A Linear Time Algorithm for Deciding Security

(Extended Abstract)

A K. Jones+
R. J. LiptonTT

L. Snyder++

Carnegie-Mellon University

Tt Yale University

1. Introduction

The theoretical analysis of systems for protecting the security
of information should be of interest to the practitioner as well as the
theoretician. The practitioner must convince users of the integrity of
their programs and files, i.e. he must convince them that the operating
system and its mechanisms will correctly protect these programs and files.
Vague or informal arguments are unacceptable since they are often wrong.
Indeed the folklore is replete with stories of "secure" systems being
compromised in a matter of hours.

A key reason for the abundance of these incidents:is that even a
small set of apparently simple protection primitives can often lead to
complex systems that can be exploited, and therefore compromised, by some
user. But it is precisely this fact, simple primitives with complex
behavior, that lures the theoretician. Our purpose here is to present a
concrete example of a protection system and them completely analyze its
behavior. |

Our motivation for doing this analysis is twofold. The protection
system that we will study is not one we made up, rather it is one that has
been defined, discussed, and studied by those in operating systems. (Denning
and Graham [2], Cohen [1], Jones [4]). This point is most important, for
the space of possible protection systems is exceedingly rich and it is
trivial to think up arbitrary systems to study. We are however not interested
in arbitrary systems, but in systems that are of practical interest.

The above motivation is necessary but not sufficient for us to

establish that these questions should interest the theoretician. Our second

reason for studying these problems is that in a natural way they can be
viewed as "generalizations of transitive closure.” Roughly these protection

questions can be modelled as:

Given: Some directed labelled graph G and a set of rewritting rules R.
Determine: Whether or not there is a sequence of graphs Gl' G

2, eo ey

Gn such that G = Gl’ Gn has property X, and Gi+ follows

1

from G, by some rule in R.

Here property X would of course encode that there was a protection violation
in Gn. Our goal would then be to show that it is impossible to reach such
a Gn’ i.e. that a protection violation is impossible.

A common type of property X is:
there is an edge with label o from vertex p to q.

For these properties our protection questions do indeed look very much like
transitive closure questions. Indeed if the rules R only allowed the
addition of edges, then these problems would be trivial. They do not. The
rules of interest to those in protection, and the rules we will study in
particular, allow new vertices to be added. This simple change of allowing
graphs to "grow new vertices" makes these problems challenging. Indeed

the particular one we will study is no longer even obviously decidable.

Let us now make the above concrete by sketching the particular
protection system we will study. We consider directed graphs whose arcs
are labelled with an r or a w or a ¢. While we will manipulate these graphs
as formal objects it is helpful to keep in mind the following informal

semantics:

1. A vertex corresponds to a "user".
2. r = "read", w = "write", ¢ = "call".
3. If there is a directed arc from x to y with label r (respectively w, c),

then x can read y (respectively write, call).

For example, in the graph

R
o~

x can write y, x can read z, but y cannot write z since this edge is missing.
This protection model, called the take and t system, is now completed

by presenting four rewriting rules.

1. Take: Let x, 'y, and z be three distinct vertices and let there be
an arc from x to y with label r and an arc from y to z with some
label o (0 = r or w or ¢). Then the take rule allows one to add
the arc from x to z with label a. Intuitively x takes the ability

to do o to z from y. We will represent this rule by

L od L v 4
0—0—>0 = > @3

2. Grant: In our representation this rule is

3. Create:

4. Call:

> w‘luji

Intuitively x grants y the ability to do a to z.

In our representation this rule is

S -5

where N is some new vertex. Intuitively x creates a new user

)
that he can both read and write. (Notation: O—0
L
will be used instead of O
w

In our representation this rule is

where N is again a new vertex. Intuitively x is calling a
program g and passing the parameters p. N is then a "process"
that is created to handle this call: N can read g the program

and can do o to the parameters.

An important technical point is this system is monotone in the
sense that if a rule can be applied, then adding arcs cannot change this.
This property is crucial later.

Now that we have seen the rules, let us look at their behavior. We
will start with a simple question: in the graph

* o o
r
v

is it possible of y to r z? The answer is obviously no since there is no

r arc from y to z. But what we mean is:

is there a sequence of rule applications that lead to

a graph with an r arc from y to z?

More generally, say p can a q if there is such a series of rules that leads
to an o arc from p to g. Then our question is : is it true that y can r z?
Clearly, without create, the answer is no since neither take nor grant nor
call can even apply. The following sequence of applications of the rules

shows that the answer is yes:

(ii) x takes (twice)

LR S ~

0
r

1 [XWY c"Q

’

(iii) x grants

2

* ©
'5uo
o—
\' “,W

N

(iv) y takes

This example demonstrates the type of clean graph type problems we will be
studying. Our main theorem is stated in the next section. This theorem
presents a complete answer to the question: is it true that p can x g?
Indeed this theorem leads easily to a linear time algorithm for answering
the question.

A final word about how this theorem contributes to our understanding

of protection. Each user of a protection system needs to know:

what information of mine can be accessed by others;

what information of others can be accessed by me?

The question is vauge in general, but here it is rendered in the simple
question: is it true that p can a g?

The types of protection models studied here have received considerable
attention recently. Our approach is related closely to the work of Harrison,
Ruzzo, and Ullman [3]. They show that what can be called the "uniform
safety problem" is undecidable. Interpreted as a graph model, their
result says that give an arbitrary set of rules (similar in spirit to
take, grant, etc.) and an initial graph, it is undecidable whether or net
there will ever be an arc from p to g with label a. This is a uniform
problem in the sense that the rules are arbitrary. Even when the rules
have to satisfy certain additional constraints the results of [3] and the
results of Lipton and Snyder [5] show that protection is impractically
complex.

Our view here is that since the uniform protection problem is so
difficult and since operating systems require usually only one fixed set
of protection rules, then the nonuniform problem should be studied. As
stated before we choose the take and grant system by studying the protection

literature. /

2. Basic Results

In this section we state and then sketch our main result. All
graphs conéidered are directed graphs with arc labels r, w, oxr'c. 1In
such a graph say P and q are connected provided there is a path from
vertex p to vertex g independent of the senses of the arcs and their

labels. Thus in

9@ o

p and g are connected.

Theorem 1l: Let G be:any graph. The the predicate "p can a q" is true
if and only if
- (1) p énd,q:areaconnected, and
(25$fﬂr gome: vertex X, X ﬂ—§+ g-where B-statisfies: if o .= w.then

B =w;-if a = r then 8% {r,c} ; if o = ¢ then B = c.

It should be clear that this theorem leads to a linear time algorithm
for "p can o 'g". The key therefore is the validity of this theorem.

First, we observe that the conditions (1) and (2) of theorem 1 are
necessary for " p can o g". An induction establishes this. Therefore the
crux is the demonstration that they are sufficient. We will now sketch

this.

: . . o
Lemma 2: Let p = xl,...,xn = g be a rwc path, i.e. either X, — X or

i+l

X, +——9—-xi+l for each 1<i<n-1 and some o € {r,w,c}. Then in this graph

p can o g if x — q.

n-1

This lemma is proved by induction on n and careful examination of
the rules. A basic trick is we can replace x - y by x - vy by

proceeding as follows:

C
*o-—-—-—)tf'
(i) create
* C
oV
rw
0
Ny
(ii) call
+ C 3
o
tWw n
N

(iii) grant

S N
rd\ C n
N, rw N 2
(iv) take c

10

Lemma 3: Let P =.xl,...,x =dq, X 1 be a rwc path with g = X — _x

n+

n n+1

Then p can o g.

The proof of this lemma breaks down into three cases depending on
what o is. We also use lemma 2 critically in its proof. It is interesting
to note that during this proof it is necessary to have created vertices
create other vertices. Once this lemma is proved we have essentially
established theorem 1.

Although we have a necessary and sufficient condition for "p can a
q" we have not solved the whole security problem. This is because it is
necessary to dichotomize the elements of the system (i.e. the vertices of
the graph) into two classes -- subjects and objects. This separation
is needed to capture the distinction between programs (subjects) and the
more passive objects such as files. The consequence of dichotomizing the
vertices is that the rules take, grant, call and create are operations that
can only be initiated by subjects, i.e. in the graphical definitions of
these operations given above, the x vertex must be a subject in each case.
This requirement adds a new dimension to the problem.

We have not yet fully analyzed this case, but we have resolved the

question for a wide class of systems.

Theorem 4: There is a polynomial time algorithm to decide if the predicate "p
can o g" is true for any graph G with subject-object dichotomization provided

G contains no directed object cycle.

The problem is still open for general subject-object graphs.

11

3. Conclusions and Extensions

We have presented a clean and simple model of a special security
system from the literature. We. have shown a necessary and sufficient
condition for the predicate "p can x q" which is linear time checkable.

This predicate is basic in answering security questions.

In addition, we have only scratched the surface of what promises
to be a rich area of research. First, for the present model we must solve
the "p can a g" predicate preblem for general graphs for the subject-
object case. We also conjecture that the polynomial algorithm of theorem
4 can be made linear or nearly so. There is also the problem of representing
other security primitives (from the literature) in this model as well as
analyzing other predicates.

Finally, and maybe most importantly,vthere is the question of finding
graph rules that implement moere complex security policies. The policies
implemented by take-grant systems are simple, although they are by no means
trivial. This is the first precise statement of these policies and thus we
are only now aware of how undiscriminate it is. But we would probably
prefer more discriminating security policies than these and so now the
synthetic phase of research could be initiated. The goal would be complex

protection policies with efficient verification methods.

References

E. Cohen.
Ph.D. Thesis (in progress), Carnegie-Mellon University,

P. J. Denning and G. S. Graham.
Protection principles and practice.
AFIPS Conference Proceedings 40:417-429, 1972.

M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
On protection in operating systems.
Proceedings of the 5th annual SIGOPS Conference, 1975.

A. K. Jones.
Protection in programmed systems.
Ph.D. Thesis, Carnegie-Mellon University, 1973.

R. J. Lipton and L. Snyder.
Synchronization and security.
In preparation, 1976.

1976.

12

