Yale University
Department of Computer Science

Leader Election in the Presence of n — 1 Initial Failures

Gadi Taubenfeld

YALEU/DCS/TR-709
May 1989

This work was supported in part by the National Science Foundation under
grant CCR-8405478, and by the Hebrew Technical Institute scholarship.




Leader Election in the Presence of n — 1 Initial Failures

Gadi Taubenfeld*
Computer Science Department, Yale University, New Haven, CT 06520

Key words: leader election, shared memory, crash failures, initial failures.

1 Introduction

We present a deterministic leader election protocol that can tolerate up to n—1 undetectable
initial failure, where n is the number of processes. We assume an asynchronous shared
memory environment which support only atomic read and write operations.

Initial failures are a very weak type of failures where it is assumed that processes may
fail only prior to the execution and that no event can happen on a process after it fails.
That is, once a process starts operating it is guaranteed that it will never fail. Initial failures
are a special case of crash (fail-stop) failures in which a process may become faulty at any
time during an execution.

In an election protocol each processes reads an input value from some well order set, and
exactly one process is to decide on a distinguished value from an arbitrary set of (output)
values. An election protocol can tolerate up to n — 1 initial failures if in spite of a failure
of any group of up to n — 1 processes at the beginning of the computation, each of the
remaining processes eventually terminates, and exactly one process is elected as a leader.

Initial failures may occur in situations such as recovery from a breakdown of a system.
Several protocols were designed to properly operate in a message passing model where initial
failures may occur. A protocol that solves the consensus problem which can tolerate initial
failures of up to (not including) half of the processes is presented in [FLP]. Protocols for
leader election and spanning tree construction which can also tolerate initial failures of up
to half of the processes are designed in [BKWZ].

The results in [Abr,CIL,Her,LA] proves the nonexistence of a (nontrivial) deterministic
consensus (and election) protocol that can tolerate n — 1 crash failure, for a shared memory
model. Randomized consensus and election protocols that can tolerate n — 1 crash failures
are presented in [Abr,CIL].

My interest in designing the election protocol arose in a study by Shlomo Moran and
myself, about the solvability of problems in an unreliable shared memory model. In [MT,
Section 7], a necessary and sufficient condition is provided for solving problems in a shared
memory model in the presence of multiple initial failures. The correctness proof of that
condition is based on the existence of the leader election protocol presented in the next
section.
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THE PROTOCOL FOR PROCEss ¢, (1<i¢<n):
All registers are initialized to zero.

decide; : 0..1;
wake; : 0..n; % used for counting the number of processes that wake up (i.e., are correct)
faulty; : 0..n; % the number of processes that did not wake up according to process ¢

% counting, plus one process

wake; := 1; % process i signals to the other processes that it woke up and counts itself
decide; 1= 1;

for j=1tondo % counting the number of processes that wake up
if (wake; # 0) and (i # j) then wake; := wake; + 1 end-if
end-do ;

faulty; := n — wake; + 1; % the number of processes that may be faulty, plus one process
% We add one to ensure that faulty; # 0 at this point

for j=1tondo
if wake; # 0 then % process j is correct
while faulty; = 0 do skip end-while % busy waiting
if (faulty;,j) > (faulty;,) then decide; := 0 end-if % lexicographic order
end-if '
end-do;

if decide; = 0 then “I am not the leader”

else “I am the leader”
end-if.

Figure 1: A (n — 1)-resilent leader election protocol.

2 The protocol and its verification

A protocol that solves the election problem and which can tolerate n — 1 initial failures is
presented in Figure 1. We assume that all the registers are initialized to zero. The general
idea behind the protocol is the following. Each process when it wakes up, tries to count (only
once) the number of processes that woke up so far. Since, processes wake up at different
times, the counting of different processes may differ. The process that is eventually elected
is the one with the biggest ID among those processes that have counted the smallest number
of woke up processes. We now give a formal correctness proof of the protocol. In the sequel,
we say that process i woke up if wake; # 0, process i finished counting if faulty; # 0, and
processes i is elected if the process has terminated and decide; = 1.

Theorem 1: Every processes that wakes up eventually terminates.

Proof: Since we assume initial failures, a process that wakes up can not fail. Thus, any




process that wakes up eventually finish counting. What we have to show is that a process
can not loop forever in the while loop. However a process that enters the while loop, waits
for some other process which already woke up to finish counting. Since any process that
wakes up eventually finish counting, no process busy-waits forever. O

Theorem 2: Ezactly one process is elected.
The proof of Theorem 2, follows immediately from the next two lemmas.

Observation 1: If process i finished counting and process j has not waken up yet, then
process j can not be elected.

Proof: If process i finished counting and process j has not waken up yet, then at any later
time faulty; > faulty;. Hence, when process j will find out that (faulty;, 1) > (faulty;,j),
it will set its decision bit to zero, and will not be elected. O

Lemma 1: At most one process is elected.

Proof: Assume to the contrary that both process ¢ and process j (¢ # j) are elected. By
Observation 1, when process ¢ finished counting, process j already woke up, and vice versa.
Hence, process ¢ and process j have to wait until both of them finish counting, after which
the pairs (faulty;,i) and (faulty;,j) have to be compared by each one of them before it
can be elected. Since (faulty;,:) # (faulty;,j), either process i or process j has to set its
decision bit to zero, and it can not be elected. A contradiction. O

Lemma 2: At least one process is elected.

Proof: For each process j, if it has terminated without being elected then there must be
some other process that woke up, say i, such that (faulty;,i) > (faulty;,j). Since every
process that wakes up eventually terminates, at least for one process that terminates, say k,
there does not exist any process, say ¢, such that ( faulty;,s) > (faultys, k). Hence, process
k must be elected. O
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