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§0. Introduction,

In this papér we obtain new a priori bounds for the error involved
in approximating the solutions to a wide variety of boundary value
problems for linear and nonlinear elliptic partial differential equations
by the Rayleigh-Ritz-Galerkin method.

Throughout this paper, let Q < RY be an open set, m be a positive
integer, W%sz(ﬁ) denote the closure of the real-valued functions f € Cg(ﬂ)

with respect to the norm !Ifl]m = (g I IDaflzdx)l/z, where we have
. O<|a|<m

used the standard multi-index notation, cf. [21], Wm’z(Q) denote the closure
of the real-valued functions f ¢ Cw(Q) with respect to Il ° Ilm, and K denote
a positive comstant not necessarily the same at each occurrence., If we

are considering a problem of order 2m, the "classical"™ a priori error bounds
are in the Sobolev norm || -« Ilm, cf. [18], for these types of result and a
list of references. Such error bounds trivially induce error bounds in the

lower order Sobolev norms, || ¢ ||., O < j < m-1. But these induced error

j’

tounds are not sharp.

Recently, J. Nitsche has shown how to directly obtain error bounds in

the norm || - 'O for the special case of m =1, N =1, and @ = (a,b), cf. [14].
S. Hilbert has adapted Nitsche's technique to the special case of m = 1 and

‘N =2, cf. [11]. 1In this paper we develop generalizations of Nitsche's
technique and show how they can be applied to semilinear elliptic problems,

lirear ond semilinear forced vibration problems, and eigenvalue problems as

well as linear elliptic problems.



Roughly speaking, if Hehllm 9 = O(hp) as h = 0, where ey denotes the
b
error in approximating the solution to a problem by using the Rayleigh-
Ritz-Galerkin method over a finite dimensional subspace parameterized

by h, then we obtain |[e || = 0(hP*™ ) as h = 0, for all 0 < j < m-1.
h|

We remarkthat analogous results have been obtained by entirely
different techniques for the case of semi-linear problems with N = 1
and special subspaces by Hulme, cf. [12], Perrin, Price, and Varga, cf.
[15], and Schultz, cf. [20],and the case of linear problems with the

N
Q= 2" and special subspaces by Fix and Strang, cf. [10].

§1. Linear Elliptic Problems.

2
Throughout this paper, let H be any closed subspace of W (Q) such
that WS’Z(Q) C Ha Wm’z(ﬂ), and a(u,v) be a real-valued, bounded, bilinear

form over H such that there exist constants 0 < vy < u such that

2
(1.1) yllulli < a(u,u) i_u'lullm, for all u ¢ H.

Glven a real-valued function g € WO’Z(Q), our problem is to find

u ¢ H such that
(1.2) a(u,v) = (g,v)0 = IQ g(x)v(x)dx, for all v e H,

If S is any finite dimensional subspace of H, then the Galerkin method is

to find ug € S such that

1.3 ’a(us,w) = (g,w)o, for all we S,



The following Theorem is a combination of the results of [5] and [7].

Theorem 1.1. If (1.1) holds, (1.2) has a unique solution, u, (1.3) has

a unique sclution, Ugs for every finite dimensional subspace of H and

1

(1.4) Hu - usl'm < ¥y inf ||u - yl[m.

vesS
Inequality (1,4) has been combined with results from approximation
theory by a number of authors, cf. [18] for a list of references, to give
a priori error bounds for the Galerkin method. 1In this paper we will show
that under an additional hypothesis we can give a priori error bounds
directly, in wj’z(n), where 0 < j m-1.

We now make the additional assumption that a(u,v) 1is strongly coercive

over H, i.e., that every solution, u, (1.2) is in Wzm’z(ﬂ) and that there

exists a positive constant, p, such that
(1.5) Hullog < ollglly for all g e w022(q),

Using a fundamental technique of Nitsche, cf. [14], we have the
following generalization of analogous results of [5], [7], and [18].
Theorem 1.2, Let (1.1) hold, a(u,v) be strongly coercive over H,and C be
a collection of finite dimensional subspaces of H such that if

2m,2

geW () N H, then there exists a positive, real-valued function E

on C such that

(1.6) inf |[g - y|ly = E)|[ell, >
yeS



for some m < p < 2m and all S ¢ C. Then if ug denotes the Galerkin

approximation to u in §,

(1.7) [lu - uS||0 j_py“lqu(S) inf ||u - yf[m, for all S ¢ C,
yes
Proof, Given S ¢ C, define Yg = (u - us)/||u - us||0 and a new bilinear form

b(u,v) = a(v,u). We consider the problem

(1.8) b(u,v) = (y ,v)0 for all v ¢ H,

S

which has a unique solution,¢, by Theorem 1,1.
Thus, b(¢,u - us) = a(u - ugsd ) = (ygou - us) = ||u - usllo. if s ¢ S,
then by the definition of the Galerkin method a(u - ug, ¢ - 8) = (ws,u - us)o

and hence
(1.9) [Ju = ugll, = aCu - ug, ¢ = &)< u]|u - ullylle - SHm
<vEs) o] [1s = ugl < oum(s) | ugl ||l = ugll,

The result followsbby applying (1.4) to the right hand side of (1.9). QED.

As a corollary of the preceeding result, we have

Theorem 1.3. Let (1.1) hold, a(u,v) be strongly coercive over H, P be a
collection of positive parameters, h, and {S_ _ }h , m < r, be a collection
m,r ,h heP -

of finite dimensicnal subspaces of H such that there exists a positive

constant M such that  inf o - y||2 <M hj'zll¢||j for all
YeS¢ r,h



0<28<m<j<r, heP, and ¢ ¢ wi-2(Q) M H. Then if Uy denotes the

Galerkin approximation to u € Wt’z(ﬂ), 2m<t, dn S, . 45
b Rl |

(1.10) e - uhll0 < oy~1pB2nSP2m| |y | |,» for all h e P,
“where s 2 min (r, 2m) and p = min (r,t).

The construction of such spaces has attracted much attention recently.
Examples include spaces of multivariate spline functions, cf. [18], spaces
of muitivariate L-spline functions, cf. [18], and finite element spaces,
cf. [8] and [10].

Following Agmon, cf. [l], we say that a set Qc R® has the restricted

cone condition if 3Q has a locally finite open covering {Oi} and corres-

ponding cones {C;} with vertices at the origin and the property that
x + Cjcq for x e Qn 0y,

As a corollary of Theorem 1.3, we have the following result.
Theorem 1.4. Let the hypotheses of Theorem 1.3 hold and  have the

restricted cone condition. Then there exists a positive constant, K, such that

(1.11) lju - uhllj <K hs+p_2m-j!!u‘lt, for all h ¢ P such that
0<h<1l, 0<j<m where s = min (r,2m), p = min (r,t),and u, denotes
the Galerkin approximation to u e Wt’z(ﬂ), 2m i_t, in Sm,r,h'

Proof. For each 0 < j <m and u ¢ Wm’z(ﬂ), let

lu]j £ {‘ I Jq [bau(x)]zdx)llz. By Theorem 3.3, pg.24 of [1], there
ol=j



exists a positive constant, n, such that
- 2 - 2
(1.12) |u!§ < n(e® jlulm + e j]u|0),

2
for 211 1 < j < m~1, u e Wm’“(Q), and 0 < ¢ < 1. The result follows by
combining (1.32) with Theorems 1.1 and 1.4 and setting € = hz. In fact,

we obtain

|u|§ :_%(h4m+2p—4m-2j + h23+29—4m—2) liull;tsz < K h23+2p—4m-2j"ul‘ét,2

- ()

since s = min (r,2m). QED.

For completeness, we now give some examples of boundary value
problems for linear elliptic partial differential equation which give rise
to strongly coercive forms. But first we introduce some additional terminology.
Following Agmon, cf. [1], again we define an open set QC Rn to be
of class Ck, k > 1, if for every X € 3Q there is an open neighborhood U
such that for some 1 < i < n, UN3Q has the representation X, = g(xi) e ¢k,
i

KT E (X,s eeey X

1 o1 Xi4l r x ) in vl, the projection of U onto the

hyperplane xi = 0, and UNQ is contained in the half-cylinder
{xlxi > g(x1) for ¢ ull.

We will discuss the Neumann problem for second order problems in
02 domains, then we will discuss the Dirichlet problem for even order
problems in smooth domains, and finally the Dirichlet problem for second

order problems in convex polygons in the plane.



We consider the problem of finding the generalized solution of

. n
(1.13) -~ I D,(a, (x)D,u(x)) + c(x)u(x) = £(x), x¢ Q,
i,3=1 * 13 J

where Q is bounded, open subset of R%, ai.(x), l1<1i, j <n, and c(x)
J

are real-valued, Cldf) functions, c(x) > k > 0 for all x ¢ Q, aij(x) = aji(x),

n

1<i, j<n,xef, and I a, (X)E,E, > k lglz for any x ¢ Q and any
= = {.3=1 1ij b I §

3 J=

£ ¢ R® with |€|2 = 52 + ...+ 52, subject to the Neumann boundary conditions
1 n
n
(1.14) )3 a,. (x) D,u(x) cos (v,x,) = 0, for x ¢ 39,
=1 W !

where v is the outer normal on 3. We define a bilinear form on Wl’z(ﬂ) by

n
z a,.(x)D. u(x)D v(x) + c(x)ux)v(x) ldx.
1,31 T

i)

a(u,v) Q [

By our assumptions,

min (k,kl)'lulli < la(u,u)| < max (mag |e(x)] i<?a§< maglaij(x)|)||u[]i,
Xe <i,j<n xe

so that (1.1) holds. By a generalized solution of (1.13) = (1.14) we mean

a function u e Wl’Z(Q) such that



(1.15) a(u,v) = (f,v)o, for all v ¢ Wl’z(ﬂ).

Lions has shown, cf.[13, pg. 111], that if Q is of class c? and the

1.2
above hypotheses hold, then a(u,v) is strongly coercive over H = W (Q).

Now we consider the problem of finding the generalized solution of

(1.16) bX (—1)Ta]D“[aaB(x)D6u(x)] = f(x), x € Q,
o<lal,|8|<m

where @ is a bounded, open subset of R", and agg (%), 0<|al,|8|<m, are

renl-valued functions with aaﬁ(x) € cl“!(ﬁ) such that there exists a positive

constant, Y with

By ax >y||w]|?

o
aas(x)D wD .

I
o<lel,|8]<m

m, 2
for all w ¢ WO’ (2), subject to the Dirichlet boundary conditions

(1.17) D*u(x) = 0, for all x ¢ 3R, O < |¢| < m-1.

2 2
We define a bilinear form on Wg’ Q) x Wﬁ’ () by

a(u,v) = [ z aaB(x)DBu(x)Dav(x)dx.
& o<lal,|8]m



By our assumptions,

2
vlull? < Ja (u)| < ( max max |a_x)]) ||ul]
m Qi}al,[slfp xef aB

so that (1.1) holds. By a generalized solution of (1.16) - (1.17) we mean

: m,2
a function u ¢ wg,Z (Q) such-that a(u,v) = (f,v)o, for all v ¢ WO’ ).

2m
Agmon has shown, cf., [1, pg. 132], that if Q@ is of class C and the above
hypotheses hold, then a(u,v) is strongly coercive over H = Wﬁ’z(ﬂ). Moreover,

if in addition, n = 2, m = 2, a__(x) =aao(x) for all x ¢ Q, and Q is a

01

convex polygon, then Birman and Skvortsov have shown, cf., [3], that a(u,v)

is strongly coercive over H = Wé’z(ﬂ)°

§2. Linear Forced Vibration Problems.

In this section, we extend the methods and results of 81 to linear
forced vibration problems. Finite difference methods for approximating
the solutions of such problems have been discussed in [4]. In particular,

we consider the problem of finding u € H such that
(2.1) a(u,v) + (pu,v)g = (g,v) s

for all v € H, where we assume that (i) (1.1) holds, (ii) a(u,v) is



10

symnetric, i.e., a(u,v) = a(v,u) for all u,v ¢ H, (iii) p(x) is real-
valued and belongs to L*(Q), (iv) g(x) is real-valued and belongs to

WO’Z(Q), and (v) if g(x) = 0, then u = 0 is the only solution of (2.1).

Theorem 2.1. If hypotheses (i) - (v) hold, there exists a linear, compact

mappir~s, T, of WO’Z(Q) into H such that u satisfies (2.1) if and only if

(2.2) a(u,v) = - a(Tpu,v) + a(Tg,v), for all v e H,
or
(2.3) u =~ Tpu + Tg.

Proof. F[v] = (g,v)0 - (pu,v)O is a bounded ‘linear fuuctional of v with

respect to the inner product a(u,v) in H. 1In fact,

I ]
IFIvi] < ( max Ip(x) | HUHO + llgHo)!aVHO

< Coax G| [lully + 11l Iy ™ *tace,m1t/2,
xef

Thus, by the Riesz Representation Theorem, cf. [21], (2.2) is equivalent'

to (2.1. Moreover, T is linear,

0,2 w1:1,2 ,
To show that T is compact from W ’>7(Q) to HC (Q), we first
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0,2
observe that T takes sets bounded in W ’° (Q) into sets bounded in Wm’z(ﬂ)

and hence by Rellich's Theorem, cf. [21], that T is compact from WO’ZIQ)

0,2
to W (Q). Finally, if S is any bounded set in Wo’z(ﬂ), there exists a

sequence {un};_ <. S such that Tun is a Cauchy sequence in WO’Z(Q). But,

1

a(Tun - Tuk, Tu - Tuk) = (lu, - ul, Tu_ - Tuk)0 + (g, Tu - Tuk)0

< g = w1, + el i, = 10 11

and hence {Tun}°° is a Cauchy sequence in Wm’z(Q). QED.

By applying the well~-known Fredholm Alternative Theorem, cf, [16],

to (2.3), we have

Theorem 2.2. If hypotheses (i) - (v) hold, equation (2.1) has a unique

solution,

Now let {Sn}°° be a sequence of finite dimensional subspaces of H

n=1
such that

L]

(2.4) lim inf ||¢ - y|| =0, for all ¢ ¢ H and {P }
we  yeS i v n n=]1

be the sequence of linear, orthogonal, precjection mappings of H onto S
n
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: , -1 1/2
with respect to the inner product a(u,v). We remark that ||Pn§! < (v w .

The‘Galerkin method for (2,1) is to determine u ¢ Sn such that
n
(2.5) a(un,w) + (pun,w)0 = (g,w)o, for all w ¢ Sn’
or equivalently

(2.6) un = - PnTpun + PnTgo

Thearir. 2,2, If hypotheses (i) - (v) hold, the approximate problems (2.5)

or (2.6) have a unique solution, u s for all n sufficiently large and

(2.7) Hu - unllm,i (1+e,) inf lu - Yllma
yeSn
where €, 7 0 as n—+ «,
Proof. Let ||(I - Tp)-llf =R, ||Tp - P T || = a , and Ian(TPPn - )| |= Bn‘

By the compactness of T, «

n and B_ > 0 as n+ o, Sincel -P Tp =
n n

I-Tp+ (Tp - PnTp), I-PTp is nonsingular for sufficiently large n.

The error bound (2.7) "follows by observing that
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(I - Tp) (u -~ un) + (Tp - PnTP) (u - un) + Pn(Tan -T) (u- un) =

(I -Tp) (u=-Pu)+ (Tp-P Tp) (u-Pu), multiplying by (I - Tp)_'L
n n n

R(20 + B )
taking norms, and setting en S QED.

1 -Ra =-RB
n n

We now prove an analogue of Theorem 1.2.

Theorem 2.4, Let hypotheses (i) - (v) nold, afu,v) be strongly coercive

o]
over H, and {Sn} 1 be a sequence of finite dimensional subspaces of H
n=

such that (2.4) holds and if g ¢ Wz’mz(ﬂ)i} H there exists a sequence,

{En}:=1’ of positive numbers such that

(2.8) inf || - vyl <E |lgl]
yei_ m n p’

for some m < p < 2m and all n > O, Then there exists a positive constant,

K, such that for all n sufficiently large

(2.9) [lu - un:fo_i KE ~ inf [lu - y[{m;
yes
n
Proof. Let y = {u - un}/i]u - un[§0 and 4 denote the unique solution

of a(u - un,¢n) + (plu - un),qbn)0 = (wn, u - un)0 = {lu - un|!0°
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By the definition of the Galerkin method,

a(u - us ¢ - s) + (p(u - ud, ¢, - s)O = ||u - unllo for all s e S

and hcnce

o = sl < wlls = w111, = sl + mex loGo| s = wlll1e, - ol

The result now follows as in the proof of Theorem 1.2, since by the strong

coerciveness of a(u,v),
Hoglly = olllee g + Tyl
<ol max |p@| 1@ - w7 Hizl] + ],

xef

= o max|pGO| || - )7 ] |]T]] + D. QED.
xefl

§3. Semilinear Elliptic Boundary Value Problems

In this section, we extend the methods and results of the previous
sections to semilinear elliptic boundary value problems. In particular,

we congider the problem of finding u ¢ H such that
(3.1) a(u,v) + (£(w),v)y = 0,

for all v ¢ H, where we assume that (i) (1.1) holds, (ii) a(u,v) is

. f . of
symmetric, (iii) f£f(x,u) and g;(x,u) are real-valued and continuous on

Q X(=o,°),  (iv) l%ﬁ (x,u)|< B for all (x,u) e 0 x (~=,®), and
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v) §-§<x,u) > n > - A = - inf a(w,w)/’.(w,w)o.
: weH

If S is any finite dimensional subspace of H, the Galerkin method

is to find us e S such that

(3.2) a(us,w) + (f(us),w)0 = 0 for all we S.

We recall the following result from [7].
Theorem 3.1. Under hypotheses (i) - (v), the problem, (3.1) has a unique

solution, u,

-1

(3.3) llu]lm A (1+ g)-ll‘f(O)llo,the problem (3.2) has a unique, ug,

for all S, and

for all S.

m’

-1 n -1,
3.4) Hu - uglly < v a+ p™ @ +n) mtlfu -yl
: weS
Following the results of the previous sections, we have the next Theorem.
Theoren 3.2. Let hypotheses (i) - (v) hold, a(u,v) be strongly coercive
over H, and C be a collection of finite dimensional subupaces of H such
2m

that if g e W ’Z(Q)rﬁ H, then there exists a positive, real-valued function

E or. C such that

(3.5) inf |lg - vyl| < E(s)|lgll
yeES m p
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for some m < p < 2m and all S ¢ C. Then, if ug denotes the Galerkin approxi-

mation o u in S,

(3.6) {Ju~-u

-1 -1 -1
sllgc w+Bm3” p[B’y (1+%) +1](1+Ll) E(S) inf ||u - y||_

ye$S

for all S ¢ C.

Proof. Let S be any subspace in C,yg = (u - us)/llu - ug||gs and ¢g be the
unique solution of the linear problem

(3.7)  alvydg) + ( ~— {eu - (1 -8) ugv, (¥gs¥)g» for all v e L, where

070 =

6 <6< 1.
From Theorem 3.1, we have that ]|¢S‘[m 5_7'1(1 + %)_1 and from the strong

-1
coerciveness of a(u,v) we have that|l¢sl|2m <pley7l@1 + E) +1].

Moreover, from (3.7) we have that for all y € S,

]
(3.8) [l = ully = atu - ugog9 + Ge [u - ugl, ¢ = ¥)
and hence
-1 -1 -
(3.9) Hu - uSH0 < (u+ B)2 y olBy (1 + %) s 1] -

¢l +ﬂ) E(8) inf ||u - y[|
ye§
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84, Semilinear Forced Vibration Problems.

In this section, we study the Galerkin method for approximating the
solutions of semilinear, forced vibration problems., In particular, we

consider the problem of finding u € H such that

(4.1) a(u,v) + (f(u),v)O = 0

for all v ¢ H, where we assume that (i) holds, (ii) a(u,v) is symmetric,
(iii) £(x,u) and gﬁ( X,u) are real-valued and continuous on Q x (==,®),
(iv) If(x,u)l < B for all (x,u) e Q x(-w,»},and

< = A, for all (x,u) €  x (~=,%),

4
~

(v) =Ar,.. <n

2% (x,u)
i+l YT RLE A

41 = nj

where 0 < Al 2 XAy 2 ... are the eigenvalues associated with a(u,v) over H,

Let Sn be any finite dimensional subspace of H., Then the Galerkin

method is to find u € Sn such that
(4.2) a(un,W) + (f(un),W)O = 0,

for all w ¢ Sn‘ We recall the following result from [17].

Theorem 4,1, Under hypotheses (i) - (v), problem (4.1) has a unique solution,

u, and Iiul‘m f_y—lB (meas 9)1/2. If {Sn}:=1 is a sequence of finite dimen-

sional subspaces of H such that
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(4.3) lim inf ||u - y[l =0
oo yes m
n
for all u € H, then problem (4,2) has a solution, u s which is unique for

all sufficiently large n and

(4.4) Hu-%Hm:u+e3;§nHu-ﬂ%,

for all sufficiently large n, where e + 0 as n > =,
n
Using the Fredholm alternative, cf. [16], and hypotheses (i) - (v),
we can prove the following Theorem in essentially the same way that we proved

Theorenm 3.2. The exact details are left to the reader.

Theorem 4.2. Let a(u,v) be strongly coercive over H, hypotheses (i) - (v)

hold, and {Sn}:=l be a sequence of finite dimensional subspaces of H such

2m

that (4.3) holds and such that if g e W ’z(sat\ H, there exists a sequence,

{E_ )} _,, of positive real-numbers such that
n ‘n=1

(4.5) inf  |lg - y|]| <E|lsg]]
m n p

yeSn

for some m < p < 2m and all n > 1. Then there exists a positive constant,

K, such that

(4.6) llu - unlzo _f_KEn inf ]Eu - y!lm,

yeSn

for all sufficiently large n,
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§5. Eigenvalue Problens.

In this section, we study the Rayleigh-Ritz-Galerkin nethod for
approximating the eigenvalues and eigenvectors of symmetric, elliptic
problems. In particular, we consider the preblem of finding A and u £ 0

in H such thaot
(5.1) a(u,v) - A(Pusv)o =g,

for all v ¢ H, where we assume that {i) (1.1) helds, (ii) a(u,v) is
symnetric, and (iii) p(x) is real-valued and 0 < 8§ < p(x) < 4 for all
x € 8,

From Theorem 2.1, we have that under hypotheses (i ) - (iii) there
cxists a linear, compact mapping, T, from WO’Z(SD to wﬁ}ﬁ(ﬂ) such that
(5.1) holds for A and u € H for all v € H if and only if
(5.2) u - A Tu = 0.

From the standard theory of compact, self-adjoint operators in Hilbert

space, cf. [9], we have the following result.

Theorenm 5.1. Under hypotheses (i ) - (1ii), problem (5.1) or (5.2) has a



20

o0
countable number of normalized, solutions {ki, ¢i}i—l° Moreover,

O < A, <A_ < coe d i o = =
1542 and Ay > o as e, B2 span {0;), 0 200,000 =6,
=X 6 and A = inf w w) (weH w = 0
(p¢i: ¢J)0 1 ij’ K nf {a(w, )/(pW, )Ol € I, (p ’¢i)0 s
for =11 1 <1i<k-1} for all k > 1,

If S, is any finite dimensional subspace of H, the Rayleigh-Ritz

im S
unethod is to find the extremal points, {¢i(s )]ili B, of Rlw] = a(w,w)/(pw,w)o
n =

over Sn' We now make the additional hypothesis that (iv) 0 < Al < AZ <o~o<Ak,

and recall the following result from [2] and [6].

[ee]

Theorem 5.2, Let hypotheses (i) - (iv) hold and {Sn}n_ be any sequence of

1

finite dimensional subspaces of H such that

(5.3) 1im{inf|1¢i-y||'}=o
n»o  yeSn n

for all 1 < i < k. Then Ai(sn)+ A, asn—+ o for all 1 < i < k, where

i

A (8 ) = RG5O, []o - ;8[| > 0asn > foralll<ick

Moreover, there exists a positive constant, K, such that
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k
‘ 8 ) 2
(5.4) 0 <A () - A <K T ;rexg o, = vl
n

for all sufficiently large n and

k
(5.5) 6 -4 (8)]] <K z inf| |6, - v|| »
o, eIl < x z - stlle, -3l
n

for all sufficiently large n.

2
We now prove a new result which gives sharp L (§) error bounds for
the approximate cigenfunctions. The technique of proof is analogous to the

techniques of the previous section.
Theorem 5.3. Let a(u,v) be strongly coercive over H, hypotheses (i) - (iii)

o]
hold, 0 < Al < Az, and {Sn}n be a sequence of finite dimensional subspaces

=1

2m, 2
of H such that (5.3) holds and such that if ge W ") H, there exists

o]
a sequence, {En}n_ of positive, real-numbere such that

1

for some m < p < 2m and all n > 1. Then there exists a positive constant,

K, such that

. 2
(5.7) l6 -6 (8)|] . < KE inf 6. - y|| +inf |lo. - v}
| 1 1 n l !0 a yesn l | 1 n ygSn 1 ,;"' jurl

for all sufficiently large n,
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Proof. Let I-I1 denote the orthogonal complement of ¢1 in H with respect

to the inner product (pu,v)0 and Pl denote the corresponding orthogonal

projection mapping onto H;. Let e ¢y = ¢l(Sn) = an¢l + ann’ where

- ' 1/2
Vn - Plen/(Pleﬁ’Plen)O‘

By the Fredholm Alternative, cf. [16], and ellipticity, the problem

(5.8) u + AlTpun = Tvn

N
, , 1 2
has # unique solution, Bn, in Hl. Moreover, y(1 - XE)I‘enllm-ﬁ-“llvn“o!lenlio

-1 A1-1
and hence llen||m <y u@ - XE) .

- ;
Siuce T( I a,¢.,) = = aile ¢i € Hl’ we may use the fact that
i=2 i=2

a(u,v) is strongly coercive to obtain

. -1 !

(5.9) o llom < plijay “u@ - =) + 1]
Rewriting problem (5.8) we have

5.10 0 - A ) = e = P e .

(5.10) a(e_,e ) L (P e ) v e ) § L nHO
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Using the well-known cquivalence of the Rayleigh-Ritz method and the

Galerkin method for this problem, we have
= - - - . - ¢
(5.11) [[R.e || = ae_ yoe ) = A (G, = ¥)re)y ¥ (h(8) =) (py,8,(S)),
for «il v e Sn’ and hence there exists a positive constant, K, such that
. = | - .

Thus, Bn + 0 as n + » and hence a 0 as n » «»,. Moreover,

(5.13) 6 (S)y=(Q-a)d)¢ +BV
1 n n 1 nn
and hence
(5.14) L= (0. (S, 6.(8)) = (L~a)+8>
. _P¢lns¢ln0 an n
Thus,
. _ 2,1/2
(5.15) an =1+ (- Bn .

In face, since o, > 0 as n + ©, we nust have

2
(5.16) a =1-(1 - 82 %/ .
n n
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-1/2 2,1/2

n

c )1/2 -1/2

2
(Pe s <3d (o + B
n

Finally, we have Henl IO <$ 2220

and the result follows from the above estimates of oy and Bn and Theorem 5.2.

QED.

§6., An Example,

Ta this section we consider a very simple example to show how the
results of this paper may be applied, although in the interest of simplicity
we will not attempt to obtain the best possible ccmstants, In particular,

we consider the problem

(6.1) -D[p(x)Du] + g(x)u = g(x), O< x<1
subject to the boundary conditions

(6.2) u(0) = u(l) =0
wheve p(x) is a real-valued, continuously differentiable function on [0,1]
with p(x) > w > 0 for all x e [0,1], q(x) is a continuous, real-valued
function on [0,1],

(6.3) v] lqu < : (p() (0w + qG)u? Mx < ulu] |’
1 0 1

0,2
for all v e Wé’z(O,l), and g(x) is a real-valued function in W >7(0,1).
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1 ;
We define a(u,v) = IO {p(x)DuDv + q(x)uv}dx and consider the problem

of finding u ¢ Wé’z (0,1) such that

(6.4) alu,v) = (g,v)O for all v ¢ W ’Z(O,l)u

1
0

Theoren 6.1. Under the above hypotheses, a(u,v) is strongly coercive and

if u is the solution to (6.4) then

. 2 -1 -1 -1
(6.5, 9%l < w7 sl o+ ot e D,
where P, = max |Dp(x)| and Q = max la(x)].
xe[0,1] xe[0,1]

252
Proof, The fact that u(x) ¢ W (0,1) 4is a standard result in ordinary
differential equations, cf. [13]. Moreover, by setting v = u in (6.4) and

using (6.3) we have

-1
(6.6) Hull <y "Hellge

Differentiating ouvt equation (6.1) we get

1
(6.6) —Dzu = —— [Dp(x)Du - q(x)u + g]
p(x)

and +he (6.5) follows by applying the bound (6.6).  QED.



26

Now let A : 0 = Xg <X < ese < x <x = 1 be a partition of the
1 N N+l

interval [0,1] and SA be the set of all continuous, piecewise linear
polynomials with respect to A which satisfy the boundary conditions (6.2),
i.e. s(x) ¢ SA if and only if s(x) is a linear polynomial on each subinterval
defined by A, s(x) € C[0,1], and s(0) = s(1) = 0. Combining Theorems 1,2

and 6,1 with Theorem 3.5 of [19] we obtain the following explicit error

bound.

Theoren 6.2, Under the above hypotheses, if up denotes the Rayleigh-Ritz~

Galerkin approximation,,then

2

2 w_z)i; ,

-1 2 -2 =1 -1 -
€.7) ’!u - uA"o <¥y uzw !lglIO(Ply +Qy +1) (1 +h

where h £ max (x -x ), for all partitions A.

We remark that this result shows that we have a second order scheme

even for nonuniform meshes!
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