Completeness of an Operational Semantics
for First-Order Lazy Narrowing

Juan C. Guzman and Paul Hudak

Research Report YALEU/DCS/RR-525
July 1987

This research was supported in part by Funcacién Gran Mariscal de Ay-
acucho (fellowship contract F-EX-84.1044) and the National Science Foun-
dation (grant DCR-8403304).

Completeness of an Operational Semantics for
First-Order Lazy Narrowing

Juan C. Guzmén and Paul Hudak

July 1987

Yale University
Department of Computer Science!

Abstract

We have studied several evaluation strategies suitable for lazy narrowing — a gen-
eralization of normal-order reduction in the lambda calculus that permits logical vari-
ables. We propose an operational semantics based on proof-streams to model this
computational paradigm. We show that, in general, languages based on narrowing
are not confluent — this is a non-intuitive result derived from the fact that narrowing
has the “side-effect” of refining environments. However, we further show that if an
outermost rewrite strategy is used, resulting in lazy narrowing, the language becomes
confluent. Finally, our operational semantics is complete in that any solution obtain-
able by lazy narrowing via a finite number of of reductions and unifications is also
obtainable (in finite time) by our semantics, and no inconsistent answers are found.

1 Introduction

The debate over which model of computation is better, logic or functional programming.
has been around long enough without either of these paradigms being a clear winner. Each
has its advantages and drawbacks compared to the other one, so that several groups have
proposed new models of computation that gather the best features of logic and functional
programming and avoid their drawbacks. LOGLISP (8], FUNLOG [11], TABLOG [4] and
FRESH [9] are just a few of many such attempts. A particularly attractive approach is
languages based on narrowing, studied most extensively by Reddy [5,6]. We have thus

1This research was supported in part by Fundacién Gran Mariscal de Ayacucho (fellowship contract
F-EX-84.1044) and the National Science Foundation (grants DCR-8403304 and DCR-8302018).

adopted narrowing as the basis of our research in combining logic and functional pro-
gramming [3], and have concentrated in particular on the operational semantics of lazy
narrowing, corresponding to normal-order reduction in the lambda calculus.

Narrowing will be introduced more formally in the next section. Informally, it arises in
the context of functional languages when the “communication” between formal and actual
parameters that occurs at function application is modelled by unification, rather than
by pattern-matching. If, in addition, the goal of lazy evaluation is maintained, non-trivial
complications arise. Among these is the fact that, unlike in the case of functional languages,
there are evaluation strategies that fail to yield proper results for some programs. We shall
show examples of this shortly.

Our accomplishment can be summarized as follows: First we note that different eval-
uation strategies applicable to narrowing essentially provide different interpretations to
programs, and that the most general evaluation strategy is ambiguous.

Secondly, we provide a formal operational semantics (based on proof-streams) for lazy
narrowing (one such evaluation strategy). Using proof-streams not only aids reasoning
about the semantics, for example in the way described in the next paragraph, but also
makes the construction of an interpreter fairly easy, reducing essentially to a direct real-
ization of the proof-stream semantics.

Thirdly we prove that lazy narrowing is a confluent evaluation strategy, i.e.. when
several reducible expressions may be reduced, any choice will lead to the same set of
solutions.

Finally, we prove the said semantics to be correct and complete with respect to lazy
narrowing. We prove that any solution to a program obtainable by lazy narrowing via a
finite number of reductions and unifications is also obtainable by the proposed semantics.
Conversely, we prove that any solution computable by our semantics can be cast in the
lazy narrowing paradigm.

From a global perspective, our research reveals the non-trivial subtleties that arise
with lazy narrowing. The operational semantics is considerably more complex than the
corresponding semantics of strict narrowing, and our completeness proof is the first that
we know of demonstrating the correctness of the algorithm.

In the next section we formally introduce narrowing, lazy narrowing, and provide ex-
amples of the behavior of different evaluation strategies on some programs. In Section 3
we propose a semantics for lazy narrowing. We prove in Section 4 that the semantics pre-
sented correctly describes this model of computation. Finally, in Section 5, we give some
concluding remarks and possible directions for future work.

2 Preliminary Discussion

Narrowing is the semantics that results from extending a typical functional language se-
mantics in such a way that when reducing function applications, the communication es-
tablished between formal and actual parameters is by unification rather than by pattern-
matching. This results in the callee’s ability to communicate to its environment by affecting
its actual parameters via logical variables. Of course, functions still reduce to values — the
only thing that has changed is that these languages allow the introduction of “unknown
values” represented by logical variables. We will refer to languages based on narrowing as
N-languages, and to those based on lazy narrowing as NL-languages.

For the purpose of the following examples, [val,/Xj,...,val,/X,] is an environment
where X is bound to val;. ((s;,6,),...,{Sm,0m)) represents alternate solutions s;, each of
them associated with environment 6;, and thus, its own bindings. We refer to this as a
proof-stream when it represents all possible solutions to a program and goal. Consider the
following program:

append(nil,C) = C.
append(cons(A,B),C) = cons(A,append(B,C)).
reverse(nil) = nil.
)

reverse(cons(A, B) append(reverse(B), cons(A, nil)).

For the goal
append(cons(1,n1l), cons(2,nil))

a proof-stream that captures the correct behavior of the program is
((cons(1, cons(2,nil)), [cons(2,nil)/Ca, cons(2,nil)/Ci,1/Ay,nil | B]))

where A,’s, B;’s and C;’s are logical variables introduced by the interpretation of the goal.

2.1 Confluence of Lazy Narrowing

In N- and NL-languages, the reduction of a function application will result not only in
the value of the application but also in bindings to logical variables. The use of lexical
environments insures that referential transparency of logical variables is retained. However,
unlike functional languages, when both applicative-order and normal-order narrowing exist
for a given program and goal, the results might differ in that the environments generated
by applicative-order narrowing may be more refined than their corresponding normal-
order ones. Furthermore, expressions in either of these languages may have more than one
possible evaluation, and some of them may be non-terminating.

To illustrate this fact, suppose there is an outermost reduction strategy S, (only func-
tion applications that are not inside any other function application are chosen for re-
duction). Suppose there is another strategy S; that is innermost (selects only function
applications that do not have other applications as subexpressions). Finally, imagine a
strategy S, which is a more general reduction strategy — the application to be reduced
next is selected (possibly non-deterministically) regardless of its relative position in the
goal expression. A '

It is often the case that, when any of these strategies S is repeatedly applied to an
expression e, it will evolve into another one € that cannot be further reduced. We call € an
S-normal-form. In the A-calculus when normal forms are found under the three strategies,
they are the same normal form. This is a direct consequence of the Church-Rosser theorem
for the A-calculus [10].

The perspective for narrowing is somewhat different. In contrast to the A-calculus, in
narrowing, an application can be reduced in different ways (by different equations). Thus,
there is no notion of unique normal form, but rather, a goal can be reduced to several
different normal forms, each of which modifies the environment through instantiation of
logical variables in a distinctive way. Still, there is a notion of confluence: if there are two
function applications to be reduced, the choice of a particular one over another should not
affect the solutions found. It is our belief that confluence is a desirable property of any
evaluation strategy.

for a certain evaluation strategy to be intuitive, it must be confluent.

Example 1. Consider the following program:

f(nil) = nal.
fleons(X,Y)) = cons(h(g(X,Y),X), f(Y))
g(X,X) = X.
h(X,)Y) = Y.

Evaluation of the goal f(cons(Vi,cons(Vy,nil))) using S, produces its argument
((cons(Vy, cons(Vy,nil)))). The goal evaluates to cons(cons(nil, nil), cons(nil,nil)) us-
ing the S; strategy. If the strategy used is Sy, the result produced might be either of the
previous two, or possibly one of two others, depending on the exact order of reductions
chosen. As this example suggests, S, is not a very “good” evaluation strategy, because its
interpretation of a program might be ambiguous; i.e., the strategy is not confluent.

Confluence can be achieved, however, if the reduction strategy is fixed. We advocate
S,, which in A-calculus is also called normal order reduction, for the same reasons it is
advocated by the functional programming community. For example, it is a well-known
result that, in A-calculus, S; is not a safe evaluation strategy — there are expressions for
which there is a normal form that cannot be obtained via innermost reduction. Since
A-calculus is subsumed by our paradigm, this property is inherited. Also, solutions found

by S, subsumes solutions found using other strategies because any reduction performed by
S, must also be performed by any other strategy.

Note that S,, S; and S; do not represent fixed evaluation strategies. They represent
families of strategies that satisfy certain property, as in the case of S, “only outermost
function application are reduced”. Also note that every strategy in family S, is also in
family S;. In the next sections, we will exhibit a very representative strategy from the
family S, in the sense that this strategy captures the “best” behavior of all S, strategies.
By abuse of language, we may refer to S, as a single strategy meaning some strategy in
this family.

2.2 Lazy Narrowing

The next example highlights the behavior of lazy evaluation in the presence of multiple
narrowings of a single expression.

Example 2. Consider the NL-language program:

f(LY) = 1.
f(0,Y) = Y.
9(1) = g(1)
g(0) = o.
h(0) = o.

and the goal f(g(X),h(X)). Since h is only defined for 0, any solution to the above goal
must narrow X and, therefore, g(X) to 0, and thus the whole expression will be reduced
to 0. This is the only correct solution, but how does an evaluator find it?

Suppose the evaluator initially has no binding for X and it chooses to reduce g(X) ac-
cording to the first equation for g. If the evaluator continues evaluating this subexpression
depth-first, it will loop forever. On the other hand, a breadth-first search of solutions (i.e.,
an interleaving strategy) would also explore the second equation for g, thus discovering
the solution mentioned above, and binding X to 0. It will soon discover that there is no
other solution. The resulting (and correct) proof-stream can be written: ((0,[0/X])).

Example 3. We use for this example the same program as above, but with the goal
f(g(1),h(1)). There is clearly no substitution of variables that will satisfy this goal — the
proper proof-stream is (). This answer will indeed be found if a breadth-first strategy is
used in evaluating the subexpressions in the goal, because the evaluation of g(1) would be
interleaved with h(1). However, a depth-first strategy will try reducing g(1) and will not
terminate, thus never concluding that there are no solutions — the (incorrect) proof-stream
returned by such a strategy is effectively L.

These three examples demonstrate the need for different evaluation mechanisms for a
proper (meaning lazy yet complete) evaluation strategy for NL-languages:

5

1. Lazy Reduction: Expressions should only be reduced “on demand.” This makes
possible the definition of non-strict functions, as in Example 1, and can be achieved
by using a normal-order reduction strategy, or more precisely, by always choosing an
outermost reducible expression.

2. Completeness is ensured by evaluating the “computational tree” in a breadth-first
fashion:

(a) Since evaluation of an expression may occur in environments that will eventually
be discarded, and yet the current evaluation of the current environment may be
non-terminating, all subexpressions that need to be evaluated should be given
a chance to refine the environment, as in Example 3. This can be achieved by
evaluating the goal subezpressions breadth-first. This technique is similar to
AND-parallelism in Prolog.

(b) In order to be able to enumerate all possible normal forms that an expression
may have (as in Example 2) it is necessary to evaluate all possible reductions
of any expression breadth-first. This technique is similar to OR-parallelism in
Prolog.

Note the difference between these two items, the former is similar to assert in a
functional language that several subexpressions will have their evaluation interleaved.
It is also less expensive to implement than the latter; this essentially establishes
that the “abstract machine” that evaluates a goal is actually “forked” to evaluate
all possible normal forms of the goal. This behavior does not have counterpart in
evaluation of A-calculus expressions.

In the following section a formal semantics will be given that captures these behaviors.

3 Operational Semantics

There are several suitable frameworks for expressing the semantics that we require; we
have chosen a method based on proof-streams [1]. Intuitively, a proof-stream for a program
and a goal is the set of all proofs of the goal represented as a “lazy list” (or stream) of
environments, each containing the bindings necessary for one proof and, for N- and NL-
languages, the value of the goal being evaluated. Demand-driven evaluation of the list
provides a convenient tool for expressing backtracking, where exploration of a particular
branch in the search tree directly corresponds to evaluation of one of the elements of the
proof-stream.? Another advantage is that a proof-stream semantics lends itself well to the

2 A more primitive encoding might use continuations to explicitly represent the search; however we find
streams simpler and more intuitive.

construction of an interpreter. Indeed, we have built an interpreter that exactly mimics
the proof-stream semantics for an NL-language.

Our semantics, although operational, is expressed in a denotational style — the meaning
of an expression is given as a composition of the meanings of the expression’s constituent
components. Thus we adopt the standard notational conventions of denotational seman-
tics (as outlined in [2]): an abstract syntax is defined, semantic domains are established,
and semantic functions are given mapping syntax to elements of appropriate semantic do-
mains. Although the utility of denotational semantics in defining the semantics of a wide
range of programming languages is well known, its use in defining the semantics of logic
programming languages has been limited. Despite this, we feel that its use is justified. The
framework provides us with a formal yet clear specification tool that, even in the case of
a purely operational semantics, frees us from the intricacies of a particular programming
language (such as Lisp as used in [1]) or the ambiguities of algorithms expressed in English
(such as is often found in operational descriptions of Prolog). It is especially useful in
defining the semantics of languages where reduction and resolution coexist, such as the
class of N- and NL-languages that we consider in this paper.

Our notation can be summarized as follows: Double brackets are used to surround
syntactic objects, as in “N [e;] [ez].” A finite sequence of zero or more syntactic elements
¢ is written c¢*; the empty sequence is represented by €. Thus ¢’ = ¢* is equivalent to

"=¢|c|ecc. “Pattern-matching” is often used to destructure the abstract syntax; for
example “P[c’rest] = body” destructures an element of ¢*.

We write “d € D = Exp” to define the domain (or set) D with “canonical” element
d. A sequence of semantic values is called a stream, and is defined by a recursive domain
equation such as D = {({)} + (Bas x D), where () represents the empty stream. A specific
stream may be written (di, ..., d,), or may be constructed using " and ", infix operators for
(lazy) cons and append, respectively. Pattern-matching is also used to destructure streams,
as in “map f a’rest = body.” When necessary, domains are assumed to be chain-complete
partial orders; the bottom element in a domain D is denoted Lp. For simplicity we omit
most domain/sub-domain coercions, since the context usually makes the meaning clear.
Finally, the traditional map function is quite useful with streams, and is defined by:

map [() = ()
map f a'rest = (f a)"(map f rest)

3.1 Abstract Syntax

k € Konst Constants

¢ € Const Constructors

f € Funct Function names
v € LogVar Logical Variables

We assume that each element of Const and Funct has a fixed arity, and that elements
having different arity are never equal. From these primitive syntactic domains the following
composite domains are defined:

e,z,y,r € FExpr u= k|v]|ec(er,...,en) | f(€1yeeer€n)
z,y € Exprt = €1,...,6n
h € Head = f(z)
eq € FEgquation = h=e
P € Program := eq"

We also require that the left-hand-sides of equations be pairwise non-narrowable. This
condition ensures confluence of the language — once the condition is met, all function
applications that have already been reduced and whose parameters narrow must have been
reduced by the same equation. Henceforth we assume that all programs are syntactically
correct.

3.2 Semantic Domains and Auxiliary Functions

Value = EzprU {v} Values
6 € Env = ((LogVar x LogVar)* x (LogVar — Value))
_ Variable Environments
¢ € FEnv = Funct — Expr — Cond — Env — (Ctzt x RPrfStrm)
Function Environments

k € Ctzt = Naturals Contexts

o0 €Cond = Ctxt — State — PrfStrm Conditions
TeCondQ = {()}+ (Cond x CondQ) Condition Queues
State = Env x CondQ States

m € PrfStrm = {()} + (State x PrfStrm) Proof-Streams

m € RPrfStrm

{()} + (Ezpr x State x RPrfStrm) P.S. with Answers

Note that the domain Value contains v. This element denotes the value of unbound
(logical) variables.

Ctzt is introduced only for variable renaming. Its presence enables us to express a-
conversion functionally (and thus denotationally).

Env is the domain of environments, which associate logical variables with values. Each
environment is a pair (R, u) where R is an equivalence relation among variables (when two
variables have been bound to one another they are in the same equivalence class), and p
maps variables to values. Environments are built up from the initial environment 6,,;;:

Oinit = let Rinir = {{v,v)|v € LogVar}
Kinit = A V. V
in (Rinits Hinit)

which is then incrementally updated according to the following definition of environment
update:

(R, i)va /1] = (RU{{01,92)|01 € [v1]R, b2 € [va] R}, uuva/v1s .., w02 [V10]), Yvy; € [v1]r
(R,m)[2/v1] = (R,y[:i:/vn,...,:i:/vl,,]), Yuy; € [u1]r

6[y/z] denotes the environment resulting from updating 6 so that z is bound to y. = must
be a non-bound variable in 6§, y may be any expression. As a result of this update, all
variables bound to z in 6 will have as its value the value of the expression y in the updated
environment. [v]r denotes the equivalence class of v with respect to R. Note that there is
no need for variable chaining with this approach.

Accessing values in an environment is defined via the function val:
val : Env — Expr — Value

val (R,p) e = if e € LogV ar then pe else e

This function retrieves the value of a variable in an environment, but for convenience it also
behaves as the identity function when applied to something other than a logical variable.

Note that (val ((8[[y]/[z]]))[1/[¥]]) [2]) returns 1, not [y].

The breadth-first evaluation strategy (whether for AND- or OR-parallelism) requires
not only a representation for delayed evaluations, but also a queue to hold those delayed
objects. The former is accomplished by a condition (€ Cond) that is similar to a con-
tinuation in conventional denotational semantics. A queue of conditions is represented as
a sequence using the domain CondQ. Elements of CondQ are used in different places,
depending on the type of evaluation being delayed. The state of the computation at any
time consists of the current environment and current condition queue, and is captured by
the domain State. The proper way to view a state (§,X) is that 6 represents a correct
solution contingent upon the success of the conditions in .

Note the two kinds of proof-streams: ones with results (RPrfStrm) and ones without
(PrfStrm). Elements of the former type are used to express the outcome of reduction.
Elements of PrfStrm express the outcome of narrowing. This agrees with the intuition
that the reduction of an expression yields a value and possibly refines the environment,
whereas narrowing two expressions only refines the environment. Both types of proof-
streams may have conditions but the proof-stream that holds the final answer will have an
empty condition queue. The function that coerces proof-streams of states to proof-stream
of results and states is PStoRPS:

PStoRPS : Expr — PrfStrm — RPrfStrm

PStoRPS [e] m =map (A (6,Z). ([e].0,)) =

We use the function app_map that expects a function, a context and a list, returning
an updated context and list. The new list is the result of applying the function to each
element of the original list, updating the context each time.

app-map f k() = ()
app-map f k a'rest = let (k;,m)=[kKka
(K2, my) = app-map [K; rest
in (kq,m "m3)

Finally, define the function alpha : Ctxt — Ezxpr* — (Ctzt x Ezpr*) which performs
an “a-conversion” of its argument. That is, (alpha K e) returns an expression identical to
e except that all variables have been renamed with unique identifiers not used so far. This
is used to prevent name clashes when evaluating the same expression in different contexts.?

3.3 Semantic Functi.ons

N: Ezpr — Exzpr — FEnv — Ctxt — State — (Ctzt X PrfStrm) Narrowing
£ : Ctxt — CPrfStrm — (Ctxt x PrfStrm) Evaluate Conditions
R: Funct — Exzpr — Ctxt — State — (Ctxt x RPrfStrm) Reduction
P: Program — Expr — Expr — PrfStrm Evaluate Program

There are two primary semantic functions: N (narrow) and R (reduce). R defines
the reduction that takes place when a function application occurs. It uses N (instead of
pattern-matching) to communicate the environments of the caller and callee. N is similar
to unification, except that reduction of function application is permitted. Figure 1 contains
the definition of these functions.

A condition is created by the partial application of one of these semantic functions —
for example, 0 = N [e1] [ez] . Such a condition is later resumed by passing to it the
remaining arguments; namely, the context and the state that are current at the time of
resumption — for example, (¢ k (f,L)). This provides a general framework for delaying
the actual refinement of the environment.

At first glance the semantics in Figure 1 may appear quite complex, but in fact it is
relatively straightforward. Most of the complexity is due to two factors:

1. We have insisted that contezts be manipulated ezplicitly. Most other accounts of
operational semantics for logic-based languages leave such mechanisms implicit, and

3An often-used implementation strategy is to use an increasing sequence of integers for the purpose of
generating new variables, although other techniques may be used for this purpose.

10

AR

= case val 6 [e;]],val 6 [e;] of

@] 121 /@) :
[e(erss-- -, ein)], [e(e
€ k()

€k (0,0) '

E.k (0,0°T) '
PfAE) = e,
fl(ilh) — e].l'l.:

fn (z—:nl“) — ent,:]

D (%, (6, ZN)
2 (ks ((0lle2]/[ea]l), 2N
(ks ((Ollen]/Teal), 2

let (k1,m) = (¢ [f] [9] < (6,%))
in (K1, map (A ([],6,Z). (6, (N [z] [r] #))) m)

..... 62,,)]} :
let o; = (N [eu] [ez] ©)s i=1,.,n
in (k, ((6, 2" (01,...,0n)))) .
() otherwise
(r, ()
let (k1,m) = (& & 7)
in (k1, (6, () 'm)

let (k,,m) = (0 k (6,%))
in &, ky 77°m,

let o = [(R [£i])/f1, s (R [fa])/]
R [7]=A[al « (6.5).
let g & ([Z],[e]) =
let k1, ([2'], [€])) = alpha & ([2'], [€])
('c%”?) = (N ﬂi,]] ﬂg]} ¥ K1 (0’2»
in (K2, (PStoRPS [€'] m))
in app-map g & ([["]),.... (2], [)
in A Je;] [e2]
let (k,m) = N [e1] [e2] @ Kinit (Binits ()

iné. km

Figure 1: Semantic Functions

11

if we were to do the same our equations would appear less cluttered. However, since
our goal from the outset has been a rigorous proof of completeness, we did not wish
to leave any behavior implicit.

o

The mechanism to handle breadth-first evaluation, namely the condition queue, is
cumbersome, although the principle upon which it lies, namely to perform incremen-
tal evaluation of several paths in “parallel”, is quite simple.

Hopefully the following paragraphs will help clarify the meaning of the semantic equations.

As an overview, N and R express the semantics of lazy narrowing and reduction re-
spectively. The technique used in both of them is that only a small amount of work is done
in each equation before returning a conditioned proof-stream that expresses how to finish
the work initiated there. No constraints are made on how the conditions in the resulting
proof-stream must be executed; this task is left to €. £, can be thought of as a “scheduler”
that interleaves the execution of conditions, not only within one proof (environment) but
also interleaving the refinement of several environments. P gives meaning to a program
— it tailors the function environment that associates meaning to function names from the
definition of the equations that represent the program. It is in this function environment
that expressions are narrowed. In the following paragraphs the semantic functions are
described in detail.

Narrowing (N). Narrowing an unbound logical variable (not demanded yet) v with
another expression e simply returns an environment in which v = e. Narrowing of two
objects created by the same constructor (such as a list) causes delayed evaluation of the
arguments; this is done by adding conditions for the narrowing of the corresponding ar-
guments to the existing condition queue. Narrowing an application with an expression
(including an already demanded variable) amounts to reducing the application to the
right-hand-side of some matching equation (via a look-up in ¢), and then continuing the
narrowing process on the resulting proof-stream. Narrowing of a demanded variable v to
either another demanded variable or a constructor e also amounts to returning an envi-
ronment in which v = e. Narrowing of two constants succeeds only if both constants are
the same. Otherwise, the narrowing of the expressions fails (returning an empty stream).

Reduction (R). The reduction of an application e is accomplished by finding an
equation eq whose left-hand-side successfully narrows with e, and returning an environment
where e is then bound (with appropriate substitutions) to the right-hand-side of eq. It is
important to note that reduction performs only one step — namely, the binding of formal
parameters to actual parameters in an application; this is crucial to maintaining the lazy
evaluation semantics.

Evaluation of conditions (£.). & simply “coerces” a proof stream with conditions
to one without. A condition is resumed not only in the current environment (instead of
the one in effect when the expression was suspended), but also under the contingency of

12

the current conditions. This is why a condition is a function from environment/condition
pairs to proof-streams. The resumption of a condition, of course, yields another proof
stream, since several proofs may be found. Thus the coercion involves appending these
proof streams together.

Program evaluation (P). We have defined as program evaluation a function that
takes a program and two expressions and returns the proof-stream of all possible (lazy)
narrowings of the two expressions starting with the initial variable environment (6init) and
a function environment that encapsulates the meaning of the program.

4 Correctness of the Semantics

In the previous section we presented an operational semantics for lazy narrowing, but still,
we have not formally answered the question ts lazy narrowing a confluent paradigm of
computation? We showed that unrestricted narrowing (following S, evaluation strategy) is
not confluent. Although we presented some examples where lazy narrowing was confluent,
we have not proved it in all cases. Furthermore, the presentation of a semantics for such
a paradigm raises questions as to how faithfully the semantics represents the paradigm.

In this section we not only address the question of confluence, but we also answer two
other questions: (1) Is the semantics correct, or does it generates solutions that are not
computable by lazy narrowing? (2) Is the semantics complete, or are there lazy narrow-
tng solutions that cannot be generated by the semantics? We first introduce some basic
definitions, and then attempt to answer these questions.

4.1 Basic Definitions

Suppose we would like to narrow two expressions e; and e;. The natural way to do it is by
structurally narrowing subexpressions of e; to corresponding subexpressions of e;. If we
view expressions as trees, we would test their roots for local equality and, if they are equal,
we would proceed to compare respective subexpressions. Our notion of local equality is
provided by the following definition of structural agreement of two expressions:

Definition 1 Structural Agreement. Two expressions structurally agree iff either (1) both
expressions are the same variable or constant, or (2) both expressions are constructors of
the same type with the same number of arguments. Two expressions structurally disagree

iff they do not structurally agree.

Note that a function application structurally disagrees with all expressions.

13

References

[1] M. Carlsson. On implementing prolog in functional programming. In Intl Sym. on
Logic Prog., pages 154-159, IEEE, February 1984.

[2] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF (LNCS 78). Springer-
Verlag, New York, 1979.

[3] P. Hudak and J. Guzmidn. A proof-stream semantics for lazy narrowing. Research
Report YALEU/DCS/RR-446, Yale University, Department of Computer Science,
December 1985.

[4] Y. Malachi, Z. Manna, and R. Waldinger. Tablog: the deductive-tableau program-
ming language. In Proc. Sym. LISP and Functional Prog., pages 323-330, ACM,
August 1984.

[5] U.S. Reddy. Narrowing as the operational semantics of functional languages. In Int’l
Sym. on Logic Prog., IEEE, 1985.

[6] U.S. Reddy. On the relationship between logic and functional languages. In Functional
and Logic Programming, pages 3-36, Prentice-Hall, 1985.

[7] A. Robinson. A machine-oriented logic based on the resolution principle. JACM,
12:23-41, 1965.

[8] J.A. Robinson and E.E. Sibert. Loglisp: motivation, design and implementation. In
Logic Programming, pages 299-314, Academic Press, 1982.

[9] G. Smolka. Fresh: a higher-order language based on unification. In Functional and
Logic Programming, pages 469-524, Prentice-Hall, 1985.

[10] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. The MIT Press, Cambridge, Mass., 1977.

[11) P.A. Subrahmanyam and J-H. You. Funlog = functions + logic: a computational
model integrating functional and logic programming. In Int’l Sym. Logic Prog.,
pages 144-153, IEEE, 1984.

20

