We present a non-linear optimization procedure for the design of Generalized Gaussian
Quadratures for a fairly broad class of functions. While some of the components of the
algorithm have been published previously, we introduce an improved procedure for the de-
termination of an acceptable initial point for the continuation scheme that stabilizes the
Newton-type process used to find the quadratures. The resulting procedure never failed
when applied to Chebyshev systems (for which the existence and uniqueness of Generalized
Gaussian Quadratures are well-known); it also worked for many non-Chebyshev systems,
for which the Generalized Gaussian Quadratures are not guaranteed to exist. The perfor-
mance of the algorithm is illustrated with several numerical examples; some of the presented
quadratures integrate efficiently large classes of singular functions.

Non-linear Optimization, Quadrature, and Interpolation

H. Cheng, V. Rokhlin, N. Yarvin
Research Report YALEU/DCS/RR-1169
December 18, 1998

The authors were supported in part by DARPA/AFOSR under Contract F49620/97/1/0011, in
part by ONR under Grant N00014-96-1-0188, in part by the AFOSR under Contract F49620-
97-C-0052, and in part by the AFOSR under Contract F49620-95-C-0075.

Approved for public release: distribution is unlimited.

Keywords: Non-linear Optimization, Quadratures, Singular Integrands, Interpolation.

1 Introduction

Quadrature formulae are one of the most developed areas of computational mathematics. They
are used both as a stand-alone numerical tool for the evaluation of integrals, and as an analytical
apparatus for the design of interpolation schemes, finite element schemes, etc. Most of the
quadrature formulae (at least for functions on R!) currently in use can be separated into three
groups:

1. Gaussian quadratures are the optimal tool for the evaluation of integrals of the form

/bw(t) . P(t)dt, (1)

where P is a polynomial of ¢ (or a function well-approximated by a polynomial), and w is a
(more or less) arbitrary non-negative function [a,b] — R. Gaussian quadratures are extremely
efficient, mathematically elegant, and easy to obtain (see, for example [3]); whenever applicable,
they tend to be the numerical tool of choice.

2. Interpolatory quadrature formulae (Newton-Cotes, etc.) are based on approximating the
integrand by some standard function (usually, a polynomial), and integrating the latter. These
schemes have the advantage that they (usually) do not prescribe the locations of the nodes;
they tend to become numerically unstable for high orders.

3. Miscellaneous special-purpose quadratures (“product integration rules”, non-standard Richard-
son extrapolation, etc.) are normally used when the situation precludes the use of more straight-
forward techniques.

There appears to exist a class of situations where classical approaches fail to produce rapidly
convergent schemes. Specifically, suppose that we wish to integrate functions of the form

n

> bu(z) - sk(z), (2)

k=0

where ¢ are smooth functions (or polynomials) mapping [0,1] — R, and the functions sy :
[0,1] — R are known apriori, and have singularities at £ = 0. In many situations of interest,
the functions s have different singularities at z = 0, and the functions ¢y are not known; it is
only known that the integrand has the form (2), and its values at points on the interval [0, 1]
can be evaluated. While efficient quadratures for functions of the form (2) would have obvious
applications in the solution of integral equations, in numerical complex analysis, and in several
other areas, the authors have failed to find such an apparatus in the literature.

It has been known for about 100 years that Gaussian quadratures admit a drastic gener-
alization, replacing polynomials with fairly general systems of functions (see [11, 12], [2, 8],
[6, 7]). The constructions found in (see [11, 12], [2, 8], [6, 7]) do not easily yield numerical
algorithms for the design of such quadrature formulae; algorithms of this type were designed
(in some cases) in [10, 15], where the resulting quadrature rules are referred to as General-
ized Gaussian Quadratures. The approach is based on the observation that the nodes and
weights of Gaussian quadratures satisfy systems of non-linear equations, that these equations

have unique solutions, and that when polynomials are replaced with other systems of functions,
similar systems of equations are easily constructed. While for functions of the form (2) the
resulting equations are non-linear, overdetermined, and non-unique, in the least squares sense
they have unique solutions under surprisingly general conditions (see [10, 15]); Newton-type
methods converge in this environment, provided a good initial approximation can be found.

As often happens, in the absence of a good initial approximation, the Newton process fails to
converge. To some extent, this problem is remedied by the use of continuation techniques, which
turn out to be almost always available when designing quadratures for integrands (2). However,
yet another problem is frequently encountered: even though mathematically the solution of the
non-linear problem is unique for all values of the continuation parameter, numerically it is
not unique at all. Once the (numerical) rank of the Jacobian of an intermediate problem
is sufficiently low, the continuation process breaks down; attempts to use globalized search
techniques have not been successful.

The final step in the design of a robust scheme for the construction of Generalized Gaussian
Quadratures is described in Section 3.3. It finds an initial approximation for which the Jacobian
of the system being solved has an acceptably low condition number. While the reasoning
behind this step is partly Heuristic, in our experience it works remarkably well. It never failed
for a Chebyshev system (see Section 2.1 below); furthermore, it worked for most of the non-
Chebyshev systems we tried it on. For a more detailed discussion of our numerical experience,
see Section 5 below, where we also present quadratures for functions with almost general power
singularities at one end (or both ends) of the interval of integration, and with several other
types of singularities. ‘

The paper is structured as follows. Section 2 contains mathematical and numerical prelimi-
naries. In Section 3, we build the numerical apparatus to be used in Section 4 to construct the
procedure for the determination of nodes and weights of Generalized Gaussian Quadratures.
Section 5 contains several examples of quadratures we have obtained. Finally, in Section 6 we
outline several possible extensions of this work.

2 Mathematical and Numerical Preliminaries

2.1 Chebyshev systems

Definition 2.1 A sequence of functions ¢1,...,¢, will be referred to as a Chebyshev system
on the interval [a,b] if each of them is continuous and the determinant

$1(z1) -+ 1(zn)
: :)
$n(z1) -+ dn(zn)

s nonzero for any sequence of points x1,...,Z, such thata < z1 <z3... <z, <b.

An alternate definition of a Chebyshev system is that any linear combination of the functions
with nonzero coefficients must have no more than n zeros.
A related definition is that of an extended Chebyshev system.

Definition 2.2 Given a set of functions ¢1,...,¢n which are continuously differentiable on an
interval [a,b], and given a sequence of points z1,...,Zn sSuch thata < 21 <23 < ... <z, < b,
let the sequence my,...,m, be defined by the formulae

m; = 0,

m; = 0 if > 1 and z; # 21, (@)
mj = j-—1 ifg>landzj=xj_1=... =1z,

m; = k ifj>k+1 and T; = Tj-1 =---=$j-—lc7é$j-k—l'

Let the matriz C(z1,...,2n) = [ci;] be defined by the formula

dmi g,
s = S8 (z), ®)

in which %(a:j) is taken to be the function value ¢;(x;). Then ¢1,...,¢n will be referred to
as an extended Chebyshev system on [a,b] if the determinant |C(z1,...,Zy,)| is nonzero for all
such sequences z;.

Remark 2.1 [t is obvious from Definition 2.2 that an extended Chebyshev system is a special
case of the Chebyshev system. The additional constraint is that the successive points z; at which
the function is sampled to form the matriz may be identical; in that case, for each duplicated
point, the first corresponding column contains the function values, the second column contains
the first derivatives of the functions, the third column contains the second derivatives of the
functions, and so forth; this matriz must also be nonsingular.

Examples of Chebyshev and extended Chebyshev systems include the following (additional
examples can be found in [7]).

Example 2.1 The powers 1,z,z2,...,2" form an extended Chebyshev system on the interval
(—007 OO) .
Example 2.2 The ezponentials e~ 1%, e=22% ... =% form an extended Chebyshev system for

any A, ..., Ap > 0 on the interval [0, 00).

Example 2.3 The functions 1,cos z,sinz, cos 2z,sin 2z, . ..,cosnz,sinnz form a Chebyshev
system on the interval [0, 2m).

2.2 Generalized Gaussian quadratures

The quadrature rules considered in this paper are expressions of the form
n
> wj - ¢(z5) (6)
j=1

where the points z; € R and coefficients w; € R are referred to as the nodes and weights of the
quadrature, respectively. They serve as approximations to integrals of the form

/ ’ $(z) cdotw(z)dz)

4

where w has the form

m
w(z) = () + Y uy-6(x - x5)s (8)

=1
with m a non-negative integer, @ : [a, b] — R an integrable non-negative function, x1, X2, - - -, Xm
points on the interval [a, b], p1, 2, .- . , um positive real coefficients, and ¢ the Dirac -function

on R.

Remark 2.2 Obviously, (8) defines w to be a linear combination of a non-negative function
with a finite collection of §-functions with positive coefficients. In a mild abuse of terminology,
throughout this paper, we will be referring to w as a non-negative function.

Quadratures are typically chosen so that the quadrature (6) is equal to the desired integral
(7) for some set of functions, commonly polynomials of some fixed order. Of these, the classical
Gaussian quadrature rules consist of n nodes and integrate polynomials of order 2n — 1 exactly.
In [10], the notion of a Gaussian quadrature was generalized as follows:

Definition 2.3 A gquadrature formula will be referred to as Gaussian with respect to a set of
2n functions ¢1,...,¢2n : [a,b] = R and a weight function w : [a,b] — R™, if it consists of
n weights and nodes, and integrates the functions ¢; exactly with the weight function w for all
1=1,...,2n. The weights and nodes of a Gaussian quadrature will be referred to as Gaussian
weights and nodes respectively.

The following theorem appears to be due to Markov [11, 12]; proofs of it can also be found
in [8] and [7] (in a somewhat different form).

Theorem 2.1 Suppose that the functions ¢1,...,¢en : [a,b] = R form a Chebyshev system on
[a,b]. Suppose in addition that w : [a,b] — R is defined by (8), and that either

/a ’ 5(e)de > 0, (9)

or m > n (or both). Then there ezists a unique Gaussian quadrature for ¢1,...,¢an on [a,b
with respect to the weight function w. The weights of this quadrature are positive.

2.3 Quadrature and Interpolation

As is well-known, when Gaussian nodes on the interval [—1, 1] are used for interpolation (for
example, via the Lagrange formula), the resulting procedure is numerically stable. Furthermore,
the precision obtained via Gaussian (Lagrange) interpolation is almost as high as that obtained
via Chebyshev interpolation (see, for example, [4]). Generally, given a weight function w, the
nodes of Gaussian quadratures corresponding to w lead to interpolation formulae that are stable
in an appropriately chosen norm. In this subsection, we formalize this fact for both Gaussian
and many Generalized Gaussian quadratures. The analytical tool of this subsection is the
following obvious theorem.

Theorem 2.2 Suppose that the function w : [a,b] — R is non-negative, and the functions

1, P2,...,%n : [a,b] = R are orthonormal with respect to the weight function w, i.e.
b
[(@) 45(2) - 4i(a)da = 8 (10)
a
for alli,j =1,2,...,n (§;; denotes Kroneker’s §-function). Suppose further that the n-point
quadrature rule z1,Z2,...,%n, W1, Ws,...,Wn, 15 such that w; > 0 for all 1 < i < n. Finally,
suppose that
n
> wi - dilak) - ¢i(zk) = b (11)
k=1
foralli,j =1,2,...,n. Then the n X n-matriz A defined by the formula
Aij = Vw; - ¢i(z;), (12)

15 orthogonal.

Suppose now that we would like to construct an interpolation formula on the interval [a, b]
for functions of the form

n
fl@) =) ai- ¢il), (13)

=1
with a;,a9,...,a, arbitrary real coefficients. In other words, suppose that we are given the
values fi, fa2,..., fn of a function f at a collection of points z1, z9,. .., Zy, and that it is known

that f is defined by the formula (13), but the coefficients a;,as,...,a, are not known; we
would like to be able to evaluate f at arbitrary points on [a, b]. The obvious way to do so is to

observe that the values fi, fa,..., f, are linear functions of the coefficients a;,aq,..., o, (due
to (13)); evaluating (13) at the points z1, 32, ...,Z,, we obtain the system of equations
n
fi=> o $i(z;), (14)
=1
with j = 1,2,...,n. Defining the n x n-matrix B by the formula
bji = ¢i(z5), (15)
we rewrite (14) in the form
F = Ba, (16)
with the vectors a, F € R™ defined by the formulae
a=(o,as,...,a), (17)
F=(f17f2a-",fn)' (18)
Now, as long as the matrix B is non-singular, we can evaluate the coefficients aj, s, ..., an
via the formula
a=B7'F, 1 (19)

and use (13) to evaluate f at arbitrary points on [a,b]. Of course, in actual numerical calcula-
tions, it is not sufficient for B to be invertible; its condition number must not be too high. The
following observation is the principal purpose of this subsection.

Observation 2.3 Under the conditions of Theorem 2.2,
A=DoB, (20)

with D the diagonal matriz defined by the formula

and
a=A*DF (22)

(due to the combination of (19) with (20)). In other words, given the table of values f1, fo,. .., fn
of the function f at the nodes x1, %2, ...,%,, one obtains the coefficients of the ezpansion (13) by
applying to the vector F the product of two matrices; the first of these matrices is orthogonal, and
the second is diagonal; the diagonal elements of the latter are square roots of (positive) weights
of the n-point quadrature formula ezact for all pairwise products of the functions ¢y, ¢, ..., Pn.

Remark 2.4 While at first glance the above observation appears to be very limited in its scope
(since it relies on the quadrature formula being ezact for all pairwise products of the functions
1,02, ...,%n), in reality it means that whenever the nodes of a Generalized Gaussian quadrature
formula are used as interpolation nodes, the resulting interpolation formula tends to be stable.
The reason for this happy coincidence is the fact that the matriz A (see (12) above)) need not
be orthogonal for the stability of the interpolation formula; it only needs to be well-conditioned.
Thus, as long as the guadrature formula is reasonably accurate for all pairwise products of
the functions ¢1,¢2,...,bn, the matriz A is close to being orthogonal; therefore, the condition
number of A is close to unity, and the interpolation based on the nodes x1,xo,...,T, is stable.

2.4 Convergence of Newton’s method

In this section, we observe that the nodes and the weights of a Gaussian quadrature satisfy a
simple system of nonlinear equations. We then prove that the Newton method for this system of
equations is always quadratically convergent, provided the functions to be integrated constitute
an extended Chebyshev system.

Given a set of functions ¢1,...,¢e, and a weight function w, the Gaussian quadrature is
defined by the system of equations

iwj “pi(zg) = b¢1($) - w(z)dz,

=1 o

iwj “pa(zj) = b¢2(w) - w(z)dz,

=1 o
S dmle) = [dm(e) - wlz)ds, 9
=1 o

(see Definition 2.3). Let the left hand sides of these equations be denoted by f; through fan.

Then each f; is a function of the weights wy,...,w, and nodes zi,...,z, of the quadrature.
Its partial derivatives are given by the obvious formulae
Ofk
5.~ P (i), (24)
(2
Ofk
1

Thus, the Jacobian matrix of the system (23) is
#1(z1) -+ di(zn) widi(z1) -0 wadi(zn)

J(xla"'7xnaw1a""wn)= : ' : . (26)
don(z1) -+ dom(Tn) widh,(z1) -0 Wndp,(zn)

Lemma 2.3 Suppose that the functions ¢1,...,Pan form an extended Chebyshev system. Let
the Gaussian quadrature for these functions be denoted by w; and ;. Then the determi-
nant of J is nonzero at the point which constitutes the Gaussian quadrature; in other words,
|J(Z1,- -, Zn, W1, .-, Wn)] #0.

Proof. It is immediately obvious from (26) that

~ S

|[J(Z1,-- - Zn, W1, ..,00)] =
$1(21) - d1(En) H(E1) o $1(En)
Wy -y e Wpq - Wn - : ' : : : . (27
$on(£1) -+ don(En) ¢9a(1) - Pon(dn)
If ¢1,..., ¢on form an extended Chebyshev system, then by Theorem 2.1, the weights w, ..., W,
of the Gaussian quadrature are positive. In addition, by the definition of an extended Chebyshev
system, the determinant in the right hand side of (27) is nonzero. Thus

IJ(ilaaﬁnywlaawn)l 750 (28)

0O
Using the inverse function theorem, we immediately obtain the following corollary:

Corollary 2.4 Under the conditions of Lemma 2.3, the Gaussian weights and nodes depend
continuously on the weight function.

2.5 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, given for
the case of real matrices by the following lemma (see, for instance, [13] for more details).

Lemma 2.5 For any n X m real matriz A, there exist, for some integer p, an n X p real matriz
U with orthonormal columns, an m X p real matriz V' with orthonormal columns, and a p X p
real diagonal matriz S = [s;;] whose diagonal entries are non-negative, such that A=U-S-V*
and that si; > Siy1441 foralli=1,...,p—1.

The diagonal entries s;; of S are called singular values; the columns of the matrix V are
called right singular vectors; the columns of the matrix U are called left singular vectors.

2.6 Singular value decomposition of a sequence of functions

A similar decomposition exists (see [5, 16]) if the columns of the matrix A are replaced by
functions:

Theorem 2.6 Suppose that the functions ¢1,¢2,...,¢n : [a,b] — R are square integrable.
Then there exist a finite orthonormal sequence of functions uy,uz,...,up : [a,b] > R, ann xp
matriz V = [v;;] with orthonormal columns, and a sequence sy > sy > ... > s, > 0 € R, for

some integer p, such that
P

$i(z) =D ui(z)sivyj, (29)

=1
for all z € [a,b] and all j =1,...,n. The sequence {s;} is uniquely determined by K.

By analogy to the finite-dimensional case, we refer to this factorization as the singular value
decomposition. We refer to the functions {u;} as singular functions, to the columns of the
matrix V as singular vectors, and to the numbers {s;} as singular values.

A popular application of the Singular Value Decomposition is for the purpose of “compress-
ing” data. Specifically, it often happens that while the total number n of functions is large,
almost all of the coefficients s; in the decomposition (29) are negligibly small. In such cases,
(29) is truncated after a small number (say, pg) of terms, and the resulting expansion

Po
¢i(z) = Zuz(:c) - 85+ Vg5 (30)
=1
is viewed as a compact representation of the original family of functions ¢1, @9, ..., ¢n.

The following theorem states that given a sequence of functions on the interval [a, b], their
decomposition of the form (30), and a quadrature formula with positive weights on the interval
[a, b], the accuracy of the quadrature for the functions ¢1, ¢, ..., @, is determined by its accu-
racy for the singular functions u;, corresponding to non-trivial singular values. Its proof is an
exercise in elementary linear algebra, and is omitted.

Theorem 2.7 Suppose that under the conditions of Theorem 2.6, € is a positive real number,
1 < po < n is an integer, and

i=po+1

Suppose further that the m-point quadrature formula {z;, w;} integrates the functions u; ezactly,
i.e.

m b
>y wiley) = [wile) do (32
j=1 a

for all © = 1,2,...,po, and that all of the weights wy,...,w, are positive. Then for each

1=1,2,...,n,

m b
S w; - ilzy) — / $i(z) dz| < e- ||l e (33)

=1

3 Numerical Apparatus

3.1 Continuation method

In order for Newton’s method to converge, the starting point provided to it must be close to the
desired solution. One scheme for generating such starting points is the continuation method,
described below.

Suppose that in addition to the function F' : R®™ — R”™ whose zero is to be found, another
function G : [0,1] x R® — R™ is available which possesses the following properties:

e 1. For any = € R™,

G(1,z) = F(z). (34)
e 2. The solution of the equation
G(0,z) =0 (35)
is known.
e 3. For all ¢t € [0, 1], the equation
G(t,z) =0 (36)
has a unique solution z at which the conditions for Newton’s method to converge are

satisfied.
e 4. The solution z is a continuous function of ¢.

If these conditions are met, an algorithm for the solution of the equation

F(z)=0 (37)
is as follows. Let the points ¢;, for 1 = 1,...,m, be defined by the formula ¢; = i/m. Solve in
succession the equations

G(tl, .’L‘) = 0,
G(ta,z) = 0,
G(tm,z) = 0 (38)

using Newton’s method, with the starting point for Newton’s method for each equation taken
to be the solution of the preceding equation. Due to (34), the solution z of the final equation
G(tm,z) = 0 is identical to the solution of (37); obviously, for sufficiently large m, Newton’s
method is guaranteed to converge at each step.

Remark 3.1 In practice, it is desirable to choose the smallest m for which the above algorithm
will work, in order to reduce the computational cost of the scheme. On the other hand, the largest
step (t; — ti—1) for which the Newton method will converge commonly varies as a function of t.
Thus the algorithm described in this paper uses an adaptive version of the scheme.

10

3.2 Continuation scheme

The continuation scheme used is as follows. Let the weight functions w : [0, 1] X [a,b] — R™ be
defined by the formula

n

w(a,z) =awi(z) + (1 — a) Z d(z —cj), (39)

Jj=1

where w; is the weight function for which a Gaussian quadrature is desired, § denotes the Dirac
delta function, and the points ¢; € [a,b] are arbitrary distinct points. These weight functions
have the following properties:

e 1. With a = 1, the weight function is equal to the desired weight function w;, due to

(39).
e 2. With a = 0, the Gaussian weights and nodes are
w; = 1, (40)
5 = o (41)
for j = 1,...,n, whatever the functions ¢; are (since w(0,z) = 0, unless z = ¢; for some

J € [1,n]).
e 3. The quadrature weights and nodes depend continuously on a (by Corollary 2.4).

The intermediate problems which the continuation method solves are the Gaussian quadratures
relative to the weight functions w(e, *). The scheme starts by setting o = 0, then increases o
in an adaptive manner until o = 1, as follows. A current step size is maintained, by which «
is incremented after each successful termination of Newton’s method. After each unsuccessful
termination of Newton’s method, the step size is halved and the algorithm restarts from the
point yielded by the last successful termination. After a certain number of successful steps, the
current step size is doubled. (Experimentally, the current problem was found to be well suited
to an aggressive mode of adaption: in the authors’ implementation, the initial value of the step
size was chosen to be 0.5, and the step size was doubled after two successful terminations of
Newton’s method.)

3.3 Starting points

The choice of the points ¢; was left indefinite above. In exact arithmetic, and applied to a
Chebyshev system, the algorithm would converge for any choice of distinct points (see Lemma
2.3). However, the number of steps of the continuation method, and thus the speed of execution,
is affected by the choice. More importantly, the numerical stability of the scheme might be
compromised due to poor conditioning of the matrix J (see (26)). Indeed, while Lemma 2.3
guarantees that the matrix J is non-singular, it says nothing about its condition number. In
addition, we will be applying the algorithm to cases where the conditions of Lemma 2.3 are not
satisfied. For these reasons, the following method of choosing the starting points was adopted.
The method seeks to create a matrix J that is well-conditioned. It is a pivoted Gram-Schmidt
orthogonalization, altered to operate on pairs of vectors:

11

e 1. Choose a set of points z1,%s, ..., Zn, on the interval of integration [a, b], such that each
of the functions ¢, @9, ..., dn, and each of their derivatives, can be interpolated on [a, b]
in a well-conditioned manner from values at these points.

e 2. Create a matrix J, of the same form as (26), where the points {z;} which determine
the columns are the points chosen in step 1. (This matrix thus has 2m columns.)

e 3. Perform the following sequence of operations n times:

— a) choose the point z; for which the two columns corresponding to z; have the largest
size. (The issue of what “size”to use is discussed below.)

— b) orthogonalize the remaining columns to both of those two columns.

The points z; chosen in step (3a) are then the starting points ¢; used in the continuation
method.

The algorithm as specified above is for exact arithmetic. As with Gram-Schmidt, the al-
gorithm is numerically unstable, but can be stabilized by an additional re-orthogonalization:
after step (3a), re-orthogonalize the two new pivot columns to all of the previously chosen pivot
columns.

Remark 3.2 The “size of two columns” that was used for step (3a) was the sum of the norms of
the columns, after the second column has been orthogonalized to the first. This poses the obvious
danger that one of the two columns chosen might have a small norm, which was covered up by
a large norm of its companion. This would render it unsuitable for piwoting; this danger was
never realized in our numerical experiments, but if it were, the obuvious remedy would be to
attempt to change the definition of the “size”. The authors have not investigated this issue in
detail.

3.4 Nested Legendre discretizations of finite sequences of functions

In this paper, we will be confronted with finite sequences of functions ¢, ¢2,... ¢, on the
interval [a, b], possessing the following properties:

e 1. The total number n of functions ¢; is reasonably large (e.g. 10000).
e 2. The rank of the set ¢1, s, ... dn, is low (e.g. 40), to high precision.

e 3. Each of the functions ¢1, @2, ... ¢, is analytic on the interval [a,b], except at a finite
(small) number of points; ¢; € L'[a,d] for all i = 1,2,...,n.

Now, if we wish to handle (interpolate, integrate, differentiate, etc.) numerically functions
of the form

ba) =3 b (42)
=1

often it is not convenient to represent them by collections of coefficients a1, s, ... a,. Indeed,
if the functions ¢1, @2, ... ¢, are linearly dependent, the number of coefficients o; necessary to

12

represent them in the form (42) might be grossly excessive, compared to the actual complexity
of the function to be represented. Furthermore, the coefficients o; by themselves provide no
mechanism for the integration, interpolation, etc. of functions of the form (42); each time such

procedures have to be performed, one has to recompute the original functions ¢;,¢o, ... dn.
Since the latter is often expensive or impossible, it is desirable to have a purely numerical pro-
cedure for representing sums of the form (42). Preferably, the scheme should use no information
about the functions ¢;, except for their values at a finite (preferably, not very large) collection
of points on [a, b].

When the functions ¢; are smooth, a widely used tool for representing them is Chebyshev
interpolation: a sufficiently large integer m is chosen, the functions ¢;, ¢9, . .. ¢, are tabulated at
m Chebyshev nodes on [a, b], and obtained at all other points on [a, b] via standard interpolation
procedures. While Chebyshev nodes are an extremely good choice, they are not the only
one; for example, Gaussian (Legendre) nodes are almost as efficient as the Chebyshev ones
when the functions are to be interpolated, and twice as efficient when the functions are to be
integrated (see, for example, [4]). When the behavior of the functions ¢; is very non-uniform
over the interval [a, b], Chebyshev (Gaussian, etc.) interpolation becomes inefficient; for singular
functions it is liable to fail completely. In such cases, adaptive Chebyshev interpolation is
used, whereby the interval is subdivided into a collection of subintervals, so that on each
subinterval, all of the functions ¢; are accurately approximated by a Chebyshev expansion of
low order; the subdivisions are performed automatically. When some (or all) of the functions ¢;
have singularities on the interval [a, b], schemes of this type cluster the subintervals near each
singularity, until the subinterval nearest to the singularity is so small as to be ignorable for the
purposes of the calculations to be performed.

In the first stage of the algorithm we use, we build a nested Chebyshev discretization of the
interval [a,b] for each of the functions ¢;. In the second stage, all such discretizations are merged
to obtain a single discretization by which all of the functions ¢; are adequately represented. In
the third stage, n Legendre nodes are constructed on each of the obtained intervals.

Stage 1

e 1. Choose the precision ¢ and some reasonably large m (in actual computations, we use
m = 16).

e 2. Construct the m Chebyshev nodes :z:[1], mga b], . x% b], on the mterval [a,b]. Evaluate

¢ at the nodes x[la o [2a o ..., zl%% obtaining the values ¢1 a.4] ¢ abl . gl

e 3. Subdivide the interval [a, b] into the subintervals [a, (a +b)/2], [(a +b)/2,b]. Construct

the Chebyshev nodes z{@T0/2 gla@+)/2 = [a(@+0/2] o the interval [a, (a +b)/2],

and the Chebyshev nodes :r[(a+b)/ 2 b] [2(a+b)/ 241 oy ZEO/2Y o1 the interval [(a+b)/2, b].

Evaluate the function ¢ at the nodes x[a’(a+b)/ 3 [a’(a+b)/ 2] ..., Ze(att)/] a:g(a"'b)/ 2’b],

[2(a+b)/2 0] B [(a+b)/2 b]’ obtaining the values ¢[a,(a+b)/2 ¢[a,(a.+b)/2 e ¢7[707.',(a+b)/2],
glla+t)/2: ¢[(a+b)/2 A a2 o etively.

e 4. Interpolate the values of the function ¢ from the nodes :c[l) [2a b], . z[a b], on the

interval [a,b] to the nodes x[la (atb)/ 2], xé a,(a-+0)/ 2], ey giw(ett)/ 2], [1(a+b)/ 2 b], 5‘“*”” Z’b],

13

., /28 on the intervals [a,(a + b)/2], [(a + b)/2,b]. If the interpolated values
agree to the precision € with the values ¢[1a’(a+b)/ q ¢[2“’(a+b)/ A glolar)/2] ¢[1(a+b)/ 20
¢[2(a+b)/ 2’b], cee, ¢£,(f+b)/ 28 calculated directly in Step 2 above, the algorithm concludes
that the function ¢ is adequately resolved by the m Chebyshev nodes on the interval [a, b];

otherwise, the procedure is repeated recursively for each of the subintervals [a, (a + b)/2],
[(a+b)/2,b].

Stage 2

e Store the ends (left and right) of all subintervals in all subdivisions in a single array a.
Sort the elements of a; remove multiple elements in a. The resulting array of points on
the interval [a, b] (including the points a, b) is the array of ends of subintervals of the final
subdivision.

Stage 3

e Construct an m-point Legendre discretization of each of the subintervals obtained in Stage
2 above.

Remark 3.3 In the algorithm above, we use Chebyshev discretizations in Stage 1 to construct
the subdivision of the interval [a,b]; in subsequent calculations we use Legendre discretizations.
The reason for this choice is that the interpolations in Stage 1 are carried out more efficiently
with Chebyshev discretizations, via the Discrete Cosine Transform and related tools; the Leg-
endre discretizations used subsequently lead to linear interpolation schemes that preserve inner
products (see following subsection).

Remark 3.4 The scheme of this subsection is a fairly reliable apparatus for the automatic
discretization of sets of (more or less) arbitrary user-specified functions. While it is very easy
to construct counterezamples in which the algorithm will fail to resolve some (or all) of the
input functions, this problem has never been encountered in our practice.

3.5 Approximation of SVD of a sequence of functions

This section describes a numerical procedure for computing an approximation to the singular
value decomposition of a sequence of functions. The algorithm uses quadratures possessing the
following property.

Definition 3.1 We will say that the combination of a quadrature and an interpolation scheme
preserves inner products on an interval [a,b] if it possesses the following properties.

o 1. The nodes of the quadrature are identical to the nodes of the interpolation scheme.

e 2. The function which is output by the interpolation scheme depends in a linear fashion
on the values input to the interpolation scheme.

14

e 3. The gquadrature integrates ezactly any product of two interpolated functions; that is,
for any two functions f,g : [a,b] = R produced by the interpolation scheme, the integral

b
| 1@ g(@)de (43)
s computed ezactly by the quadrature.

Quadratures and interpolation schemes possessing this property include:

Example 3.1 The combination of a (classical) Gaussian quadrature at Legendre nodes and
polynomial interpolation at the same nodes preserves inner products, since polynomial interpo-
lation on n nodes produces an interpolating polynomial of order n — 1, the product of two such
polynomials is a polynomial of order 2n — 2, and a Gaussian quadrature integrates ezactly all
polynomials up to order 2n — 1.

Example 3.2 If an interval is broken into several subintervals, and a quadrature and inter-
polation scheme preserving inner products is used on each subinterval, then the arrangement
as a whole preserves inner products on the original interval. (This follows directly from the
definition.)

Example 3.3 The combination of the trapezoidal rule on the interval [0,2x], and Fourier in-
terpolation (using the interpolation functions 1, cos z,sinz, cos 2z, sin 2z, . . . , cos nT, sinnz) pre-
serves inner products.

The algorithm described below takes as input a sequence of functions ¢1, ¢2, ..., ¢n : [a,b] =
R. It uses as a tool a quadrature and a linear interpolation scheme on the interval [a, b] preserv-
ing inner products; the weights and nodes of this quadrature will be denoted by wy,...,w, € R
and z1,...,Z, € [a,b] respectively. As will be shown below, the accuracy of the algorithm is
then determined by the accuracy to which the interpolation scheme approximates the functions

¢1,92,- -+, Pn

The output of the algorithm is a sequence of functions uy, ..., up : [a,b] — R, a sequence of
vectors vy,...,vp € R", and a sequence of singular values si,...,sp, € R, forming an approxi-
mation to the singular value decomposition of ¢1,¢s, ..., Pn.

Description of the algorithm:
e 1. Construct the n x m matrix A = [a;;] defined by the formula
aij = ¢;(x;) - Vw;. (44)
e 2. Compute the singular value decomposition of A, to produce the factorization
A=UoSoV* (45)
where U = [u;j] is an n X p matrix with orthonormal columns, V = [v;;] is an m x p

matrix with orthonormal columns, and S is a p X p diagonal matrix whose j’th diagonal
entry is s;.

15

e 3. Construct the n x p values ug(z;) defined by
ug (:) = ik //wi. (46)

e 4. For any desired point € [a,b], evaluate the functions ug : [a,b] — R using the
interpolation scheme on [a, b].

The proof of the following theorem can be found (in a considerably more general form) in
[15].

Theorem 3.1 Suppose that the combination of the quadrature and interpolation scheme with
weights and nodes wy, ..., wy, € R and z1,...,z, € [a,b], respectively, preserves inner products
on [a,b]. For any sequence of functions ¢y, ¢2,...,¢n : [a,b] = R, let u; : [a,b] = R, v;; € R,
and s; € R be defined in (44)-(46), for alli=1,...,p. Then

o 1. The functions u; are orthonormal, i.e.

b
/ u;i(z)uk(z)dz = S5 (47)
a
forall i,k =1,...,p, with §; the Kronecker symbol.
e 2. The columns of V are orthonormal, i.e.
n
Z ’Uij’Ukjd(L‘ = Jik (48)
j=1 ‘
foralli,k=1,...,p.
e 3. The sequence of functions ¢1, q~52, ... ,¢~Sn : [a,b] = R defined by

P
be(z) =Y sju;()vjr, (49)
J=1
is identical to the sequence of functions produced by sampling the functions ¢1,¢o, ..., ¢n

at the points {z;}, then interpolating with the interpolation scheme on [a,b).

4 Numerical Algorithm

This section describes a numerical algorithm for the evaluation of nodes and weights of gener-
alized Gaussian quadratures. The algorithm’s input are a sequence of functions ¢1,..., ¢oy, :
[a,b] — R, and the precision € to which the quadratures are to be calculated; its output is the
weights and nodes of the quadrature. The functions ¢; are supplied by the user in the form of
a subroutine, with input parameters (z,), and output parameter ¢;(z). The algorithm uses
the components described the preceding section.

e 1. The interval [a,b] is discretized via the scheme described in Subsection 3.4, so that all
functions ¢1, ¢2,..., ¢, are represented to the precision e.

16

e 2. All of the functions ¢1, ¢o,..., ¢, are tabulated at the nodes of the discretization
obtained in p. 1 above, and the Singular Value Decomposition is obtained of the sequence
of functions ¢1, ¢2, ..., ¢, via the scheme described in Subsection 3.5; we will be denoting
the obtained singular values by Aj, Ag,... .

e 3. Denoting by k the positive integer number such that o1 < € < Agg_1, we observe
that any quadrature formulae with positive coefficients that integrates the obtained sin-
gular functions u, ug,... us exactly, will integrate all of the functions ¢, ¢o,..., ¢dn
with precision ¢ (see Theorem 2.7 in Subsection 2.5). The remainder of the algorithm is
devoted to constructing a k-point quadrature formula that will integrate the functions uy,
Ug, ... Us.k exactly.

e 4. The scheme of Subsection 3.3 is used to find the starting nodes z9,z3,...,% for the
continuation process of Subsection 3.2.

e 5. An adaptive version of the continuation method of Subsection 3.2 is used to obtain the
k-point quadrature for the functions u;, ug, ..., us.k; on each step, the Newton algorithm
described in Subsection 2.4 is used to solve the system (23) defining the nodes and roots
of the quadrature formula.

Remark 4.1 We would like to reiterate that the quadrature formulae produced by the procedure
of this section do not integrate the user-specified functions ¢1, ¢2,..., ¢n exactly; instead, they
produce approximations to the integrals. Needless to say, the two are indistinguishable, as long
as the chosen precision € is less than the machine precision.

5 Numerical examples

A variety of quadratures were generated via the algorithm of this paper; several of these are
presented below to illustrate its performance. In Examples 5.1, 5.2, the calculations were
performed in extended precision (Fortran REAL*16) arithmetic, to assure full double precision
in the obtained result. In Example 5.3, the calculations were performed in double precision,
since the accuracy of the quadrature listed in Table 5 is only 9 digits.

Example 5.1 An obvious problem of interest is the integration on an interval of functions
that have a singularity at one end of that interval (or at both ends); of particular interest are
power and logarithmic singularities. Many techniques have been proposed for dealing with such
problems (see, for example, [1]). While some of these approaches are quite effective for some
of the singularities, they have the drawback that each of them only deals with one particular
singularity. In this example, we present quadrature rules for the integration of functions of the

form
n

S (e - log(a) + 3 By - %) - Pa(a) (50)

k=0 j=1

where P;; denotes the (normalized) orthogonal polynomial of order & on the interval [0, 1], B ;,
Yk are arbitrary real numbers, and o; are arbitrary real numbers on the interval [—0.6, 1].

17

Table 1: 16-node quadrature for functions of the form (50), with a € [-0.6,1], N = 4, and

precision 10715

T;

w;

0.1646476245461994E-18
0.2004881755033198E-13
0.4902407997203263E-10
0.1396853977847601E-07
0.9715236454504147E-06
0.2502196135803993E-04
0.3120851149673110E-03
0.2264576163994000E-02
0.1086917746927712E-01
0.3777218640280392E-01
0.1013279037973986E+00
0.2196196157836697E+00
0.3972680999338400E+00
0.6135562966157080E+00
0.8216868417553706 E+00
0.9636466562372551E+00

0.2477997131959177E-17
0.1863311166024058E-12
0.3215991324579055E-09
0.6788563189534853E-07
0.3586206403622012E-05
0.7130636866829449E-04
0.6951436010759356E-03
0.3979838127986921E-02
0.1515746778330600E-01
0.4182483334409624E-01
0.8854031057518543E-01
0.1490380907486389E+00
0.2028312538451011E+00
0.2216836945000430E+-00
0.1844567448110479E+-00
0.9171766188102896E-01

In order to design such quadratures, we choose a reasonably large natural m, construct m

Legendre nodes o, a2, ..., am, on the interval [—0.6, 1], and use all functions of the forms
Py(z) - 2%, (51)
Py (z) - log(z) (52)

as input functions ¢; for the algorithm of the preceding section. The result is a set quadratures
for functions of the forms (51), (52). A somewhat involved analytical calculation shows that
for sufficiently large m, the obtained quadratures will work for all functions of the form (50),
and our numerical experiments show that m = 100 insures full double precision accuracy for
all o; € [-0.6,1].

In Tables 1 - 5, we list quadrature nodes and weights for n = 4,9,19,29. In Tables 1, 3,
4, 5, the number of nodes is chosen to guarantee 15-digit accuracy. In Table 2, the number of
nodes is chosen to guarantee 7 digits.

Example 5.2 The quadrature rules in this example are very similar to those in Example 5.1,
except here we construct quadrature rules for functions singular at both ends of the interval
where they are to be integrated. Specifically, integrands have the form

n m

SO (aky- A +2)% +bey- (1—2)%) +ck - log(l + z) + di - log(1 — z)) - Pe(z) (53)
k=0 j=1

18

Table 2: 8-node quadrature for functions of the form (50), with o € [-0.6, 1], N =4, and

precision 10~7

Table 3: 19-node quadrature for functions of the form (50), with @ € [-0.6,1], N = 9, and
precision 10715

T

Wi

0.1312034302206730E-07
0.2793817088002595E-04
0.2038371172070937E-02
0.2702722219647910E-01
0.1343993651970034E+-00
0.3682213359901025E+-00
0.6792045461791814E4-00
0.9309603731369270E+-00

0.1393140646786704E-06
0.1549484313499085E-03
0.6673805929140874E-02
0.5430869272244519E-01
0.1694172186704161E+00
0.2898751155944595E+00
0.3076390470455203E+-00
0.1719310626051804E-+00

Z;

Ww;

0.1846942465536925E-18
0.1989380701597045E-13
0.4312593909743526E-10
0.1092964737770428E-07
0.6810397860708155E-06
0.1588655973896037E-04
0.1818339165855430E-03
0.1227551979000820E-02
0.5556316902145769E-02
0.1847419717287859E-01
0.4825255045366560E-01
0.1041307630444531E4-00
0.1928680775398894E+00
0.3153775090195431E4-00
0.4647713088385197E+00
0.6264814981191495E+-00
0.7804757620006211E+-00
0.9050563637732498E+-00
0.9813553783808000E+-00

0.2756403589261532E-17
0.1824804592695847E-12
0.2777592139982985E-09
0.5186860611615611E-07
0.2442433440466041E-05
0.4380009969129837E-04
0.3906506115636250E-03
0.2077051291912717E-02
0.7461053476901383E-02
0.1978838865640943E-01
0.4136988974623410E-01
0.7157248041035670E-01
0.1060884317057585E+00
0.1377804712043467E+-00
0.1585409276263068E+00
0.1614751848557232E+00
0.1428196856993585E+00
0.1031243266706421E+00
0.4746516336480648E-01

19

Table 4: 26-node quadrature for functions of the form (50), with @ € [-0.6,1], N = 19, and

precision 10~15

T

w;

0.2852686209735951E-20
0.4655349788609637E-15
0.1432147899313873E-11
0.4915792345704672E-09
0.3986884553883893E-07
0.1168849078081257E-05
0.1630549221175312E-04
0.1307331567674635E-03
0.6884061227847875E-03
0.2620448293548410E-02
0.7740029188833982E-02
0.1872452403074940E-01
0.3869460001276389E-01
0.7058074961479188E-01
0.1165353335503884E+00
0.1775282580420220E+-00
0.2531447462199369E+-00
0.3415558481256653E+00
0.4396281348394975E+00
0.5431447278197111E+400
0.6471126706707170E+-00
0.7461308154896283E+00
0.8347900655356778E+00
0.9080759999882411E+-00
0.9617441758037388E+00
0.9926478556999123E+-00

0.4390385492743041E-19
0.4445881189691443E-14
0.9689649973398580E-11

0.2471786670704959E-08

0.1527652265503579E-06

0.3470933550491954E-05

0.3803166416108812E-04
0.2422240257088061E-03

0.1022568448159836 E-02

0.3143745934305781E-02

0.7549238041954824E-02

0.1495112040361046E-01

0.2548756008178511E-01

0.3865021281644121E-01

0.5342389042306681E-01

0.6849323863305738E-01

0.8243302008328313E-01

0.9386320384208941E-01
0.1015733726852001E+00
0.1046214551363520E+00
0.1024074963963311E-+00
0.9472049436813551E-01

0.8175595131244442E-01

0.6410309004863602E-01

0.4270384642243640E-01

0.1881261305258270E-01

20

Table 5: 36-node quadrature for functions of the form (50), with o € [-0.6,1], N = 39, and

precision 1013

Z;

W

0.1174238417413926E-19
0.1422439193737780E-14
0.3350676698582048E-11
0.8987762100979194E-09
0.5804062676082615E-07
0.1381879982602796E-05
0.1599014834456195E-04
0.1086072834052024E-03
0.4939690780979653E-03
0.1653457719227906E-02
0.4371083474213578E-02
0.9635942477742897E-02
0.1847241513238332E-01
0.3179190367214565E-01
0.5030636405050507E-01
0.7449442868952319E-01
0.1045979502135202E+-00
0.1406326475828715E4-00
0.1824044449022998E+00
0.2295280679235570E+4-00
0.2814468220422235E+00
0.3374533767644982E+00
0.3967116179369689E+-00
0.4582796041927400E+-00
0.5211335571597729E+-00
0.5841926980689389E+-00
0.6463446423449487E+-00
0.7064709858680002E+-00
0.7634726623238107E+-00
0.8162946187294954E+-00
0.8639493438008133E+-00
0.9055387898384755E4-00
0.9402742542357631E+00
0.9674938463383342E+-00
0.9866773942995437E+00
0.9974613070359063E+-00

0.1769042596381234E-18
0.1318732300270049E-13
0.2181187238172082E-10
0.4306047388907762E-08
0.2097251047066944E-06
0.3830347070073085E-05
0.3447814965093908E-04
0.1843012333973045E-03
0.6658876227138618E-03
0.1785581170381193E-02
0.3817614649487054E-02
0.6885390581283880E-02
0.1094085630140653E-01
0.1581728538518057E-01
0.2129142636454853E-01
0.2712481569656370E-01
0.3308456773919071E-01
0.3895216905306892E-01
0.4452688339606666E-01
0.4962723403902098E-01
0.5409202169130247E-01
0.5778135262022458E-01
0.6057773920656186E-01
0.6238718893653459E-01
0.6314016307782669E-01
0.6279229386348975E-01
0.6132477029316637E-01
0.5874432665998542E-01
0.5508279084756487E-01
0.5039617034177984E-01
0.4476327290202123E-01
0.3828387702474601E-01
0.3107648956468336E-01
0.2327578565976658E-01
0.150302441765858 7TE-01
0.6508977351752366E-02

21

Table 6: 22-node quadrature for functions of the form (53), with @ € [-0.1,1], N = 4, and
precision 10715

+z; w;
0.1666008119316040E+00 | 0.3286464553329054E+00
0.4736467937561296 E+00 | 0.2782402062916909E+00
0.7129463900017805E+00 | 0.1977249261400840E+00
0.8687173264995090E+00 | 0.1158087624474726E+00
0.9515411665787298E+00 | 0.5425992604604305E-01
0.9862971262509680E+400 | 0.1943874113675287E-01
0.9972429072629104E+00 | 0.4979788483749470E-02
0.9996464539418006E+00 | 0.8238003428108275E-03
0.9999757993153293E+00 | 0.7462712208720397E-04
0.9999993605804343E+00 | 0.2746237603563529E-05
0.9999999970230195E+00 | 0.2041880191195951E-07

where Py denotes the (normalized) orthogonal polynomial of order k on the interval [—1,1],
ak,j, bk j, Ck, di are arbitrary real numbers, and «; are arbitrary real numbers on the interval
[-0.1,1]. Quadrature nodes and weights for n = 4,9,19,39 are listed in Tables 6, 7, 8, 9
respectively; in all cases, the precision is 10715,

Example 5.3 In this example, we construct a direct generalization of quadratures constructed
in Example 5.1, permitting the integrands to have power and logarithmic singularities at ar-
bitrary points on the closed half-line to the left of the interval of integration. Specifically,
integrands have the form

S (e - log(c +) + 3 By - (z + b)) - Py(a) (54)
k=0 7j=1

where Py denotes the (normalized) orthogonal polynomial of order k on the interval [0, 1], B 5,
7 are arbitrary real numbers, a; are arbitrary real numbers on the interval [—0.65,1], and A
is an arbitrary positive real number. In this case, the calculations were conducted in double
precision; the 38-node quadrature formula for n = 19 is listed in Table 10; its precision is 107°.

Several observations can be made from the tables 1-8, and from the more detailed numerical
experiments we have conducted.

e 1. The algorithm of this paper is always effective for Chebyshev systems; it almost always
works for non-Chebyshev ones.

e 2. The scheme does not lose very many digits compared to the machine precision; when
the calculations are performed in double precision, the quadratures can be obtained to 11
or 12 digits; the accuracy of quadratures in Tables 1-8 is full double precision; we used
extended precision arithmetic in FORTRAN to obtain them.

22

Table 7: 27-node quadrature for functions of the form (53), with a € [-0.1,1], N = 9, and

precision 10715

Table 8: 33-node quadrature for functions of the form (53), with a € [-0.1,1], N = 19, and

precision 10719

:|:£D1;

w;

0.0000000000000000E+-00
0.1953889665467211E+-00
0.3814298736462841E+-00
0.5496484616443740E+-00
0.6932613279607421E+-00
0.8078808016610349E+00
0.8920478424190657E+00
0.9475053154471952E+00
0.9790448975739819E+-00
0.9936444652327659E+00
0.9986936386311707E+-00
0.9998477986092101E+-00
0.9999927156219827E~+00
0.9999999335937359E+-00

0.1969765126094452E+-00
0.1922287111905558 E+4-00
0.1784269782500965E+00
0.1568677485350913E+00
0.1296176364576521 E+00
0.9937321489137896E-01
0.6925317917837661E-01
0.4247396818782292E-01
0.2179872525134398E-01
0.8672220251831163E-02
0.2388475528070173E-02
0.3837648653769931E-03
0.2671422777541431E-04
0.4068798910349743E-06

:i::l,',;

w;

0.0000000000000000E+-00
0.1789856568226836E+00
0.3505713663705831E+00
0.5079970396268890E+-00
0.6457344058749438E+00
0.7599840782344723E+-00
0.8490304782768580E+-00
0.9134021329241244E+00
0.9557717316319267E+00
0.9805181730564275E+00
0.9929045523533901E+00
0.9979798758935006 E+00
0.9995837651123616E+00
0.9999445617386989E+00
0.9999960165362139E+00
0.9999998889650372E+00
0.9999999994557687E+-00

0.1802406542699465E+00
0.1764865559769247E+00
0.1655482040246752E+-00
0.1483733690643724E+00
0.1264620956535221E+00
0.1017484935648103E+00
0.7643386171408831E-01
0.5276203409291129E-01
0.3272086426808218E-01
0.1766845539228831E-01
0.7963812531655223E-02
0.2833884283485953E-02
0.7387521680930171E-03
0.1267394032662049E-03
0.1207609748958691E-04
0.4709227238502033E-06
0.3706639850258617E-08

23

Table 9: 45-node quadrature for functions of the form (53), with a € [-0.1,1], N = 39, and

precision 1071%

+z;

Wy

0.0000000000000000E+00
0.1135283181390291E+-00
0.2253080046824045E+4-00
0.3336364252858657E+00
0.4369024052356911E+00
0.5336306707891807E+00
0.6225248777667337E+00
0.7025089656717720E+00
0.7727667118189729E+-00
0.8327794264993337E+00
0.8823615451977041E+00
0.9216930322777481E+00
0.9513451962287941E+-00
0.9722913641056944E+-00
0.9858845322639776 E+00
0.9937724959340503E+00
0.9977200386244100E+-00
0.9993454278943935E+-00
0.9998636273258416E+00
0.9999815974719829E4-00
0.9999986596740707E+00
0.9999999622133619E4-00
0.9999999998137450E+00

0.1138212938786054E+-00
0.1129431358863252E-+00
0.1103317059272695E+00
0.1060558645237672E+00
0.1002294986469973E+00
0.9301028558331059E-01
0.8459812566475355E-01
0.7523338442881639E-01
0.6519506433099722E-01
0.5479889055074179E-01
0.4439489209928996 E-01
0.3436308131973152E-01
0.2510376733595393E-01
0.1701539437521317E-01
0.1044852849794223E-01
0.5626146436355554E-02
0.2543352365327656 E-02
0.9118380718941661E-03
0.2403706487446808E-03
0.4181929949775085E-04
0.4045883666118617E-05
0.1599158044436823E-06
0.1268296767711113E-08

24

Table 10: 38-node quadrature for functions of the form (54), with a € [-0.65,1], N = 19, and

precision 10~?

T

w;

0.7629165866352161E-18
0.3799719398931375E-16
0.5684549949701512E-15
0.6085909916179373E-14
0.5277191865393953E-13
0.3900442913791902E-12
0.2535538557277294E-11
0.1481755662897140E-10
0.7911595380511587E-10
0.3907746000477183E-09
0.1803070816493823E-08
0.7833265344260583E-08
0.3224897189563689E-07
0.1264894823726299E-06
0.4747932260937661E-06
0.1711978528765632E-05
0.5948052018171647E-05
0.1995877304286260E-04
0.6475274273537152E-04
0.2029004100170709E-03
0.6109309950274235E-03
0.1747449285439932E-02
0.4661579935095226 E-02
0.1135932523990354E-01
0.2491532030262493E-01
0.4902801284057732E-01
0.8713816071641225E-01
0.1415514175271372E+-00
0.2128806314974303E+-00
0.2998564528132552E+00
0.3994239415560721 E+00
0.5070313867113639E+00
0.6170411438386144E+-00
0.7232121752054713E+-00
0.8192137516286219E+00
0.8991333728333283E+00
0.9579443204807173E+00
0.9919093183441774E+00

0.4643955333268610E-17
0.1132690565299208E-15
0.1423549582265871E-14
0.1371876219104025E-13
0.1094397021531007E-12
0.7534990994077416E-12
0.4603432835276850E-11
0.2545533729683496E-10
0.1293022088581050E-09
0.6102781198001779E-09
0.2700678436986190E-08
0.1128792193586090E-07
0.4482855569803782E-07
0.1700035548631482E-06
0.6182057321480894E-06
0.2163108715557027E-05
0.7302447810573277E-05
0.2382492261847977E-04
0.7511062044871306E-04
0.2279609908900293E-03
0.6592765068003472E-03
0.1781666222619331E-02
0.4378093849756735E-02
0.9537600800370288E-02
0.1820679046524441E-01
0.3060746663786768E-01
0.4600643316091537E-01
0.6292513465068938E-01
0.7951989233968431E-01
0.9391761648476182E-01
0.1044517799613406E+-00
0.1098153664961849E+00
0.1091553255900476 E+-00
0.102123066627666 TE+00
0.8888680524875885E-01
0.7010796674100402E-01
0.4688508195206744E-01
0.2069742637648333E-01

25

e 3. The algorithm of this paper is not very efficient. For example, the quadrature formula
in Table 1 took about 2 minutes of CPU time on Ultra SPARC 2; the quadrature in Table
8 took about two hours of CPU time. Of course, extended precision on the UltraSparc
is quite inefficient; in double precision, Table 8 took about 4 minutes on to construct. In
any event, the quadratures of the type presented in this paper need not be constructed
“on the fly”; the nodes and weights can be precomputed and stored. From this point
of view, the CPU time requirements of our algorithm are not excessive. Still, its CPU
time requirements grow as n3 for large n, making it unsuitable for the construction of
quadratures of very high order.

6 Generalizations and Conclusions

We have constructed a scheme for the design of Generalized Gaussian Quadratures for a fairly
broad classes of functions. The results presented here should be viewed as somewhat experi-
mental, since while the algorithm appears to work under quite general conditions, we can only
prove that it has to work for Chebyshev systems.

Several possible extensions of the work suggest themselves.

1. Quadratures of the type designed in this paper can be used within compound quadrature
rules, not unlike the classical Gaussian quadratures. In particular, they can be substituted for
Gaussian quadratures in the scheme described in Subsection 3.4 above. If the functions to be
integrated have (for example) power singularities at the left end of the interval of integration,
the quadrature rules in Example 5.1 will eliminate the bunching of nodes near the left end
of the interval. In this respect, of particular interest are quadratures of the type found in
Example 5.3, since their use will eliminate the bunching of quadrature nodes near the ends
of the interval for integrands with power singularities anywhere on R outside the interval of
integration. Furthermore, one does not have to replace classical Gaussian quadratures with
ours on all of the subintervals of a compound rule; it is sufficient to do so only on those
subintervals near the ends of the interval of integration. In other situations, different special-
purpose Genaralized Gaussian Quadratures might be used. Such adaptive compound rules have
been constructed; a paper describing them is in preparationn.
The fact that we can only obtain quadratures

2. While our numerical experiments indicate that the scheme of this paper works under very
general conditions, we have only been able to prove that it has to work for Chebyshev systems
(see Subsection 2.1 above). This discrepancy seems to indicate that it might be profitable to
investigate generalizations of Theorem 2.1 to sets of functions other than Chebyshev systems.

3. By combining Observation 2.3 and Remark 2.4 with results in Sections 3, 4, it is fairly
straightforward to construct algorithms for the efficient interpolation of fairly large classes of
singular functions. For example, the nodes z1,22,...,23¢ in Table 5 lead to a stable interpola-
tion formula on the interval [0, 1] for all functions of the form

n

Pi(z) Y Brj-z%, (55)
k=0 J=1

26

with —0.3 < @; < 1, 0 < k < 19, and the precision of interpolation 107!°. Interpolation
schemes of this type are currently under vigorous investigation, and will be reported in the
near future.

4. In many situations (especially, in the numerical solution of partial differential equations),
it is desirable to have “quadrature” formulae that, in addition evaluating integrals, would
evaluate certain pseudodifferential operators, i.e. derivative, Hilbert Transform, derivative of
the Hilbert Transform, etc. Clearly, such “quadratures” can not have positive weights, except
for the Hilbert Transform. Several such quadratures have been constructed numerically, and
the appropriate theory appears to be fairly straightforward; this work will be reported at a
later date.

5. While the theory of Gaussian Quadratures in one dimension is extremely simple and well-
understood, no similar theory exists in higher dimensions, except for a few scattered results
(see, for example, [9],[14]). The approach of this paper is quite different from the classical
Gaussian Quadratures, and it appears possible to generalize it (at least, formally) to higher
dimensions. While the advantages of such a construction would be significant, our investigation
of it is at a very early stage. If successful, it will be reported at a later date.

References

[1] R. BULIRSCH, J. STOER, Fehlerabschdtzungen und Eztrapolation mit Rationalen Funktio-
nen bei Verfahren vom Richardson-Typus, Numerische Mathematik, 6, 413-427 (1964).

[2] F. GANTMACHER AND M. KREIN, Oscillation matrices and kernels and small oscilla-
tions of mechanical systems, 2nd ed., Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow, 1950
(Russian).

[3] W. GAuTcCHI, On Generating Orthogonal Polynomials, SIAM Journal on Scientific and
Statistical Computing, V. 3, No. 3, 1982.

[4] D. GOTTLIEB, S. ORSZAG, Numerical Analysis of Spectral Methods, SIAM, Philadelphia,
1977.

[5] T. HRYCAK, V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields,
SIAM Journal of Scientific Computing, Vol. 19, No. 6, pp. 1804-1826, 1998.

[6] S. KARLIN, The Ezistence of Eigenvalues for Integral Operators, Trans. Am. Math. Soc.
v. 113, pp. 1-17 (1964).

[7] S. KARLIN, AND W. J. STUDDEN, Tchebycheff Systems with Applications In Analysis And
Statistics, John Wiley (Interscience), New York, 1966.

[8] M. G. KREIN, The Ideas of P. L. Chebyshev and A. A. Markov in the Theory Of Limiting
Values Of Integrals, American Mathematical Society Translations, Ser. 2, Vol. 12, 1959,
pp. 1-122.

27

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. N. Lyness, D. JESPERSEN, Moderate Degree Symmetric Quadrature Rules for the
Triangle, Journal of the Institute of Mathematics and its Applications, 1975, V. 15, pp.
19-32.

J. MA, V. ROKHLIN, AND S. WANDZURA, Generalized Gaussian Quadratures For Systems
of Arbitrary Functions, SIAM Journal of Numerical Analysis, v. 33, No. 3, pp. 971-996,
1996.

A. A. MARKOV, On the limiting values of integrals in connection with interpolation, Zap.
Imp. Akad. Nauk. Fiz.-Mat. Otd. (8) 6 (1898), no.5 (Russian), pp. 146-230 of [12].

A. A. MARKOV, Selected papers on continued fractions and the theory of functions devi-
ating least from zero, OGIZ, Moscow-Leningrad, 1948 (Russian).

J. STOER, R. BULIRSCH, Introduction to Numerical Analysis, Second Edition, Springer-
Verlag, 1993.

S. WANDZURA, H. X140, Quadrature Rules on Triangles in R?, Yale University Technical
Report YALEU/DCS/RR-1168 (1998).

N. YARVIN AND V. ROKHLIN, Generalized Gaussian Quadratures and Singular Value De-
compositions of Integral Operators, Yale University Technical Report YALEU/DCS/ RR-
1109 (1996), to appear in SIAM Journal on Scientific Computing.

N. YARVIN AND V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields
on One-Dimensional Structures, Yale University Technical Report YALEU/DCS/RR-1119
(1997), to appear in SIAM Journal on Numerical Analysis.

28

