly scaled rotations for weighted problems
exhibit the same stability, require fewer divisions, and avoid square roots as well as pivoting.
Consequently, with a suitable elimination strategy, the algorithm is amenable to parallel linear-time
implementation on systolic arrays in VLSI. Round off error and stability analyses are presented,
indicating slightly less accumulation of round off error than known sequential methods.

Parallel Scaled Givens Rotations for the
Solution of Linear Least Squares Problems

Jesse L. Barlow!
Ilse C.F. Ipsen®

Research Report YALEU/DCS/RR-310
March 1984

Department of Computer Science, The Pennsylvania State University. This work was supported
by the National Science Foundation under contract MCS-8201065 and by the Office of Naval
Research under contract N0014-80-0517.

2Department of Computer Science, Yale University. This work was supported by the Office of
Naval Research under contract N000014-82-K-0184.

1. Introduction
The weighted linear least squares problem is that of finding an n x 1 vector v* such that

ID(Av" = s)l| = min [| D(Av - s), (1.1)

where A is an m x n matrix, s is an m x 1 vector, v is a n x 1 vector, and D = diag(dy,...,dn)
is the diagonal m x m matrix wherein, usually, d; > 0, 1 < ¢ < m. The symbol | - || denotes the
Euclidean vector or matrix norm depending on context.

It will be presumed throughout the discussion that m > n (usually m > n) and that A has
rank n to machine precision.

A parallel linear time solution to problem (1.1) will be presented. The triangular decom-
position of A and corresponding modifications on s are obtained from a VLSI (Very Large Scale
Integration) implementation of a systolic array of processors. A systolic device for back substitution
can be found in [13].

According to VLSI philosophy , processor interconnections are planar and of nearest neighbour
type, while processing elements are primitive, i.e., perform only elementary arithmetic operations.
Pipelining replaces global broadcasting of data, so only local exchange of data takes place. Of
course, computations are to be evenly distributed over the processors for good hardware utilisation.
The above restrictions together with numerical aspects rule out the following methods.

e Normal equations approach : squaring a matrix constitutes an illconditioned task, hence,
methods must involve orthogonal transformations.

e Householder-Golub factorisation [4] : its global data communication is not suited to imple-
mentation in VLSI, rendering a rather inflexible architecture [12].

e Standard Givens rotations : they are easily adapted to systolic arrays [10], [7], [1], [3], but
require a square root computation per transformation. Besides consuming a major part of the
chip area, they also constitute a severe bottle neck with regard to computation time.

e Fast Givens rotations : they are faster than standard Givens rotations when solving (1.1)
sequentially. As the matrix is considered in factored form, square roots are obviated and the
number of multiplications is halved. These advantages carry over to parallel devices, as a
systolic array implementation [11] makes clear. Yet, unlike standard Givens rotations, the fast
rotations demand ‘nearest neighbour pivoting’ which greatly increases the complexity and area
of processing elements. Furthermore, careful monitoring of element growth, important for the
prevention of under- and overflow, is not conveniently achieved [8] p.160.

Consequently, the parallel solution of (1.1) on a VLSI device must rely on the development of
scaled rotations which do without square roots and pivoting. Additionally, the scaled rotations to
be presented here involve only one division as opposed to two for the standard transformations. A
decrease in the amount of multiplications is not really crucial if a good hardware utilisation and a
balanced distribution of the computation among the processors is achievable.

The scaled rotations are easily adapted to the systolic structure for the standard [10] and fast
[11] rotations by slight reprogramming of the processing elements (in fact, the scaling technique is
best used in a parallel context). The resulting decomposition is as stable as any method available,
with an error bound at least as good as one based on standard Givens transformations.

Scaled Givens rotations are most useful for forms of problem (1.1) wherein the weight matrix
W = D? is not the identity matrix, because the premultiplication of A by the square root of
the weight matrix, D, is unnecessary. Such problems arise in signal processing and least squares
filtering when earlier signals are weighted less compared to later ones. Another context in which
scaled Givens transformations have advantages over standard rotations occurs when a row of the

1

decomposed matrix is to be removed. In this case the weight of the row is set to —1 (cf. [14]). It
remains to be investigated how practical these techniques are in a parallel implementation.

There are five sections after this introductory one. Section two contains a review of standard
Givens rotations, fast Givens rotations and a 2 x 2 version of Bareiss’ G-transformation [2]. Section
three, describing and motivating the parallel scaled rotations, is followed by an error analysis in
section four. Before some concluding remarks in chapter six, a parallel VLSI implementation of
the triangular decomposition with scaled rotations is given.

2. Standard and fast Givens rotations

The Givens (or Jacobi) plane rotation is a device for inserting zeroes into a matrix selectively.
Let M = (m;;) be a 2 x n matrix. The Givens rotation H that annihilates the (2,1) entry of

M' = HM is given by
(7 °
H= (—a 7) (2.1)

— — =/ m? 2
Y=muflr, o=mufr, r=\/mi +mi.

P +ot=1,

where

Note that

and H is orthogonal. The 2 x n matrix M’ = HM is computed according to

U] .
my; = Ymyj + omy;, My = —0Myj + ymg;j, 1=2,...n, (220)

my, =r, my =0. (2.2b)

This computation requires one square root, two divisions, 4n — 2 multiplications, and 2n — 1
additions. Even if the square root were implemented in hardware, it would still takes as long as
two or three multiplications, thus contributing significantly to the computation time involved in
forming H.

Fast Givens rotations [5] [9] require only half the number of multiplications and avoid the
formation of square roots. These operations are saved by considering M in the form

M=KB (2.3)

where K = diag(ky, k2) is a diagonal matrix and B = (};;). One then determines a transformation
G of the form

G =(K')"'HK (2.4)
where H is given in (2.1) and K' = diag(ky, k3). If
B' =GB, (2.5)
it is easily seen that
K'B' = K'GB=K'(K')""HKB=HM = M'. (2.6)

The saving in multiplications and square roots results from the proper choice of K'. A number
of such choices is given in [9]. Gentleman [5] gives the following procedure for forming the matrix
G in (2.4). K' is chosen implicitly.

Define

W = K? = diag(w, wz) = diag(k?, k%)

2

and
W' = (K')? = diag(w}, w}) = diag((k})?, (K3)?).

The matrices M’ and K’ are not explicitly computed, so M and K are not used. Instead one forms
G from W and B and computes only W' and B’. Regarding the first column of B, three cases are
distinguished when forming G.

Casel: by =0.

W'=w, B =B, G=I=((l) ‘1)) (2.7)
Case I1 : w;b%, > wob%, > 0. Let t = 3'2—";1, then
1 21 wibs,
wab
G = (_%21 wxfu) , (2.8)
11
B' =GB,
W= (1+¢)7'W.

Note that
by =bua(1+¢), b3y =0.

c 2 2 w1b?
ase III : w2b3, > wy1by, > 0. Let t = E—bﬁ, then

G___(%‘zﬁf g:l) (29)

-1 11
B' =GB,
W' = (1 + t)"'diag(wz, wy).

Note that
by, =ba(1+¢t), b =0.

In cases II and III the computation of GB takes three divisions, 2n+ 5 multiplications, and 2n
additions. The distinction between cases II and III is essentially a pivot. This ‘pivot’ is necessary
since for small w;b%, computations with the matrix G in (2.8) are unstable. The same can be
said of the matrix G in (2.9) if wzb3, is small. Unfortunately, this ‘pivot’ adds considerably to the
complexity of the processing elements in a parallel device [11].

In a matrix decomposition algorithm based on Fast Givens rotations the matrix to be decom-
posed must be periodically rescaled. Yet, there is no completely satisfactory method for performing
this rescaling.

The scaled rotations to be discussed are based in part upon the 2 x 2 version of Bareiss’
G-transformation [2],

wiby wgby
G= (_gu :1») (2.10)
11

where p = r2, which can have ‘pivoting’ and scaling problems similar to those of Fast Givens
rotations.

In the next section, a scaled Givens rotation is developed in order to prevent problems of
pivoting and scaling during parallel computations.

3

8. Scaled Givens Rotations for Parallel Computation

Before constructing a scaled Givens rotation, it is necessary to discuss a computational al-
gorithm which, when based on these rotations, solves problem (1.1). Such an algorithm would
decompose the m x n matrix A in (1.1) as follows :

Ag=A, 8=3s, (3.1a)
x4;+1 = G,‘+1A;, 841 = G,-.Hs.-, t= 1, P ,’ - 1. (316)

| = mn — (n? +n)/2 is the number of rotations necessary to transform A into an upper trapezoidal
matrix. Each G; has the form

G; = D'-_lH;D,‘_l, 1=1,...,1 (3.2)

with Dy = D in (1.1), D; properly chosen diagonal matrices, and H; Givens rotations, 1 <¢ < [.
An important concern for algorithms of the form (3.1) is the growth of elements of A; overflows
or spurious underflows are to be avoided.
Define the norm

def -
IS1lps = 1 DoS DGl (3.3)

for an m x m matrix S. If S is an m X n matrix where n < m then

d
15106 Z1(S,0)ll Do (3.4)

where (S,0) is an m x m matrix whose last m — n columns are zero.
After combining (3.1) and (3.2) one obtains

A;=G;...G1A
= (D7 H; D;—1)(D;\ H;D;-3) . ..(D7* Hy Do) A

=1

= D7 H;... HiDoA = D71Q; DoA. (3.5)
1} %

The matrix @; is orthogonal if the effects of machine rounding are ignored. Classical norm in-
equalities with the norm in (3.3) yield

Il 4illb, < 107 Q:Dollp,lAllp, = 1| Do D7 Q:llll Allp,
= || Do D; |||l All po- (3.6)

A similar derivation results in the lower bound

l4illps 2 llAllpe/l| D: DG |- (3.7)

Thus if || Do D;!|| does not grow large, then overflows in A; are unlikely (they may still occur if Dy
is chosen badly enough, but such cases seldom arise in practice). Spurious underflows are unlikely
if | D;D!|| does not become too small. The Fast Givens rotation method guarantees that the
elements of A; will not underflow. However, overflow in the elements of A; is a strong possibility,
as is underflow in the elements of D;. Since the Euclidean norm of D; A; is invariant with respect to
1, it suffices to monitor the diagonal matrix D; for underflows. According procedures are discussed
in [9] [14], p.62. Unfortunately, none of them is computationally convenient.

The scaled Givens rotation of this section is designed to be easily implementable in parallel
hardware; it rescales subject to the values of ||DoD;!|| and ||D;Dg!||. With the same number of

4

multiplications as in a standard Givens rotation it avoids the pivoting of a Fast Givens rotation.
It requires no square roots and only one division - two less than the Fast rotation.

To observe the effect of one rotation, let G be the 2 x 2 nontrivial portion of the scaled Givens
rotation G;, let K be the portion of D;_; pertaining to the two rows altered by G; , K’ the
corresponding portion of D; , K© the corresponding portion of Dy, and B the submatrix of Aiy
that is altered by G;. As in section two, it is the judicious choice of K’ that gives the scaled Givens
rotation its desirable properties.

The 2 x 2 matrix G for the scaled Givens rotation is

G = (K')"'HK,
where H is the standard Givens rotation which inserts a zero in the (2,1) entry of B. The matrix

H has the form

where

The choice of K’ given by

2”2 0
K'= (6 2-#1,]],2) ’ (3°8)

where a and 8 are integers chosen for scaling purposes, yields the matrix

i [r2% 0 Blu kba ko0 _ (27K 2R3y
o-uortmm= (7 o) (i aia) (5)= (50).

1F3
Thus,
G= ({,;”J:: 2;',5’:3‘) : (39
If
B' =GB,
then

by = 2°‘r2, 6'21 = 0.

As with Fast Givens rotations, the matrix K is not used, and the matrix K’ is not explicitly
computed. Instead W = K? = diag(w;,w2) = diag(k?, k2) serves to determine

2=2a 2—2a
S 0 0
W' = (K')? = diag(w; wp) = (r 2"""k2k2) = (, 2) (3.10)
3 2=]
0o ITHk 0w

r

and p = r? = w;b%, + w,b3,. Thus throughout (3.1), D? rather than D; is stored.
The integers a and # are chosen according to the algorithm below, where

. . 2 2
WO = diag(w®, w”) = (KO)? = diag((k)", (k?)").

Algorsthm 3.1

1. Find the integer a such that wgo)p22°‘ € [1,2) { This insures that wio) Jwi, €[5.2) }.
2. Compute ¢ = 1/p { This is the only division necessary }.
3. Compute ¢ = wywss.

g

4. Subtract the floating point exponent of ¢ from that of w, ’. Call this integer w.

5. If w is even then 8 = w/2, otherwise # = (w + 1)/2 { This insures that wgo)/wé €[1/4,2) }.
These values of a and § ascertain

IwOWwH| <2

and

W' (w©)-1) < 4.
Therefore,

IKO(K")| < V2 (3.11)
and

IK' (K@) < 2. (3.12)
Since

| Do D7 || < max{[| Do D74 1I, 1K@ (K') 1|1}

and

ID: D5t || < max{|| Di—y D3 |I, | K'(K@)1|]},
a simple induction argument renders the inequalities
DD < V2, i=1,2,..., (3.13a)
\D:DFt <2, ¢=1,2,...,L (3.13b)

Combining (3.13) with (3.6) and (3.7) yields

1 .
§"A"Do < || Aillp, < \/EIIA"DO’ 1=12,...,L

Hence, algorithm (3.1) using the scaled Givens rotations is resistant to underflows and overflows.

In section five it is shown that this kind of scaling is practically free in a parallel architecture.
Proper scaling procedures for fast Givens transformations have been a persistent problem in their
implementation (8}, p.160.

The fact that the rotation in (3.9) takes twice as many multiplications as fast Givens rotation
seems to be of disadvantage. However, from the point of designing processing elements it is not.
A processing element performs a rotation on a single 2 x 1 vector at a time. In the case of fast
Givens rotations it would have to either distinguish between the cases in equations (2.8) and (2.9)
for each matrix-vector multiplication or store all four elements of the matrix G and perform four
multiplications, see [11]. The first approach greatly increases the complexity of the processing
elements, while the second completely ignores the principal advantage of fast rotations.

In the next section, a parallel algorithm for solving problem (1.1) using scaled rotations is
proved to be reasonably stable, and as accurate as extant methods.

4. Error Analysis
The following algorithm will be used to solve (1.1) :

Xo=X=A, fo=f=s, (4.1a)
Xk-i-l = Tk+1Xk = Alk.“’ fk-i-l = Tk-ka = Slhegry k= 0) 17 ey —1, (41b)

6

where
Te=Gi,...Gi_+1

is the product of the disjoint scaled Givens rotations G;, s = ly_; + 1,...,l; (two Givens rotations
are disjoint if they affect disjoint pairs of rows). The indices lg, k = 1,2,...,v, denote the number
of scaled Givens rotations performed at the kth stage. The indices [, = 0 and !, ={ are the upper
and lower limits of equations (3.1). Each G; has the form (3.9). Equations (4.1) are simply a
special version of equations (3.1). Therefore,

T, = (D' B, Dy)(D}; 2y Hyy 1 Diy—2) - - . (D2 4y Hiy 1Dy,)
=D'QDy,_,, k=12,...,,

where Q¢ = Hy, ... H,_ 41 is orthogonal. Define Cy = Dy, k =0,1,...,v. Then a simpler form
for T} is given by
T =C;'QiCro1, k=1,2,...,v. (4.2)

Presumably, the final matrix X,, has the form

%= (%)

where R is a n X n nonsingular and upper triangular matrix. Neglecting rounding errors, the
algorithm guarantees

ICo(Xv = f)Il = IIC, (Xov = £))|I.
If f, is partitioned according to
£
fu = ((2))]
14

where f,Sl) isanx1and f,ﬂz) a (m — n) x 1 vector, then the sclution v* to (1.1) is given by
vt = R—lflgl)
with the residual
.)"
lc, (Xov* = £l =licy (0,-£2) " I

In order to estimate the effect of rounding errors in (4.1) on the solution, (1.1) is posed as an
unweighted least squares problem and the effect of the algorithm on the solution to that problem
will be considered. With

Y =Yy=CoX =CpXo, z=2=0Csf,

and
Yi = Cie Xy, 2= Cifi, k=12,...,v,

(4.1), in effect, performs the sequence of operations
Y0=Y=00X, Zo=2=00f, (4.38)
Yk-l'l = Qk+lYk7 241 = Qk+lzk7 k= L2,...,v (43b)
7

to solve the problem of finding v* such that

.— = 1 - . .
Ve - 2l = min Vo - 2] (4.4)

If the error is analysed for the sequence of orthogonal transformations in (4.3), rather than the
scaled rotations (4.1), the results on error analyses of orthogonal transformations in [16], [5], and
[6] can be directly applied.

The classical techniques of backward error analysis from [16] will be employed to bound
|lu* — v*||, where u* satisfies the perturbed problem

1Y +6Y)u" = (z+)] = min (¥ +8Y)u— (= +62)]. (4.5)

In order to obtain this bound four quantities must be estimated :

o the condition number ||V ||||Y || where Y* is the Moore-Penrose inverse of Y,

e the norm of the residual ||Yv* - 2],

e the norm of the backward error in Y, [|6Y]],

e the norm of the backward error in z, ||6z||.
The first two quantities are dependent on the problem (4.4), not on the algorithm used to solve it.
The last two quantities depend upon the algorithm and the precision of the underlying arithmetic.
The relation between these four quantities and the forward error |Ju® — v*| is given in [14], p.50.

Thus it is enough to bound the quantities ||§Y]| and ||62]| to show that the scaled Givens
rotations produce an algorithm that is as stable as any available.

The first theorem discusses the rounding error from a single scaled Givens rotation. The
symbol fi(-) will denote the floating point computation performed on its argument (for the use of
this convention see [16]).

Theorem 4.1. Let G be the 2 x 2 scaled Givens rotation defined by the first column of the 2 x n

. . . . 1 .
matrix B and the weight matrix W = diag(wy,w2); and M = KB where K = W2 = diag(ki, k2).
Assume, G is given by

G =(K')"'HK,

where H is the standard Givens rotation defined by the first column of M; and K' = (W')% is the
new weight matrix defined by (3.8). If B' is the machine computation of GB and M' = K'B', then

M +6M = K'B'+6M = HKB= HM

where ||§ M'||r < 5.5p||M||F + O(p?) and p is the machine unit.

Two lemmata are needed for the proof of the theorem. The first bounds the perturbations in
the weight matrix K' while the second bounds the perturbations in the Givens rotation matrix H.

Lemma 4.1. Let K’ and W' be defined as in Theorem 4.1 and K' = (W')2, where W' is the machine
computation of W'. Then

k- K = (KK,
and ||6K'|| < 2.5p + O(p?).
Proof. The first order Taylor expansion

\/1+e=1+§+0(52)

8

for ¢ small is used to bound the error in

- (0 1)

fitky) = \/filwy), fl(ky) = \/ fi(w})

since instead of k| and k), w] and w} are actually computed.
Performing the computations according to algorithm 3.1,

where

filwy) = 272 f1(1/(w1b}, + w2b},)) = wi(1 + bwy),
where |[§w]| < 3p + O(p?) and
fi(wp) = 27% fl(wiwz/0) = wh(1 + buwh),
where |§w}| < 5p + O(p?). With the above Taylor expansion of /1 + ¢ one has

fI(KY) = KL (1 + 6Ky), [8ki| < 1.5p + O(p?),
fUkE) = Ky(1 + 8k3), [8k2| < 251+ O(p?).
This gives 3
K'=(I+8K')K', |6K'|| <2.5p+0(p?)
which is the desired result.
[|

Lemma 4.2. Let G,K, and K' be as defined in Theorem 4.1 and let G be the machine computation
of G. Then _
IK'(G - G)K~|F < b

Thus also .
IK'GK™| <1+ p.
Proof.
C= (2"w1bu 2"102521) - (yu 912)
—23621 Zﬂbu g21 922
gives
é= IG = qll gl2)’
fUG) (921 922
where

gn =2%0ibn(l +en), Gz = 2%w2ba1(1 + €x2),
o1 = —2%by1 = g21, oo = go2.
The multiplications by 2% and 27 are just shifts. They cause no rounding error. Hence §; and §s2
are exact. Now L
KIGK-—I = 8 o = 7(1 + cll) 0(1 + c12)
-0 7 -0 ~ ’

where

kyby1y _ kab2y
o=

r’ r

and
r=\/wb3, + wyb%,.

Note again that the bottom row of K'GK™! is exact. Thus
% - €11 O¢
14 - e =1 (" 6) Ie <

and

IK'GE™| < |K'GK™'| + |K'(G - Q)K= |H| + | K'(G -~ QK| <1+

It is now possible to prove Theorem 4.1.
Proof. By definition,
l6M'|p = | — HM||F = | K'B' - K'B'|r = | K'fGB) -~ K'GB||F
= |K'f(GB) - K'G'B+ K'G'B- K'GB+ K'GB - K'GB||r
< |IK'fi(GB) - K'GBl|r + |(K' - K')GB||r + |K'(G - G) B/ (4.6)

The last two terms of (4.6) can be bounded using Lemmata 4.1 and 4.2. The second term has the

bound . .
(k' - K')GB|lr = (6 K")K'G'B||r < |8 K'||K'GBl|

= [SK'|K'GE*M|p < |ISK' || K'GK™ || M]|£.
With Lemmata 4.1 and 4.2,

I(K' - K")GBl|r < 2.5p(1 + p)|M|lp + O(p*) = 2.5 M||F + O(4?).
The third term is bounded by

IK'(G - G)Bllr = | K'(G ~ Q)K" M]|F
< |K'(G - QKM rIM|lF = plIM]lF.

It now suffices to bound the first term of (4.6), whereby the following inequality will be useful,

IE'(fUGB) - GB)lF < (1K'l + IS K'ISUGB) - GBllr
< (1+2.5p)||K'fI(GB) — GB||§
= (1 + 2.5p)|| K'(fFI(GB) - GB)||f- (4.7)

Let

-~

M = (1;‘3'1,7‘;3'2,...,773"), M= (m17m2) "')mn)’
B’=(z’l,5'2,...,5:;)’ B=(bl,62,.o.,bn)

where m}, m;, Z:, and b;, 1 <1 < n, are 2 x 1 column vectors. The first column of B'is computed
in a different manner from columns 2, ..., n since it defines the transformation G.

10

Let -
b= (”;;) = fI(Gby).

- Then

By = fU(2%wib%, + 2%wob3,) = 2% fl(wy b, + w2b3,).
Assume that the computations in 5}, are associated as follows :
(w1b11)b11 + (w2b21)b2y.

This is a sensible assumption since w;b;; and w3b;; must be computed to form G.
In that case,

By = fl(§11b1s + G12b21) = Grabua(1 + m1) + Gazba (1 + m2),

where |1, |n2] < 28 + O(p?). As

0= (i §22)(bu)

b2y

is an exact relation, there is no error in the insertion of the zero. Thus,

1Ghy = (L +m) §1z(l~+'lz))b
f1(Gh) (gz g2z !

which implies
K fI(GK my) = (v(lj;m) (1 : nz)) ™y,

and the annihilation of the (2,1) entry of M is exact. Hence,

K(AUGKm) = K- my) = (T %08)y

from which it can be concluded that

1K' (FUGK ™ my) = G'my)|| < 2p|| K'GE ™ lmall + O(1?) < 2p(1 + p)llma]] + O(w)
= 2p]lma]| + O(n?).

For the remaining columns, Gbg, 1 < k < n, is just a matrix vector multiplication. Therefore,

1(Gbe) = ((J1(1+mu) @12(1+mz))b
fUGb) <921(1+'I21) do2(1+1n22)) F

where |n;;] < 2p + O(p?), 1 < 4,5 < 2. The 5;; depend on b;. Consequently,

o (Al +nun) (1 +n2)
K'fUGK'my) = (_,,(1 +,l,;l) (1 +q;§)) e

implying 5 3 B
IK'(FUGK ™ m) - GK'my)|| < 20| K'GE 7 ||[|mel + O(w?).

11

From .
IK'GK || <1+

it follows
1K' (FUGK ™ mi) — GK ™ my)|| < 2p(1 + p)llmell + O (%)
= 2pllmi]| + O(p?), k=2,...,n.
Therefore, 3 :) 3
IK'(fFUGK™'M) - GK~'M)||r = | K'(fl(GB) - GB)|
< 24| M| + O(#?)
which along with (4.7) gives

IK'(SUGB) = GB)lr < (1+2.5p)26|M]lp + O(s*) = 2| M||F + O(p*).
Employing the inequality in (4.6), one has
l6M'lr = |M' — HM]|F < 5.5p|M]|F + O(47).

The following two lemmata are adapted from [6]; they allow the construction of a bound for
the backward error ||§Y || in equation (4.5).

Lemma 4.3. Let H be a Givens transformation rotating a 2 X n matrix M and implemented in
such a way that

I fI(EM) - HM|r < 7[M]lF + O(s?),

where p is the machine unit and v = O(p). Then a transformation @ made up of k > 1 disjoint
Givens transformations implemented in the same way and applied to 2k rows selected from the
m X n matrix Y, will also satisfy

IAQY) - QY |lr < rlIY [|r + O(w?).

In particular, this bound is independent of k and m.

Lemma 4.4. If a sequence of Givens transformations can be written as a sequence of v stages,
where each stage consists of the simultaneous application of disjoint Givens transformations, then
the final computed matrix obtained when this sequence of Givens transformations is applied to a
given matrix Y will be the exact transformation of Y + Y where

18Y |lr < 7w(1 + 7)Y ||F + O(w?).

Theorem 4.2. The algorithm specified by equations (4.1) obtains an approximate solution to prob-
lem (4.4) which solves (4.5) exactly for some backward error matrix §Y and backward error vector
6z such that

161l < 18Y |l < 5.5u(1 + 5.5p) 7MY ||F + O(p%), (4.8)
62l < 5.5u0(1 + 5.58)"7 |2l + O(w?). (4.9)

Proof. Simply combine the results of Theorem 4.1 and Lemmata 4.3 and 4.4.

12

The factor (1 + 5.5u)”~! results from the fact that the computed transformations Q; may
not be exactly orthogonal. However, as pointed out by Wilkinson [16] p.138 this factor is seldom
important enough to affect the stability.

5. Parallel Implementation

The systolic processor array will be designed for multiple linear least squares problems, where
1 < t different right side vectors are given,

ID(Avi = sp)ll = min [|D(Avk —sp)ll, 1<h<t
v,ERM

The discussion will omit the backsubstitution, as a systolic array for it can be found in [13].

The following paragraphs will illustrate a systolic array for the triangular decomposition with
corresponding modifications of the right hand side vectors, to be implemented in silicon with VLSI
(Very Large Scale Integration), for instance.

Constraints imposed by technology and fabrication demand regular (and if possible planar)
processor interconnections as well as processor communication on a nearest neighbour basis. The
obvious choice of structure is a rectangular array of synchronously operating processors. Further-
more, to keep the chip area minimal, processors should perform no other than the elementary
operations, addition, multiplication and divsion.

The constraint of local data exchange suggests a combination of pipelining and multiprocessing
to achieve good processor utilisation and speed up in computation time. Pipelining is efficient for
long matrices, which often possess a narrow dense band. The hardware should reflect the features
of the matrix : a processor count proportional to the bandwidth, not the order of the matrix.
Consequently, I/O occurs by codiagonals rather than rows or columns.

Matrices to be considered have a presumably narrow and dense band of width w =p+¢g+1,
g > 0 being the number of subdiagonals and p > 0 the number of superdiagonals.

Sameh and Kuck [15] proposed a simple startegy for elimination of subdiagonal elements which
preserves the bandwidth w (i.e., annihilation of a44;; causes fill-in ag4; 1 i4w—1) and removes
elements by rotations in adjacent planes (that is, the elimination of ag4;; takes place by rotating
planes g + ¢ — 1 and q + 1). Therefore, it adheres to regular data flow and local communication.

Banded matrices are reduced to (banded) triangular form through removal of elements by
subdiagonals, starting from without toward the main diagonal while proceeding from top to bottom
within a subdiagonal. Formally. if ag41,1 is removed at time ¢ = 1 then ag4i—2j,i—; is removed at
timet=4,0<1<n+q—1, max{0,t — n,[(g+¢—m)/2]} <7 < min{s — 1,¢g — 1} (note that
during the removal of a subdiagonal each of its rows, except the first and the last, is modified by
two successive rotations). In the example below for ¢ = 3, p = 2, m = 9 and n = 8, matrix entry
(g +1 — 24,1 —) contains the time of removal of subdiagonal element ag4;—2;i-;,

T T T
3 =z z z
2 4 z z z
1 3 5 2z z =z
2 4 6 z z z

3 5 7 z z =z
4 6 8 z =
5 7 9 =z

L 6 8 10

Algorithm 5.1 below, which is by and large the same as in [11] for Fast Givens transformations,
describes a parallel implementation of equations (4.1) for m > n. The matrix A is overwritten

13

with its upper triangular factor R and the original weight matrix W = WO with W'. For each
subdiagonal g—7+1, 1 < j < g, the auxiliary variable A; represents a weight matrix element after
the first of two plane rotations during its elimination. Ay ; has a similar function for the right hand
side vectors s, 1 < h < t, since those are input by columns - as opposed to elements of A which are

addressed by diagonals (let sy ; denote the jth element of s3). Ag-o) holds elements of the original
weight matrix W which are needed for automatic rescaling. In a hardware implementation, Aj,
Ago) and Apj,1 <5< ¢q,1<h<t, correspond to registers.

Algorsthm 5.1.

Instially, A; = A.S-o) = w}o); Apj = 8 j;
fori=1...n+q—1 do sequentially,
for j = max{0,¢ — n,[(g+¢—m)/2]}...min{s — 1,9 — 1} do in parallel,
pi = Aj(agsi-1-2ji-j)" + Weri-2j (ag4i-2j-j)"
Compute a and B according to algorithm 3.1 where

i =1/pj, & = Bjwepi-2isi, [i—2j,1]
Gi: = (2°Ai“q+i—l—2.i,i—-i 2%w +s‘—2j"q+i—2i,t'—i’)
W —2% agyi-2ji-j 2P agqi-1-2j,i-j ’

Ggti-1-2j,i—5 = 2°Pj, Ggti-2j,i—j =0,
-2 -2 0 0
Wopim1-2j = 270G, Aj=27g, AP =wi), .,

forl=1...w—1 do sequentsally by pspelining G; ;, [i-25,1+1]

(aq+i-1—2j,i—j+l) =C:: (aq+i—l—2j,i-j+l))
— e, P ’
Og+i-2j,i—j+H T\ Ggti-zji-jnt

for h=1...t do sequentially by pipelining G, [b,i— 2j]

Shati-1-2j \ _ . . [Bhi
=Gy j .
Ah,j Sh,g+i-2j

The systolic array that implements algorithm 5.1 consists of g processor vectors of w + ¢
processors each. Counting fom top to bottom, vector j is responsible for eliminating subdiago-
nal j,1 < 5 <q. A, W and s; are input to the bottom of the array while R, W' and s), are
available at the top, see Figure 1. Within vector j processors are numbered from left to right,
(5,=h),...,(5,-1),(5,1),... (5, w) of which the first h apply G;; to elements of s; and the re-
maining w to elements of A. Consequently, G;; is computed in processors (7,1) and thereafter
pipelined to the left across processors (5, —1),...(7,—h) and at the same time to the right across
(7,2),...(5,w).

Subject to the three different sets of equations, three different types of processors, sketched
in Figure 2, accomplish the triangularisation. For 1 < j < g, processors (3, 1) compute equations
[¢ = 25,1], processors (5,{ + 1) compute [§ — 25,/ +1], 1 £ I < w — 1, while processors (7, —h)
determine [h,s —2j], 1 < h < t. When idle or receiving no input, processors (j,1) generate identity
rotations. The default input for matrix elements is 0.

Data flow in and out of processor (5,{), 1 <! < w occurs by codiagonals so that succeeding
codiagonal elements enter and leave a processor every other time step. Input and output for
processors (7, —h), 1 < h < t, is by columns, again with successive column elements entering and
exiting every other time step. A partial execution trace for the example p = 3, ¢ =t = 2 can be
found in Figure 3.

14

' r
, s Wl n r12
821 (] 2 122 ris
S'y2 ' r2s 14
o'z wg rss rs r24 rog ris
3'13 1 T44 4 rss z
8’ w4 r45
23 3’ rss
' 14 o
824 ’ 5
, 815
825
¢ ¢ { I ¢ 4 ¢ ¢
! S
i j O j i i
w1 a1y
sn w2 g az1 a 12 a
31 a 22 a 13
21 812 ws a42 032 ass 028 Q24
8 43 34
22 18 w4 ags a G4 a ass
824 315
825
— ({0 " 0) .1
ws = (w.()’wi)’ w, (w.(1w{)

Figure 1: Processor Array forg=p=1t=2.

15

()
Watio1-2j Oq4i-1-26—j

t ¢

Gi - e
11

We+i-2j Bg+i-2ji-j

0 0
Weti—-1-25 = ('”,5.2;-1-2,-, wq-H'—l-zj)’ Wo4i-25 = (w;_g,-_zj,wqﬁ—zj)-
(a) Equations [s — 27, 1].

a' . e s
q+i—-1-25,6—5+

T

a' .. [P)
gHi—1-25i—j+H <+ e— Bg4i—1-25,5—j+

Gij —s - Gij

T

Oq+i—2j,i—j+

(b) Equations [s — 23,1].

(]
Sh,g+i-1-25

!

G;j -— e— Gijj

T

Sh,q+i-2;

(c) Equations [I,s — 27].

Primes indicate quantities computed or altered by a processor.

Figure 2: Processors.

16

In particular, s;,; enters processor (g, —h) g — h steps before ay; enters (g,q + 1) and leaves
processor (1, —h) h steps after a;; leaves (1,1). The weight matrix elements w; = (wio), w;) enter
processor (q,1) ¢ — h + 1 steps before a;; enters the array while they exit (1,1) together with ay;.
Starting the input with w; at t = 1 the computation time comes to

2m+3(g—-1)+t+1.

6. Conclusions

A class of scaled rotations for the parallel solution to weighted multiple linear least squares
problems of finding v} such that

ID(A¢} = si)l| = min [[D(Avi —si)ll, 1<i<4,
v;ER"

for m x n, w-banded matrices, m > n, in time O(m + t) has been presented.

The planar orthogonally connected systolic array for this problem consists of O(w? + tw)
processing elements which perform only the elementary operations {+,#,/}. To satisfy VLSI
requirements, data exchange among processors proceeds on a nearest neighbour basis, and square
root computations are avoided.

Proper scaling, which has been a persistent problem in implementations of fast scaled Givens
rotations, prevents under- and overflow, obviating the need to pivot. A backward error analysis
has shown the algorithm to be as stable as any available.

17

¢ 4 (K, ¢ ¢ ¢ 4
agau
S11 22
<] 821 < W2a21 a12
4 4
312 as
822 11 ws
- 313 le azs
f f FF T f f f
(a)t=6
? ' 4 4 ¢ ¢ s '
311 a12
821 G2z we G2z
- 312 e az22 ais
4 4
829 Wsas2 azs
Gn 313 G2y Gn
«| 8238 < w442 Gss a24
f f F 7 f f f f
(b)t=7
¢ ' + 4 ¢ ¢ ¢ 4
821 0«3022 as
22 812 32 22
- 322 < wsas2 G2s
4 [
813 a24
323 Ga w4 Gn
- 314 |e asq
f f FF f f f
(c)t=8

wi = (0, w)

Figure 8: Partial Execution Trace forp=3,qg=¢t=2.

References

[1] Ahmed, H.M., Delosme, J.M. and Morf, M., Highly Concurrent Structures for Matriz Arsthmetic
and SignalProcessing, Computer, 15(1982), pp. 65-82.

[2] Bareiss, E.H., Numerical Solution of the Wesghted Least Squares Problem byG- Transformations,
Tech. Report 82-03-NAM-03 , Department of Electrical Engineering and Computer
Science,Northwestern University, Evanston, IL 60201, 1982.

[3] Bojanczyk, A., Brent, R.P. and Kung, H.T., Numerically Stable Solution of Dense Systems
of Linear EquationsUsing Mesh-Connected Processors, SIAM J. Sci. Stat. Comp.,
5(1984), pp. 95-104.

[4] Businger, P.A. and Golub, G.H., Linear Least Squares Solutions by Householder Transforma-
tions, Num. Math., 7(1965), pp. 269-78.

[5] Gentleman, W.M., Least Squares Computations by Givens Rotations without Square Roots, J.
Inst. Math. Appl., 12(1973), pp. 329-36.

[6] ———, Error Analysis of QR Decompositions by Givens Transformatsons, Lin. Alg. Appl.,
10(1975), pp. 189-97.

[7] Gentleman, W.M., and Kung, H.T., On Stable Parallel Linear System Solvers, Proc. SPIE Real
Time Signal Processing IV, pp. 19-26, SPIE, San Diego, CA, 1981.

[8] Golub, G.H. and van Loan, C.F, Matriz Computations, The Johns Hopkins Press, Baltimore,
MD, 1973.

[9] Hammarling, S., A Note on Modifications to the Givens Plane Rotation, J. Inst. Math Appl.,
13(1974), pp. 215-8.

[10] Heller, D.E. and Ipsen, I.C.F., Systolic Networks for Orthogonal Decompositions, SIAM J. Stat.
Sci. Comp., 4(1983), pp. 261-9.

[11] Ipsen, I.C.F., A Parallel QR Method Using Fast Givens’ Rotations, Research Report 299 ,
Department of Computer Science, Yale University,New Haven, CT 06520, 1984.

[12] Johnsson, L., A Computational Array for the QR-Method, Proc. Conf. Advanced Research in
VLSI, pp. 123-129, MIT, 1982.

[13] Kung, H.T. and Leiserson, C.E., Systolic Arrays (for VLSI), Sparse Matriz Proceedsings, pp.
256-82, SIAM, Philadelphia, PA, 1978.

[14] Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Prentice Hall, Englewood
Cliffs, NJ, 1974.

[15] Sameh, A.H. and Kuck, D.J., On Stable Parallel Linear System Solvers, JACM, 25(1978), pp.
81-91.

[16] Wilkinson, J.H., The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

19

