
We present a randomized algorithm for the approximate nearest neighbor problem in d-
dimensional Euclidean space. Given N points {xj} in R

d, the algorithm attempts to find
k nearest neighbors for each of xj , where k is a user-specified integer parameter. The
algorithm is iterative, and its CPU time requirements are proportional to T ·N ·(d ·(log d)+
k · (d + log k) · (log N)) + N · k2 · (d + log k), with T the number of iterations performed.
The memory requirements of the procedure are of the order N · (d + k).
A byproduct of the scheme is a data structure, permitting a rapid search for the k nearest
neighbors among {xj} for an arbitrary point x ∈ R

d. The cost of each such query is
proportional to T ·(d · (log d) + log(N/k) · k · (d + log k)), and the memory requirements for
the requisite data structure are of the order N · (d + k) + T · (d + N).
The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed
by a local graph search. We analyze the scheme’s behavior for certain types of distributions
of {xj}, and illustrate its performance via several numerical examples.

A Randomized Approximate Nearest Neighbors

Algorithm - a short version

Peter W. Jones†, Andrei Osipov‡, Vladimir Rokhlin⋆

Research Report YALEU/DCS/TR-1439
Yale University

January 13, 2011

† This author’s research was supported in part by the DMS grant #0602635 and the ONR
grants #N000140910108, #N000140910340; ‡ this author’s research was supported in part
by the AFOSR grant #FA9550-09-1-02-41; ⋆ this author’s research was supported in part
by the ONR grant #N00014-10-1-0570 and the AFOSR grant #FA9550-09-1-02-41.

Approved for public release: distribution is unlimited.
Keywords: Approximate nearest neighbors, randomized algorithms, fast random rotations

1

1 Introduction

In this paper, we describe an algorithm for finding approximate nearest neighbors (ANN)
in d-dimensional Euclidean space for each of N user-specified points {xj}. For each point
xj , the scheme produces a list of k ”suspects”, that have high probability of being the k
closest points (nearest neighbors) in the Euclidean metric. Those of the ”suspects” that are
not among the ”true” nearest neighbors, are close to being so.

We present several measures of performance (in terms of statistics of the k chosen
suspected nearest neighbors), for different types of randomly generated data sets consisting
of N points in R

d. Unlike other ANN algorithms that have been recently proposed (see
e.g. [1]), the method of this paper does not use locality-sensitive hashing. Instead we use
a simple randomized divide-and-conquer approach. The basic algorithm is iterated several
times, and then followed by a local graph search.

The performance of any fast ANN algorithm must deteriorate as the dimension d in-
creases. While the running time of our algorithm only grows as d · log d, the statistics of the
selected approximate nearest neighbors deteriorate as the dimension d increases. We provide
bounds for this deterioration (both analytically and empirically), which occurs reasonably
slowly as d increases. While the actual estimates are fairly complicated, it is reasonable to
say that in 20 dimensions the scheme performs extremely well, and the performance does
not seriously deteriorate until d is approximately 60. At d = 100, the degradation of the
statistics displayed by the algorithm is quite noticeable.

An outline of our algorithm is as follows:

1. Choose a random rotation, acting on R
d, and rotate the N given points.

2. Take the first coordinate, and divide the data set into two boxes, where the boxes are
divided by finding the median in the first coordinate.

3. On each box from Step 2, we repeat the subdivision on the second coordinate, obtain-
ing four boxes in total.

4. We repeat this on coordinates 3, 4, etc., until each of the boxes has approximately k
points.

5. We do a local search on the tree of boxes to obtain approximately k ”suspects”, for
each point xj .

6. The above procedure is iterated T times, and for each point xj , we select from the
T · k ”suspects” the k closest discovered points for xj .

7. Perform a local graph search on the collections of suspects, obtained in Step 6 (we
call this local graph search ”supercharging”). Among k2 ”candidates” obtained from
the local graph search, we select the best k points and declare these ”the suspected
approximate nearest neighbors”, or ”suspects”.

The data structure generated by this algorithm allows one to find, for a new data point y,
the k suspected approximate nearest neighbors in the original dataset. This search is quite
rapid, as we need only follow the already generated tree structure of the boxes, obtained in

2

the steps listed above. One can easily see that the depth of the binary tree, generated by
Steps 1 through 4, is log2(N/k). This means that we can use the T trees generated, and
then pass to Step 7.

Almost all known techniques for solving ANN problems use tree structures (see e.g. [1],
[2], [3]). Two apparently novel features of our method are the use of fast random rotations
(Step 1), and the local graph search (Step 7), which dramatically increases the accuracy
of the scheme. We use the Fast Fourier Transform to generate our random rotations, and
this accounts for the factor of log d that appears in the running time. Our use of random
rotations replaces the usual projection argument used in other ANN algorithms, where one
projects the data on a random subspace. As far as we know, the use of fast rotations
for applications of this type appears first in [3] (see [4] and the references therein for a
brief history). The use of random rotations (as in our paper) or random projections (as
used elsewhere in ANN algorithms) takes advantage of the same underlying phenomenon;
namely the Johnson-Lindenstrauss Lemma. (The JL Lemma roughly states that projection
of N points on a random subspace of dimension C(ε) · (log N) has expected distortion
1 + ε, see e.g. [5].) We have chosen to use random rotations in place of the usual random
projections generated by selecting random Gaussian vectors. The fast random rotations
require O(d · (log d)) operations, which is an improvement over methods using random
projections (see [6], [7]).

The N × k lookup table arising in Step 7 is the adjacency matrix of a graph whose
vertices are the points {xj}. In Step 7 we perform a depth one search on this graph, and
obtain ≤ k + k2 ”candidates” (of whom we select the ”suspects”). This accounts for the
factor of k2 in the running time. Due to degradation of the running time, we have chosen
not to perform searches of depth greater than one.

The algorithm has been tested on a number of artificially generated point distributions.
Results of some of those tests are presented below.

The paper is organized as follows. In the first section, we summarize the mathematical
and numerical facts to be used in subsequent sections. In the second section, we describe
the Randomized Approximate Nearest Neighbors algorithm (RANN) and analyze its cost
and performance. In the third section, we illustrate the performance of the algorithm with
several numerical examples.

2 Mathematical Preliminaries

In this section, we introduce notation and summarize several facts to be used in the rest of
the paper.

2.1 Degree of contact

Suppose that d ≥ L > 0 are positive integers. Suppose further that

σ = σ1 . . . σL, µ = µ1 . . . µL, σi, µj ∈ {+,−} (1)

are two words of symbols +,− of length L. We define the degree of contact Con(σ, µ)
between σ and µ to be the number of positions at which the corresponding symbols are

3

different. In other words,

Con(σ, µ) = |{i : 1 ≤ i ≤ L, σi 6= µi}| . (2)

In a mild abuse of notation, we say that two disjoint sets Aσ and Aµ (or their elements)
have degree of contact j if Con(σ, µ) = j. For example, x and y have degree of contact 1
if x ∈ Aσ, y ∈ Aµ and σ, µ differ at precisely one symbol.

2.2 Pseudorandom orthogonal transformations

In this section, we describe a fast method (presented in [6], [7]) for the generation of random
orthogonal transformations and their application to arbitrary vectors.

Suppose that d, M1, M2 > 0 are positive integers. We define a pseudorandom d-
dimensional orthogonal transformation Θ as a composition of M1 +M2 +1 linear operators

Θ =





M1
∏

j=1

Q
(d)
j P

(d)
j



 · F (d) ·





M1+M2
∏

j=M1+1

Q
(d)
j P

(d)
j



 . (3)

The linear operators P
(d)
j : R

d → R
d with j = 1, . . . , M1+M2 are defined in the following

manner. We generate permutations π1, . . . , πM1+M2
of the numbers {1, . . . , d}, uniformly

at random and independent of each other. Then for all x ∈ R
d, we define P

(d)
j x by the

formula
(

P
(d)
j x

)

(i) = x(πj(i)), i = 1, . . . , d. (4)

In other words, P
(d)
j permutes the coordinates of the vector x according to πj . P

(d)
j can be

represented by a d × d matrix Pj , defined by the formula

Pj(k, l) =

{

1 l = πj(k),

0 l 6= πj(k),
(5)

for k, l = 1, . . . , d. Obviously, the operators P
(d)
j are orthogonal.

The linear operators Q
(d)
j : R

d → R
d with j = 1, . . . , M1 +M2 are defined as follows. We

construct (d − 1) ·(M1 + M2) independent pseudorandom numbers, θj(1), . . . , θj(d−1) with
j = 1, . . . , M1 + M2, uniformly distributed in (0, 2π). Then we define the auxiliary linear
operator Qj,k : R

d → R
d for k = 1, . . . , d − 1 to be the planar rotation of the coordinates k

and k + 1 by the angle θj(k). In other words, for all x ∈ R
d

(Qj,k(x))

(

k
k + 1

)

=

(

cos(θj(k)) sin(θj(k))
− sin(θj(k)) cos(θj(k))

)

·
(

x(k)
x(k + 1)

)

, (6)

and the rest of the coordinates of Qj,k(x) coincide with those of x. We define Q
(d)
j by the

formula

Q
(d)
j = Qj,d−1 · Qj,d−2 · · · · · Qj,1. (7)

4

Obviously, the operators Q
(d)
j are orthogonal.

The linear operator F (d) : R
d → R

d is defined as follows. First suppose that d is even
and that d2 = d/2. We define the d2×d2 discrete Fourier transform matrix T by the formula

T (k, l) =
1√
d2

· exp

[

−2πi(k − 1)(l − 1)

d2

]

, (8)

where k, l = 1, . . . , d2 and i =
√
−1. The matrix T represents a unitary operator C

d2 → C
d2 .

We then define the one-to-one linear operator Z : R
d → C

d2 by the formula

Zx =









x(1) + i · x(2),
x(3) + i · x(4),

· · ·
x(2d2 − 1) + i · x(2d2)









(9)

for all x ∈ R
d. Eventually, we define F (d) by the formula

F (d) = Z−1 · T · Z (10)

for even d. If d is odd, we define F (d)
x for all x ∈ R

d by applying F (d−1) to the first d − 1
coordinates of x and leaving its last coordinate unchanged. Obviously, the operators T, Z,
defined by (8), (9), respectively, preserve the norm of any vector x ∈ R

d. Therefore, F (d)

is a real orthogonal transformation R
d → R

d.
The cost of the generation of a random permutation (see e.g. [8]) is O(d) operations.

The cost of the application of each P
(d)
j to a vector x ∈ R

d is obviously d operations due to
(4).

The cost of generation of d − 1 uniform random variables is O(d) operations. Also, the

cost of application of each Q
(d)
j to a vector x ∈ R

d is O(d) operations due to (7).
Finally, the cost of the fast discrete Fourier transform is O(d · log d) operations, and the

cost of the application of F (d) to a vector x ∈ R
d is O(d · log d) operations due to (8), (9)

and (10).
Thus the cost of the generation of Θ defined via (3) is

Cost(Θ) = O (d · (M1 + M2 + log d)) . (11)

Moreover, the cost of application of Θ to a vector x ∈ R
d is also given by the formula (11).

Remark 1. It was observed that if M1 and M2 in (3) are chosen such that M1+M2 ∼ log d,
then the distribution of Θ is close to the uniform distribution on the group O(d, R) of
orthogonal transformations from R

d to R
d.

Remark 2. The use of the Hadamard matrix (without 2× 2 rotations) appears in a related
problem studied by Ailon and Liberty [9].

3 Randomized Approximate Nearest Neighbors algorithm

In this section, we describe the Nearest Neighbor Problem and present a fast randomized
algorithm for its solution.

5

3.1 The Nearest Neighbor Problem

Suppose that d and k < N are positive integers and suppose that

B = {x1, x2, . . . ,xN} ⊆ R
d (12)

is a collection of N points in R
d. We are interested in finding the k nearest neighbors of

each point xi. The distance between the points is the standard Euclidean distance.
For each xi, one can compute in a straightforward manner the distances to the rest of the

points and thus find the nearest neighbors. However, the total cost of the evaluation of the
distances alone is O(d ·N2), which makes this naive approach prohibitively expensive when
N is large. We propose a faster approximate algorithm for the solution of this problem.

3.2 Informal description of the algorithm

3.2.1 Initial selection

The key idea of our algorithm is the following simple (and well known) observation. Suppose
that for each xi we have found a small subset Vi of B such that a point inside Vi is more likely
to be among the k nearest neighbors of xi than a point outside Vi. Then it is reasonable to
look for the nearest neighbors of each xi only inside Vi and not among all the points. The
nearest neighbors of xi in Vi, which can be found by direct scanning, are referred to as its
”suspected approximate nearest neighbors”, or ”suspects”, as opposed to the true nearest
neighbors

{

xt(i,j)

}

.
Of course, many of the k true nearest neighbors of xi might not be among its suspects.

However, one can re-select Vi to obtain another list of k suspects of xi. The initial guess
is improved by taking the “best” k points out of the two lists. This scheme is iterated to
successively improve the list of suspects of each xi.

The performance of the resulting iterative randomized algorithm admits the following
crude analysis. Suppose that the size of Vi is α · N , with α ≪ 1. Suppose also that the
number of the true nearest neighbors of xi inside Vi is roughly β · k, with α < β < 1. If
the choice of Vi is fairly random, then order O(1/β) iterations of the algorithm are required
to find most of the true nearest neighbors of each xi. Temporarily neglecting the cost of
the construction of Vi, this results in O

(

(α/β) · d · N2
)

operations instead of O
(

d · N2
)

operations for the naive algorithm. If α ≪ β, the improvement can be substantial.
Our construction of Vi’s is based on geometric considerations. First, we shift all of the

points to place their center of mass at the origin and apply a random orthogonal linear
transformation on the resulting collection. Then, we choose a real number y(1) such that
the first coordinate of half of the points in B is less than y(1). In other words,

|{x ∈ B : x(1) < y(1)}| = ⌊N/2⌋. (13)

We divide all the points into two disjoint sets

B− = {x ∈ B : x(1) < y(1)} ,

B+ = {x ∈ B : x(1) ≥ y(1)} . (14)

6

Obviously, the sizes of B− and B+ are the same if N is even and differ by one if N is odd.
Next, we set y+(2) to be a real number such that the second coordinate of half of the points
in B+ is less than y+(2), i.e.

|{x ∈ B+ : x(2) < y+(2)}| = ⌊N/4⌋. (15)

We split B+ into two disjoint sets B+− and B++ by the same principle, e.g.

B+− = {x ∈ B+ : x(2) < y+(2)} ,

B++ = {x ∈ B+ : x(2) ≥ y+(2)} . (16)

We construct B−− and B−+ in a similar fashion by using a real number y−(2) such that
the second coordinate of half of the points in B− is less than y−(2), i.e.

|{x ∈ B− : x(2) < y−(2)}| = ⌊N/4⌋. (17)

Each of the four boxes B−−, B−+, B+−, B++ contains either ⌊N/4⌋ or ⌊N/4⌋ + 1 points.
Then we repeat the subdivision by splitting each of the four boxes into two by using the
third coordinate, and so on. We proceed until we end up with a collection of 2L boxes
{Bσ} with k or k + 1 points in each box. Here the box index σ is a word of symbols +,−
of length L as in (1) and L is a positive integer such that k · 2L ≤ N < k · 2L+1. In other
words, L is defined via the inequality

k · 2L ≤ N < k · 2L+1. (18)

Obviously, the sets
{

Bµ

}

constitute a complete binary tree of length L, whose nodes are
indexed by words µ of symbols +,− of length up to L. The set B is at the root of this tree,
the sets B− and B+ are at the second level, and so on. At the last level of the tree, there
are 2L boxes. The depth of the tree equals to L + 1.

The notion of degree of contact (2) extends to the collection {Bσ} of boxes. Suppose
that xi is in Bσ. Obviously, the higher degree of contact of two boxes Bσ and Bµ is, the
less likely a point of Bµ will be among the k nearest neighbors of xi. Motivated by this
observation, we define the set Vi as

Vi =
{

x ∈ Bµ : Con(σ, µ) ≤ 1
}

. (19)

In other words, Vi is the union of the box Bσ containing xi and L boxes whose degree of
contact with Bσ is one. Thus for each i = 1, . . . , N , the set Vi contains about k · (L + 1)
points.

3.2.2 “Supercharging”

In the previous subsections, we have described an iterative scheme for the selection of
suspects (suspected approximate nearest neighbors) for each of the points xi in B. Suppose
now that after T iterations of this scheme, the list xs(i,1), . . . ,xs(1,k) of k suspects of each
point xi has been generated. This list can be improved by a procedure we call supercharging.

The idea of supercharging is based on the following observation. A true nearest neigh-
bor of xi, missed by the scheme described above, might be among the suspects of one of
xs(i,1), . . . ,xs(1,k). This leads to the following obvious procedure.

7

For each xi, we denote by Ai the list of suspects of all xs(i,1), . . . ,xs(i,k). Ai contains k2

points, with possible repetitions. We compute the square of the distances from xi to each
point in Ai and find the k nearest neighbors xt(i,1,Ai), . . . ,xt(i,k,Ai) of xi in Ai. Then we

declare the (updated) suspects of xi to be the best k points out of the two lists
{

xs(i,j)

}k

j=1

and
{

xt(i,j,Ai)

}k

j=1
.

In other words, supercharging is a depth one search on the directed graph, whose vertices
are the points {xi} and whose N × k adjacency matrix is the suspects’ indices {s(i, j)},
with i = 1, . . . , N and j = 1, . . . , k.

3.2.3 Overview

We conclude this section with a list of the principal steps of the algorithm. Given the
collection {xi}N

i=1 of points in R
d, we perform the following operations.

1. Subtract from each xi the center of mass of the collection.

2. Choose a random orthogonal linear transformation Θ and set xi = Θ(xi) for all
i = 1, . . . , N .

3. Construct 2L boxes {Bσ} as described above.

4. For each xi define the set Vi via (19).

5. Update the suspects xs(i,1), . . . ,xs(i,k) of xi by using its true nearest neighbors in Vi.

6. Steps 2-5 are repeated T times.

7. For each xi, perform supercharging.

3.2.4 Query for a new point

Suppose that we are given a new point y ∈ R
d, and we need to find its k nearest neighbors in

B = {x1, . . . ,xN}. In this subsection, we describe a rapid procedure to find k approximate
nearest neighbors of y. This procedure uses the following information, available on the jth
iteration of the algorithm, for j = 1, . . . , T :

1. The orthogonal linear transformation Θ(j), generated on the jth iteration of the algo-
rithm .

2. The collection of boxes
{

B
(j)
σ

}

, generated on the jth iteration of the algorithm.

To find k approximate nearest neighbors of the new point y among the points of B, we
perform the following operations. First, we apply Θ(1) on y, where Θ(1) is the orthogonal
linear transformation of the first iteration of the algorithm. The resulting vector is denoted
by y

(1), in other words,

y
(1) = Θ(1) (y) . (20)

8

Next, in the collection of boxes
{

B
(1)
σ

}

, generated on the first iteration of the algorithm, we

find the box B
(1)
σ(1) that has degree of contact zero with y

(1). Note that if y had belonged

to B in the first place, then on the first iteration of the algorithm y
(1) would have belonged

to B
(1)
σ(1).

The box B
(1)
σ(1) has k or k + 1 points. Suppose that V

(1)
σ(1) is is the union of the boxes

having degree of contact zero or one with B
(1)
σ(1) (see (19)). Recall that V

(1)
σ(1) has about

(L + 1) · k points, where L is defined via (18).

We define the set V
(2)
σ(2) in a similar manner, by using the data of the second iteration

of the algorithm. We apply the orthogonal transformation Θ(2) of the second iteration on
y

(1) to obtain y
(2), i.e.

y
(2) = Θ(2)

(

y
(1)

)

= Θ(2)
(

Θ(1) (y)
)

, (21)

due to (20). In the boxes
{

B
(2)
σ

}

of the second iteration, we find the box B
(2)
σ(2), having

degree of contact zero with y
(2). Similar to V

(1)
σ(1), the set V

(2)
σ(2) has about (L+1) ·k points.

We repeat this procedure to construct the sets V
(j)
σ(j) for j = 3, 4, . . . , T , where T is the

number of the iterations of the algorithm. Each V
(j)
σ(j) contains roughly (L + 1) · k points.

Finally, we define the set A to be the union of all the sets V
(j)
σ(j), in other words,

A =
T
⋃

j=1

V
(j)
σ(j). (22)

The set A contains about T · k · (L + 1) points. The k nearest neighbors of y inside A are
declared to be the approximate nearest neighbors of y inside B. We note that to construct
A we need to store the corresponding data on each iteration of the algorithm.

Once the k suspects of y in B have been found, they can be improved by performing
supercharging on y only.

3.3 Cost analysis

In this subsection, we analyze the cost of the algorithm in terms of number of operations.
Also, we analyze the memory requirements of the algorithm. We recall that x1, . . . ,xN is
a collection of N points in R

d and N ≈ k · 2L.

1. Centralizing the points costs O(N · d).

2. Generating a pseudorandom orthogonal transformation and applying it to N points
costs O(N · d · (log d)) (see (11)).

3. Constructing the binary tree of boxes of depth L = log2(N/k) costs O(N · L).

4. The suspects of each point xi are selected by computing the distances from xi to
k · (L + 1) points in Vi (see (19)) and finding k minimal distances. Thus the cost of
this step is O(N · L · k · (d + log k)).

9

5. In supercharging, k2 points are scanned to update the suspects of each point. Thus
the cost of supercharging is O(N · k2 · (d + log k)).

We conclude that the total cost of the algorithm is

CRANN = O (T · N · (d · (log d) + k · (d + log k) · (log N))) +

O(N · k2 · (d + log k)), (23)

where T is the number of iterations. We observe that for fixed dimension d and number of
required nearest neighbors k, the cost is O(T ·N · log N), as opposed to O(N2) of the naive
approach. Also, the cost of supercharging is quadratic in the number of nearest neighbors
for fixed dimension d and number of points N , which makes supercharging expensive relative
to a single iteration of the principal part of the algorithm even for moderate k.

Query for a new point y consists of performing all the steps of the algorithm on one
point only. Consequently, due to (23) the total cost of query for a new point is

Cquery = O (T · (d · (log d) + k · (d + log k) · (log N))) +

O(k2 · (d + log k)). (24)

To determine the memory requirements of the algorithm, we observe that to store N points
in R

d we need O(N · d) memory, to store the indices of k nearest neighbors of each of N
points we need O(N · k) memory, and to store a tree of boxes (with the corresponding
orthogonal transformation) we need O(N) memory.

We must distinguish between two cases. In the first case, given N points {xi} in R
d,

we are interested in finding k nearest neighbors for each xi only. In other words, no query
for a new point will ever be requested. Then, the tree of boxes can be destroyed after each
iteration. Hence, in this case the algorithm uses O(N · (d + k)) memory. In other words, in
this case the memory requirements are minimal, in the sense that most of the memory is
spent on the storage of input and output of the algorithm only.

In the second case, we know in advance that queries for new points will be requested.
Therefore we need to store T trees of boxes and the corresponding orthogonal transforma-
tions. Thus, when queries for new points are allowed, the total memory requirements are
of the order

Mquery = O (N · (d + k + T)) . (25)

Remark 3. The factor log k in (23), (24) can be omitted, if the suspects of every xi are
not required to be sorted according to their distance to xi.

3.4 Performance analysis

In this subsection, we discuss the performance analysis of the Randomized Approximate
Nearest Neighbor algorithm in the case of standard Gaussian distribution of the points.

To be more specific, we consider the collection of N independent standard Gaussian d-
dimensional random vectors x1, . . . ,xN , where the number of points is given by the formula

N = k · 2L (26)

10

for some positive integer L > 0. We recall that for each point xi, the algorithm approximates

the k true nearest neighbors
{

xt(i,j)

}k

j=1
of xi by k suspects

{

xs(i,j)

}k

j=1
. In order to analyze

the quality of this approximation, we introduce a number of statistical quantities. First,
we define the average square of the distance from xi to its k true nearest neighbors by the
formula

Dtrue
i =

1

k

k
∑

j=1

‖xi − xt(i,j)‖2. (27)

Next, we define the average square of the distance from xi to its k suspects by the formula

Dsusp
i =

1

k

k
∑

j=1

‖xi − xs(i,j)‖2. (28)

Finally, we define the proportion of the true nearest neighbors of xi among its suspects by
the formula

propi =
1

k

∣

∣

∣

{

xt(i,j)

}k

j=1
∩

{

xs(i,j)

}k

j=1

∣

∣

∣
. (29)

We analyze a single iteration of the algorithm (selection of suspects without supercharging)
by evaluating the expected values of (27), (28), (29) numerically (see Theorems 1, 2, 3
below). On the other hand, the performance of the algorithm can be studied empirically,
by running the algorithm on artificially generated sets of points.

In the rest of this subsection, we outline the results of the analysis (see [10] for details).
We start with introducing some notation.

Suppose that d > 0 is a positive integer, and λ, α, β > 0 are positive real numbers. The
distributions χ2

d, χ2(d, λ) and B(α, β) are defined by their probability density functions,
given respectively via the formulas

fχ2
d
(t) =

td/2−1 · e−t/2

2d/2 · Γ(d/2)
, t > 0, (30)

fχ2(d,λ)(t) = e−λ/2
∞

∑

j=0

(λ/2)j

j!
fχ2

d+2j
(t), t > 0, (31)

fB(α,β)(t) =
Γ(α + β)

Γ(α)Γ(β)
· tα−1 (1 − t)β−1 , 0 < t < 1. (32)

Suppose that a > 0 is a positive real number. Suppose also that d ≥ L > 0 are positive
integers, and a ∈ R

d is a vector all of whose coordinates are positive. We define the functions

11

h−
a , h+

a , ha : R → C via the formulas

h−
a (x) = exp

[

ia2x

1 − 2ix

]

· erfc
[

− iax
√

2√
1 − 2ix

]

· 1√
1 − 2ix

, (33)

h+
a (x) = exp

[

ia2x

1 − 2ix

]

· 2√
1 − 2ix

− h−
a (x), (34)

ha(x) = exp





ix

1 − 2ix
·

d
∑

j=L+1

a(j)2



 ·
(

1√
1 − 2ix

)d−L

·









L
∏

j=1

h+
a(j)(x) +

L
∑

i=1

h−
a(i)(x) ·

L
∏

j=1
j 6=i

h+
a(j)(x)









. (35)

Also, we define the function Ga : (0,∞) → R via the formula

Ga(y) =
1

2π · (L + 1)

∫ y

0

∫ ∞

−∞

e−ixt · ha(x) dx dt. (36)

The following theorem provides an analytical formula for the expectation E
[

Dtrue
N

]

(see
(27)).

Theorem 1. Suppose that d, k, N > 0 are positive integers. Suppose further that Dtrue
N is

defined by (27). Then its expectation is given by the formula

E
[

Dtrue
N

]

=
∫ ∞

0

(

1

k

k
∑

i=1

∫ 1

0
F−1

χ2(d,λ)
(t) · fB(i,N−i)(t) dt

)

· fχ2
d
(λ) dλ, (37)

where the functions fχ2
d
, fB(i,N−i) are defined respectively by (30), (32), and F−1

χ2(d,λ)
is the

inverse of the cdf of χ2(d, λ) (see (31)).

The following theorem provides an approximation to the expectation E
[

Dsusp
N

]

(see
(28)). The error of this approximation is verified via numerical experiments (see [10] for
more details).

Theorem 2. Suppose that k > 0 and d ≥ L > 0 are positive integers. We define the real
number Dsusp

appr by the formula

Dsusp
appr =

∫ ∞

0
Avg

a∈S+

d
(λ)

[

1

k

k
∑

i=1

G−1
a

(

i

k · L + k + 1

)

]

· fχ2
d
(λ) dλ, (38)

where the function fχ2
d

is defined via (30), the function G−1
a is the inverse of Ga defined

via (36), the set S+
d (λ) is the positive part of the d-dimensional hypersphere of radius

√
λ,

defined by the formula

S+
d (λ) =

{

x ∈ R
d : ‖x‖2 = λ, x(j) > 0, 1 ≤ j ≤ d

}

, (39)

12

and the average (Avg) is taken with respect to the (d − 1)-dimensional area. Then,

E
[

Dsusp
N

]

= Dsusp
appr + O

(

k−1/2
)

, k → ∞. (40)

In other words, (40) holds, if we fix d, L and let k → ∞.

The following theorem provides an approximation to the expectation E [propN] (see
(29)). The error of this approximation is verified via numerical experiments (see [10] for
more details).

Theorem 3. Suppose that k > 0 and d ≥ L > 0 are positive integers. We define the real
number Pappr by the formula

Pappr =

(L + 1)

∫ ∞

0
Avg

a∈S+

d
(λ)

[

Ga

(

F−1
χ2(d,λ)

(2−L)
)]

· fχ2
d
(λ) dλ, (41)

where the function fχ2
d

is defined via (30), the function F−1
χ2(d,λ)

is the inverse of the cdf of

χ2(d, λ), defined via (31), the function Ga is defined via (36), the set S+
d (λ) is defined via

(39), and the average (Avg) is taken with respect to the (d − 1)-dimensional area. Then,

E [propN] = Pappr + O
(

k−1/2
)

, (42)

where the real random variable propN is defined via (29). In other words, (42) holds, if we
fix d, L and let k → ∞.

4 Numerical Results

This section has two principal purposes. First, we numerically evaluate the expectations of
(27), (28), (29) by using Theorems 1, 2, 3 above. Second, we demonstrate the performance
of the algorithm empirically, by running it on sets of points, generated according to the
Gaussian distribution. The choice of uniform or Hamming distributions instead of Gaussian
results in very similar performance (see [10] for results and details).

The algorithm has been implemented in FORTRAN (Lahey 95 Linux version). The
numerical experiments have been carried out on a Lenovo laptop computer, with DualCore
CPU 2.53 GHz and 2.9GB RAM.

Experiment 1. In this experiment, we choose k = 30, and for L = 10, 15, 20, 25 set N via
(26). Then, for different values of d between L and 110, we approximate the expectations
E

[

Dtrue
N

]

, E
[

Dsusp
N

]

, E [propN] via the numerical evaluation of (37), (38), (41), respectively.
The approximations are denoted by Dtrue

num, Dsusp
num, Pnum, respectively, and are accurate to

roughly two decimal digits. Also, we compute the ratio

Ratiosusp
true =

Dsusp
num

Dtrue
num

. (43)

13

The results of Experiment 1 are shown in Figure 1. In Figure 1 (left), we plot Ratiosusp
true as a

function of the dimensionality d, for each value of L. In Figure 1 (right), we plot Pnum as a
function of the dimensionality d, for each value of L (the number of points N is determined
via (26)). This quantity estimates the average proportion of the suspects among the true
nearest neighbors (found by one iteration of RANN without supercharging).

Several observations can be made from Experiment 1 (see Figure 1) and from more
detailed experiments by the authors.

1. The ratio Ratiosusp
true , defined via (43), slowly increases with the number of points N ,

for fixed values of number k of nearest neighbors and dimensionality d (see Figure 1,
left). In other words, the performance of RANN deteriorates with the number of
points, if terms of Ratiosusp

true . However, as number of points is multiplied by 2, this
ratio grows by a factor less than 1.1 for most values of d on Figure 1 (left).

2. The ratio Ratiosusp
true actually decreases with dimensionality d, for fixed k and N (see

Figure 1, left). For example, for N ≈ 106, this ratio decays from the value of about
1.57 at d = 20 to roughly 1.3 at d = 110. This observation is not surprising, since the
number of points within the same fixed relative distance (e.g. twice the distance to
true nearest neighbors) grows with the dimensionality.

3. The proportion of true nearest neighbors among suspects decays with d for fixed k, N ,
as expected (see Figure 1, right). However, even for d = 40 and N ≈ 106, RANN
correctly finds about 2.7% of true nearest neighbors, on merely one iteration without
supercharging. In other words, after 50 iterations without supercharging RANN will
correctly detect about

75% = 0.75 ≈ 1 − (1 − 0.027)50 (44)

true nearest neighbors, for d = 40 and N ≈ 106 (see also Experiment 2 below).

Experiment 2. In this experiment, we run RANN with various parameters on different
sets of points and report on the resulting statistics.

We choose the dimensionality d and the number of points N . Then we choose the number
of nearest neighbors k, the number of iterations of the algorithm T > 0, and whether to
perform the supercharging or not. Next, we generate N i.i.d. standard Gaussian vectors
x1, . . . ,xN in R

d.
We run RANN on x1, . . . ,xN . For each xi, RANN finds its k suspects, xs(i,1), . . . ,xs(i,k).

Also, for all i = 1, . . . , 2000, we find the list xt(i,1), . . . ,xt(i,k) of k true nearest neighbors
of xi, by direct scanning. Then, we compute the quantities Dtrue

i , Dsusp
i , propi, defined

via (27), (28), (29), respectively, for i = 1, . . . , 2000. We define the average Dtrue
algo by the

formula

Dtrue
algo =

1

2000

2000
∑

i=1

Dtrue
i . (45)

The averages Dsusp
algo , propalgo are defined and computed by the same token.

14

Generation of the points and invocation of RANN are repeated 20 times, to obtain the
values Dtrue

algo(1), . . . , Dtrue
algo(20), all defined via (45). Then, we define the sample mean of

Dtrue
algo via the formula

Esmpl

[

Dtrue
]

=
1

20

20
∑

i=1

Dtrue
algo(i). (46)

The sample means Esmpl [Dalgo] and Esmpl

[

propalgo

]

are defined in a similar way. Finally,
we compute the ratio

ratiosmpl =
Esmpl [Dalgo]

Esmpl [Dtrue]
. (47)

The parameters for Experiment 2 were chosen in the following way. The number of points
was N = 30 · 212 ≈ 105. The number of requested nearest neighbors was k = 15, 30 or 60.
The dimensionality d was chosen to be a multiple of 5 between 15 and 200. The number of
iterations of the algorithm was either T = 1 or T = 10. The supercharging step was either
skipped or performed once after T iterations.

Most of the approximations have been computed with relative error up to 2%. The
results are shown in Figures 2, 3 and in Table 1. In Figures 2, 3 (left), we plot ratiosmpl

(see (47)) as a function of the dimensionality d for k = 15 and k = 60, respectively.
In Figures 2, 3 (right), we plot Esmpl

[

propalgo

]

as a function of the dimensionality d for
k = 15 and k = 60, respectively. Each figure contains four curves, corresponding to one
iteration without supercharging, one iteration with supercharging, ten iterations without
supercharging and ten iterations with supercharging.

Table 1 has the following structure. The first column contains the dimensionality d. The
next three columns contain the CPU time of 10 iterations of RANN without supercharging,
with the requested number of nearest neighbors being k = 15, 30, 60, respectively. The
last three columns contain the CPU time of the supercharging only (after 10 iterations of
RANN), with the requested number of nearest neighbors being k = 15, 30, 60, respectively.
The CPU time is shown in seconds.

Several observations can be made from Table 1 and Figures 2, 3 and from more detailed
experiments by the authors. In these observations, we refer to ratiosmpl as ”ratio”, and to
Esmpl

[

propalgo

]

as ”proportion”. We recall that, roughly speaking, the proportion measures
how many of the true nearest neighbors have been found by RANN. On the other hand, the
ratio measures how much average distances to suspects differ from the average distances to
true nearest neighbors.

1. As expected, for a fixed d the performance of RANN improves as the number T of
iterations increases, both in terms of ratio and proportion.

2. As expected, for a fixed d the performance of RANN improves if supercharging is
performed, both in terms of ratio and proportion.

3. For a fixed d, the performance of RANN improves as the number of requested nearest
neighbors k increases, both in terms of ratio and proportion (at the expense of running
time).

15

4. For a fixed d, the effects of supercharging (especially on proportion) increase as k
grows. For example, in Figure 2, right (k = 15) we observe, that, for T = 10 and
d = 60, supercharging increases the proportion from 22% to 32%. On the other hand,
in Figure 3, right (k = 60) we observe that, for T = 10 and d = 60, supercharging
increases the proportion from 43% to 74%.

5. As expected, the performance of RANN slowly deteriorates in terms of proportion, as
d increases. On the other hand, there is no significant deterioration of performance
in terms of ratio, as d increases.

6. For T = 10 the ratio is always below 1.1, with or without supercharging.

7. Even for as high a dimension as d = 60, as few as ten iterations with supercharging
correctly determine at least 30% of the true nearest neighbors. Moreover, the error of
this detection decays exponentially with number of iterations T .

8. The running time of RANN, with or without supercharging, grows roughly linearly
with dimensionality d, as expected from (23) (see Table 1).

9. For fixed dimensionality d, the running time of RANN without supercharging grows
roughly linearly with the requested number of nearest neighbors k, as expected from
(23) (see Table 1). For example, 10 iterations of RANN in the case of d = 200 take
about 80, 124 and 208 seconds for k = 15, 30, 60, respectively.

10. For fixed dimensionality d, the running time of the supercharging step grows roughly
quadratically with the requested number of nearest neighbors k, as expected from
(23) (see Table 1). For example, in the case of d = 200 supercharging takes about 15,
57 and 235 seconds for k = 15, 30, 60, respectively.

11. The algorithm has been tested on sets of points having non-Gaussian distribution, e.g.
the uniform distribution in the d−dimensional cube [0, 1]d or Hamming distribution
(i.e. uniform distribution on the discrete set of the vertices of [0, 1]d). For both uniform
and Hamming distributions, the performance of the algorithm was very similar to that
in the Gaussian case (see [10] for details).

12. The algorithm has been tested on sets of points, having Gaussian distribution whose
covariance matrix is not the identity matrix. These tests seem to indicate that the
performance of RANN improves as the condition number of the covariance matrix
grows. As an extreme example, if the points belong to a q−dimensional linear subspace
of R

d, the performance of the algorithm does not depend on d (though the running
time obviously does).

References

[1] A. Andoni, P. Indyk (2008) Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions, Communications of the ACM, 51(1):117-122.

16

10 iterations, without supercharging supercharging after 10 iterations

d k = 15 k = 30 k = 60 k = 15 k = 30 k = 60

15 0.19641E+02 0.36516E+02 0.71135E+02 0.38584E+01 0.15013E+02 0.43673E+02
20 0.21340E+02 0.39109E+02 0.75629E+02 0.43306E+01 0.16881E+02 0.59338E+02
30 0.24441E+02 0.43465E+02 0.83369E+02 0.48159E+01 0.19481E+02 0.70798E+02
50 0.30864E+02 0.52813E+02 0.97469E+02 0.62415E+01 0.25946E+02 0.97832E+02
100 0.46909E+02 0.75247E+02 0.13236E+03 0.89168E+01 0.37370E+02 0.14492E+03
150 0.64509E+02 0.10082E+03 0.17305E+03 0.11773E+02 0.48810E+02 0.19105E+03
200 0.80588E+02 0.12427E+03 0.20787E+03 0.14595E+02 0.57456E+02 0.23531E+03

Table 1: CPU time of RANN, in seconds. Number of points: 122,880.

[2] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu (1998) An Optimal
Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions, Journal
of the ACM, 45(6):891-923.

[3] N. Ailon, B. Chazelle (2009) The Fast Johnson–Lindenstrauss Transform and Approx-
imate Nearest Neighbors, SIAM J. Comput., 39(1):302-322.

[4] N. Ailon, B. Chazelle (2010) Faster Dimension Reduction, Commun. ACM, 53(2):97-
104.

[5] W. Johnson, J. Lindenstrauss (1984) Extensions of Lipschitz mappings into a Hilbert
space, Contemporary Mathematics, 26:189-206.

[6] V. Rokhlin, M. Tygert (2008) A fast randomized algorithm for overdetermined linear
least-squares regression, Proc Natl Acad Sci USA 105(36):13212-13217.

[7] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M. Tygert (2007) Randomized algo-
rithms for the low-rank approximation of matrices, Proc Natl Acad Sci USA 104:20167-
20172.

[8] D. Knuth (1969) in Seminumerical Algorithms, vol. 2 of The Art of Computer Pro-
gramming, Reading, Mass: Addison-Wesley.

[9] N. Ailon, E. Liberty (2010) Almost Optimal Unrestricted Fast Johnson-Lindenstrauss
Transform, eprint arXiv:1005.5513.

[10] P.W. Jones, A. Osipov, V. Rokhlin (2010) A Randomized Approximate Nearest Neigh-
bors Algorithm, Yale technical report.

17

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

1.5

1.6

d

D
s
u
s
p
 /
 D

tr
u
e

k = 30

10 15 20 30 50 100
10

−4

10
−3

10
−2

10
−1

10
0

d

p
ro

p
o
rt

io
n

k = 30

Figure 1: Number of points: N = 30 · 210 (blue dots), 30 · 215 (red squares), 30 · 220 (black
circles), 30 · 225 (green pluses).

50 100 150 200
1

1.1

1.2

1.3

d

D
s
u
s
p
 /
 D

tr
u
e

k = 15, N = 122,880

10 20 30 60 100 200

10
−2

10
−1

10
0

d

p
ro

p
o
rt

io
n

k = 15, N = 122,880

Figure 2: Without supercharging: one iteration (blue dots), ten iterations (black cirlces).
With supercharging: one iteration (red squares), ten iterations (green pluses).

50 100 150 200
1

1.1

1.2

1.3

d

D
s
u
s
p
 /
 D

tr
u
e

k = 60, N = 122,880

10 20 30 60 100 200

10
−2

10
−1

10
0

d

p
ro

p
o
rt

io
n

k = 60, N = 122,880

Figure 3: Without supercharging: one iteration (blue dots), ten iterations (black cirlces).
With supercharging: one iteration (red squares), ten iterations (green pluses).

18

