Linda, the Portable Parallel

Robert Bjornson, Nicholas Carriero,
David Gelernter and Jerrold Leichter

Research Report YALE/DCS/RR-520
February 1987

(revised January 1988)

This material is based on work supported by the NSF under‘grant # DCR-8601920.




Linda, the Portable Parallel

Robert Bjornson, Nicholas Carriero, David Gelernter
and Jerrold Leichter

Yale University
Department of Computer Science
New Haven, Connecticut

Abstract. We address two questions: is it practical to provide high-level
languages for explicitly-parallel programming? Is it reasonable to suggest that
the same language be made available on a broad spectrum of parallel machines?
We argue that the answer to both questions should be yes. We present and
discuss two results: a smart optimizing pre-processor and a runtime kernel
working together are a powerful basis for a complete Linda system; the Linda
kernel can be implemented effectively on a broad range of parallel computers,

. including both shared-memory and message-passing architectures. We discuss
the design and performance of Linda systems for Encore and Sequent shared-
memory multiprocessors, the S/Net bus-based message-passing network and the
Intel iPSC hypercube link-based network.

This material is based on work supported by the NSF under grant number
DCR-8601920. '

1 Introduction

We address two questions: is it practical to provide high-level languages
for explicitly-parallel programming? Is it reasonable to suggest that the same
language be made available on a broad spectrum of parallel machines? °

To date, the predominant answer to the first question has been “maybe”
— the idea has been around for some time, but relatively little implementation
experience has been reported, and the advantages of a high-level environment
in expressivity and efficiency have rarely been spelled out. The second question
is usually answered no.

The existence of high-level languages, portable ones in particular, has been




taken for granted on conventional machines for decades. “I will not be forced
to write assembly-level code” and “I will not have my language and program-
ming style dictated to me by the pile of hardware I happen to have acquired”
have become the defining statements of civilized programming. We believe that
the same should be true on parallel machines. We present results intended to
show that, at least in a preliminary way, both questions should be answered
yes. Linda has been presented before as a communications kernel for AT&T
Bell Lab’s S/Net multi-computer. We present it here as a complete parallel lan-
guage (a communications kernel together with a compiler) that runs on a broad
spectrum of parallel computers. We will focus on implementations for the En-
core Multimax and Sequent Balance shared-memory multi-computers, and the
Intel iPSC hypercube and S/Net memory-disjoint multi-computers. We will
refer also to operational Linda systems for the shared-memory Tadpole and
for Ethernet-connected VAXes under VMS. We will discuss the performance
of several simple but significant applications, including matrix multiplications,
LU decomposition, parallel database search in the context of DNA sequence
comparison and the travelling salesman problem.

The evidence that we will present demonstrates that a portable high-level
parallel language like Linda is a reality on shared-memory machines; it does not
demonstrate, but it strongly suggests, that exactly the same environment can
be realized on memory-disjoint machines. Our claims with respect to memory-
disjoint machines are limited by the hardware at our disposal. In particular (1)
the MC-68000-based S/Net is obsolete, but parallel Linda programs nonethe-
less demonstrate good speedup over sequential programs running on the same
processor. (The outdated S/Net is the basis for the hardware Linda Machine
that is now under construction). (2) The Intel iPSC is limited by its extremely
slow inter-node communication, but Linda is nonetheless a working tool in this
environment, and should be a better and more flexible one on the next gen-
eration iPSC with its much-faster inter-node communication. The Encore and
Sequent implementations on the other hand are effective and flexible tools on
current-generation hardware, and our experience with a port to the custom-
built Tadpole multiprocessor suggests that Linda is readily adaptable to other
shared-memory architectures as well.

We begin by discussing the terms “high-level” and “portable” as they ap-
ply to parallel languages, and we categorize the results to be presented into
two classes: the first class deals with the machine-independent Linda optimiz-
ing pre-processors, the second with the spectrum of machine-specific runtime
communication kernels. Linda systems are dialects of some base language; at
present C-Linda and Fortran-Linda pre-processors exist. The pre-processor,
base-langugae-specific but machine-independent, is central to efficient Linda im-
plementation and we will argue that, more generally, compiler technology has
a central role to play in supporting parallel programming environments. The




runtime kernel is base-language-independent but machine-specific; our experi-
ence suggests that a portable language need not represent merely the greatest
common denominator over the architectures to be supported.

In section three we briefly summarize Linda. The two following sections re-
spectively treat the two categories, compiler and kernel design. The last section
gives conclusions.

2 Defining terms and classifying our results

What does a “high-level parallel language” mean? Parallel languages differ
from conventional ones in providing for the creation of parallel processes and
for communication among them — either explicitly or through the medium of a
parallel data structure. (It is the first case that is of interest here: we concentrate
on control-level rather than on “data-level” [Hil85] parallelism.) A high-level
parallél language implies two things. First, the tools it provides for handling
parallelism are powerful and flexible. Second, these tools are an integral part of
a programming language, recognized by a compiler. Now that parallelism is a’
commercial reality (more than a dozen manufacturers sell multi-computers, and
many next-generation machines are under construction at research centers), it’s
possible to scan the field and to observe that in fact most multi-computers are
supplied with low-level parallelism tools, and that in most cases these tools are
supplied as system calls of which the compilers are ignorant.

What does a “portable parallel language” mean? Parallel machines span an
enormous spectrum; of particular importance is the fact that ratios of compu-
tation to communication speeds differ dramatically among architectural classes.
The host machine’s computation-to-communication ratio is one determining in-
fluence on the way parallel programs are written. This broad spectrum of ratios
is often offered, then, as an excuse for the lack of portable languages. These
machines are so different, the argument goes, that it isn’t possible and doesn’t
make sense to encompass them within one programming environment. We don’t
accept this excuse: n different performance levels are more easily handled, we
believe, in the framework of one flexible, scalable language than in n separate
frameworks. A program (whether parallel or not) that is ported from one ma-
chine to another very different one may run poorly, but at least it will run — and
the programmer can change and tune it in the same familiar idiom he made use
of on the last machine. But it’s also true that a sizable and interesting class of
parallel programs, the relatively coarse-grained or non-communication-intensive
applications, can run well (as we discuss) on a broad spectrum of machines. And
finally, performance gaps between architectural classes don’t explain why two
machines in the same class — two shared-memory multiprocessors, for example,
or two hypercubes — shouldn’t offer the same programming environment. But
empirically they almost never do. ’




The domination of low-level, non-portable parallel programming tools slows
the growth of knowledge about how in general we are to approach parallel pro-
gramming. It encourages a growing body not of widely-applicable techniques,
but of machine-specific hacks.

Linda consists of a small number of powerful operations that may be inte-
grated into a conventional base language, giving a dialect that supports parallel
programming. Thus C with the addition of Linda operations is a parallel pro-
gramming system; it consists of a pre-processor from C-Linda into C and a kernel
to support the Linda operations at runtime. Unlike (for example) Hoare’s CSP,
Linda was designed purely for power and simplicity, in arrant disregard for the
practical problems of implementation. We reported on our first efficient Linda
kernel some time ago [CG85]. In this paper we concentrate on two new results,
which address the two questions raised above. In essence our results are, first,
that complete high-level parallel languages (as opposed to kernel-only systems)
can be implemented efficiently, and smart compilers are central to this effort;
second, that even as quirky and high-level a language as Linda can be supported
effectively on a wide spectrum of very different parallel machines.

Our first result is that a smart optimizing pre-processor and a runtime ker-
nel working together are a powerful basis for a complete Linda system. Most
multicomputer manufacturers support parallelism by offering not parallel lan-
guages with compilers, but rather system calls whose semantics are unknown
to the compilers. (Linda itself was first implemented as a kernel only, with no
compiler.) We have found, however, that a smart compiler offers not only the
obvious advantages in cleaner, more readable, more traceable-and-debuggable
source code, but major runtime performance gains as well. These gains are par-
ticularly significant in the case of Linda, which, as an abnormally “high-level”
language, demands particular cleverness of its implementors. But given our ex-
perience, we see no reason why any parallel-programming environment, whether
built around Linda or not, shouldn’t offer users some kind of parallel language
in preference to isolated system calls.

What is the cost of Linda’s “high-levelness”? We will describe one experi-
ment that suggests that, given an optimizing compiler, the cost of using high-
level Linda versus low-level system calls is surprisingly low — clearly less, in this
one case anyway, than the routine overhead associated with compiling rather
than hand-coding one’s programs.

Our second result addresses the portability question. The Linda kernel can
be implemented effectively on a broad range of parallel computers, including both
shared-memory and message-passing architectures.

After outlining Linda, we take up each of these two results in turn.




3 Linda

Because Linda has been discussed at length in the literature (e.g. [GB82, Gel85,
CG85, CGL86, AhCG86)), we give only a brief outline here.

The Linda model is a memory model. Linda memory (called tuple space)
consists of a collection of logical tuples. There are two kinds of tuples waltzing
around inside it. Process tuples are under active evaluation; data tuples are
passive. To build a Linda program, we ordinarily drop one process tuple into
tuple space; it creates other process tuples. The process tuples (which are all
executing simultaneously) exchange data by generating, reading and consuming
data tuples. A process tuple that is finished executing turns into a data tuple,
indistinguishable from other data tuples.

One Linda programming paradigm we rely on involves distributed data struc-
tures and a bunch of identical worker processes (or several bunches of different
kinds of processes) crawling over the data structures simultaneously. We use
the term distributed data structure [CGL86] to refer to a data structure that
is directly accessible to many processes simultaneously. Any datum sitting in
a Linda tuple space meets this criterion: it is directly accessible — via the
Linda operations described below — to any process that currently occupies the
same tuple space. A single tuple constitutes a simple distributed data struc-
ture. We can build more complicated multi-tuple structures (artays or queues,
for example) as well.

It’s reasonable to describe a parallel computer that supports Linda as an
“unconnection machine”. Programming models like Occam [M83] and the Con-
nection Machine [Hil85] tend to bind concurrent processes tightly together (im-
plicitly, through the intermediation of a parallel data structure, in the case of
the Connection Machine). In Linda the opposite is true. Linda processes as-
pire to know as little about each other as possible. They never interact with
each other directly; they deal only with tuple space. We believe that tightly-
bound collections of synchronous or quasi-synchronous activities tend to force
programmers to think in simultaneities. Great simplification of the potentially
formidable task of parallel programming is possible, we believe, if concurrent
processes are so loosely bound (so unconnected) that each can be developed
independently of the rest.

There are four basic tuple-space operations, out, in, rd and eval, and
two variant forms, inp and rdp. out({) causes tuple ¢ to be added to TS;
the executing process continues immediately. in(s) causes some tuple ¢ that
matches template s to be withdrawn from TS; the values of the actuals in ¢
are assigned to the formals in s, and the executing process continues. If no
matching ¢ is available when in(s) executes, the executing process suspends
until one is, then proceeds as before. If many matching ¢’s are available, one is




chosen arbitrarily. rd(s) is the same as in(s), with actuals assigned to formals
as before, except that the matched tuple remains in TS. Predicate versions of in
and rd, inp and rdp, attempt to locate a matching tuple and return 0 if they fail;
otherwise they return 1, and perform actual-to-formal assignment as described
above. (If an only if it can be shown that, irrespective of relative process speeds,
a matching tuple must have been added to TS before the execution of inp or
rdp, and cannot have been withdrawn by any other process until the inp or rdp
is complete, the predicate operations are guaranteed to find a matching tuple.)
eval(t) is the same as out(?), except that ¢ is evaluated after rather than
before it enters tuple space; eval implicitly forks a new process to perform the
evaluation. Eval has been implemented on the Encore and Sequent but not on
the other two systems we discuss, and so we restrict discussion primarily to the
other Linda operations. (Where eval doesn’t yet exist, programmers rely on
the native operating system to fork processes.)

Tuple space is an associative memory. Tuples have no addresses; they are
selected by in or rd on the basis of any combination of their field values. Thus
the five-element tuple (4, B, C, D, E) may be referenced as “the five element
tuple whose first element is A,” or as “the five-element tuple whose second
element is B and fifth is £” or by any other combination of element values. To
read a tuple using the first description, we would write

rd(A4, 7w, ?x, ?y, ?7z)

(this makes A an actual parameter — it must be matched against — and w
through z formals, whose values will be filled in from the matched tuple). To
read using the second description we write

rd(?v, B, ?x, ?y, E)

and so on. Formal parameters (or “wild cards”) may appear in tuples as
well as match-templates, and matching is sensitive to the types as well as the
values of tuple fields.

4 The Pre-Processors

The compiler is important to efficient Linda implementation, and we believe that
compile-time analysis is in general a powerful tool in supporting parallelism.
Compilers or pre-processors are central to the question of whether high-level
parallel languages are a reasonable alternative to a library of system calls—
compilers are required on the one hand in order to recognize the syntax of
high-level languages, on the other to smoothe the way for the more complex de-
mands these languages tend to make of runtime communication systems. How
parallel-language compilers should be built and how well they perform are im-




portant questions, then, in assessing the general prospects for high-level parallel
languages. There is no such thing as a “typical” high-level parallel language.
Our results therefore can’t be taken as showing the way to a general solution of
the problem. They do show how the problem can be solved for one particularly
idiosyncratic and quirky language. They also play a major part in explaining
how Linda systems are constructed.

Some of the Linda pre-processor’s goals should be relevant to many language
environments. In any system that involves communication among disjoint ad-
dress spaces, the compiler is in a position to speed things along by pre-formatting
header fields, supplying information about length and type of data fields and
so forth. Another general motivation involves error handling and runtime trac-
ing. A parallel environment that relies on system calls can’t alert the user at
compile time to problems that have to do with the semantics of the parallel-
programming operations; nor will information that can only be gathered from
sources be available for runtime tracing.

These concerns are addressed in the Linda pre-processors using fairly general
techniques. The pre-processors (we will refer to them collectively as Ipp; these
comments apply both to C-Linda and to Fortran-Linda) create one “proto-
buffer” for every Linda statement in the source. Proto-buffers contain infor-
mation about the number of fields in the tuple, their types, and the runtime
location of the values they will ultimately contain. Ipp flags errors in Linda
usage; if, for example, the program it is examining includes in statements that
no out will ever match, it mentions the fact. (Some of its abilities in this area
are based on the tuple analysis stage, which we discuss below.) Information is
accumulated that may be useful in runtime tracing. For example, the text of
each Linda operation as it appeared in the source is stored in that operation’s
proto-buffer. In one of the several tracing modes available at runtime, the source
of each Linda operation, together with the values of any actual parameters it
mentions, is displayed when it is executed.

Tuple analysis is an optimization that, unlike the others we’ve discussed, is
unique to Linda.

The generality and power of Linda’s associative matching make it potentially
costly at runtime. Because Linda’s in and rd operations support tuple-selection
based on any arbitrary combination of tuple fields, the kernel must be prepared
to inspect large numbers of tuples in searching for a match. The fact that out
allows wildcarding — the argument list to out may contain formals, just as the
argument list to in may contain actuals — complicates things further. Ipp’s goal
is to optimize associative matching by supplying ezactly as much generality at
runtime as a given Linda operation requires. The Linda kernel supplies four dif-
ferent matching and tuple-storage routines, which perform increasingly general
runtime matching. The preprocessor translates each Linda operation into an




invocation of one of the four, depending on the character of its argument list.
The process by which this is accomplished is described in detail in [C87]; the
following paragraphs give a general outline.

The first step is to partition all Linda calls within the program into disjoint
sets, such that tuples and templates in different sets can never match. Parti-
tioning is accomplished by using a compile-time version of the Linda matching
protocol; this weaker version is the same as ordinary matching, except that
non-constant actuals of the same type are assumed to match. Partitioning
proceeds by choosing one call at random to seed the new partition and then
repeatedly comparing all still unassigned calls against all calls in the partition,
adding matches to the partition, until no more matches can be found. At this
point a new seed is chosen for the next partition and the process repeats until
completion.

Next, each partition is classified, based on the usage pattern for tuples and
templates in the partition. This is best explained by example. Consider the
following partitions:

A: out("foo", i)
in("foo", ? j)

B: out("vector", i, j)
in("vector", k, ? 1)

C: out("element", i, j)
in("element", k, ? j)
rd("element", ? k, ? j)

In set A, the first field is always constant; it can be removed by the compiler.
Furthermore the second field within in statements is always a formal; since any
tuple in the set will satisfy any template, no matching is required at run-time.
Tuples from this set can be stored at runtime in a simple queue.

In set B, the first and third fields are analogous to the two fields in set A,
but the middle field will require runtime matching. Because this field is always
an actual, we can use its value as a key and store these tuples in a hash table.

The third possibility is set C, where a field exists (here the middle field)
that over all in’s and rd’s is sometimes an actual and sometimes a formal. We
have to do a match, but we don’t always have a key. There are several ways to
manage this set; we decided on a private hash table scheme. outs, which always
have an actual to use as a key, are hashed on that key. When performing an
in, if a key exists we follow it to the correct bucket. If no key exists, we must
search the entire table. Since each “class C” partition has its own private table,

8




the search shouldn’t be too expensive.

The last class is a catch-all for sets that don’t fit into one of the above
schema—these sets always include out statements in which formals appear, in
our programming experience a rare case. We store such partitions on a list, and
search the list for matches.

A significant limitation of our current Ipp is its inability to deal with separately-
compiled Linda modules. It’s clear how the analysis will extend to the separate-
module case, but a fair amount of additional code will be required.

Performance. It’s difficult to isolate Ipp’s contribution to Linda’s runtime
performance, because the compiler and new kernels to support it were developed
together, and each assumes the other. But the following data point is of interest.
A “primitive tuple exchange” is an out-in pair that involves a tuple with only a
single small, constant field. (Thus e.g. out("ping") — in("ping")). On the
NS32032-based Encore Multimax, system time for a primitive tuple exchange
before we installed the compiler with its new kernel was about 700usec; with
the new combination in place, it was about 200usec.

Of much greater interest in assessing the combined kernel-compiler system’s
performance are the results of a test proposed by Encorel.

This was the proposed test: take the standard Donagarra Linpack bench-
mark; recode it in C; write a parallel C-Linda version based on the sequential
C version, and measure its performance. (The Dongarra code is written in
Fortran, but Fortran-Linda was not yet available when we performed this test.)

Dongarra’s benchmark routine repeatedly solves systems of linear equations
by the standard method: perform an LU factorization of the matrix, then per-
form a forward and backward solve. The factorization step dominates time cost
— it is O(n®), while the solve is O(n2). We therefore wrote a C-Linda version
of the factor routine but not of the solve routine.

The resulting Linda code worked well. It showed linear speedup through
ten processors: that is, execution time could be modelled closely by a curve
of the form a/n + b. The program used a replicated worker model involving a
single master process and multiple identical worker processes. It required only
two workers to finish faster than the sequential C program. In other words,
the overhead of communication in Linda was recouped when 3 processors were
available. Adding processors at that point led to absolute gain in runtime. (The
Linda program itself is described in [C87].)

So in this case at least, the Linda kernel-compiler system indeed lends itself

1Encore Computers provided Scientific Computing Associates of New Haven with a ma-
chine for our use on this project, and we are duly grateful.




to the programming of a useful application that achieves real speedup. A second
obvious question suggests itself: programmers expect to pay for high-level se-
mantics in somewhat lower performance relative to low-level, high-performance
alternatives; what do Linda’s high-level semantics cost?

We addressed this question by writing another version of the Linpack pro-
gram that was modelled algorithmically on the Linda version but used the En-
core Multimax’s native spinlocks instead of Linda for inter-process communica-
tion and synchronization. The results show that the Linda version ran in the
worst case (small problem, few workers) approximately 10% slower than non-
Linda, improving in the best case to essentially identical. In figure 1 we have
graphed the performance of the Linda program against the performance of the
non-Linda version. The abcissa shows number of worker processes. Note that
total processes are one greater than total workers. The dashed line on the graph
represent ideal speedup of a sequential C program, where “ideal speedup” is
linear speedup in the complete absence of overhead.

These results show clearly that, in this case at least, elegance is a bargain.
The performance penalty for using Linda instead of a low-level system is minimal
— clearly less than (for example) the expected performance penalty in the
routine use of a high-level language rather than assembly code.

5 The runtime kernels.

The nature of the problem. The Encore Multimax and Sequent Balance
series are both shared-memory multiprocessors. In the current generation, a
few dozen processors maximum (NS32332’s or NS32032’s respectively) share
access to global memory. Both are Unix machines. Same processor family, basic
architecture, operating systems, same-size boxes; and they agree that shared
memory and locks will serve as their basis for inter-process communication in
parallel programs. But the system calls with which they support locking and
memory-sharing are completely different.

When we examine a wider architectural spectrum, it’s not surprising that
we find not simply incompatible system calls, but incompatible programming
models. The S/Net’s native operating system offers not shared memory with
locks but communication channels that resemble distributed Unix pipes. The
Intel iPSC hypercube comes equipped not with shared memory or channels but
with several varieties of send-message and receive-message calls.

We’ve noted that parallel machines span a broad spectrum of communication
efficiencies and computation-to-communication ratios. In our case, communica-
tion on the shared-memory machines is much faster than communication over

10




the S/Net bus, which is in turn faster than the Intel hypercube. Speed of com-
munication is one important influence on the way parallel programs are written.
On every machine, a cut-off point exists beyond which parallel programs are too
communication-bound to show speedup — beyond that point, the overhead of
communication overwhelms the speedup gains of parallelism. The whereabouts
of the cutoff vary from machine to machine, and programmers must be roughly
aware of where it lies on the machine they are using. If they aren’t, they will
quickly find out when they write a parallel program that doesn’t speed up (or
maybe slows down) as it runs on more processors.

The Linda kernel can’t make these differences go away. It is inevitable that
the basic Linda operations will be faster where the underlying communication
system is faster. Linda programs exist that will show speedup on the Encore
but not on the S/Net, and so on. (Almost anything that speeds up on a slow-
communication machine like the Cube will speed up on a faster-communication
machine too.)

Do these inevitable differences mean that it is unrealistic to provide the
same programming environment on all of these machines? Clearly not. Linda
makes the differences among machines easier to deal with by providing a uniform
language that scales smoothly along the spectrum of possibilities. Linda itself
is unbiased with respect to the communication-intensiveness (or equivalently,
the computation granularity) of parallel programs. It can be used for coarse-
grained parallel applications; but the model will work just as well for fine-
grained programs that store an increasingly greater proportion of their data
not in conventional local structures, but in tuple space. It’s even possible to
express programs in which a dependency graph of program statements is stored
in tuple space, and a series of general-evaluator processes march down the graph
together, executing each enabled statement they encounter. This dependency
graph is simply a distributed data structure like any other.

It’s also the case, of course, that a significant class of Linda applications
— the relatively coarse-grained class — will run well on a broad spectrum of
parallel machines. And there is no excuse for similar miachines not supporting
the same programming environment.

Implementing Linda on a broad spectrum of parallel machines.
Linda kernels that define the same primitives can have radically different internal
structures. These systems fall into two basic classes: shared-memory kernels
and network kernels. Network kernels are themselves divided into two groups,
a uniform-distribution group and a hash group.

When physically shared memory is available, then clearly that’s where we’ll
put tuple space. This is an obvious implementation strategy, and a shared-
memory multiprocessor is a good host for a Linda kernel. It’s important to

11




point out, though, that providing hardware for physically-shared memory is by
no means the same as providing Linda. A shared memory supported in hard-
ware is useless to programmers unless they are given a way to use it conveniently
and safely. To serve as a communication medium, it must be augmented by a
signalling mechanism. If it is to be maintained coherently, we need a locking
scheme. Unless programmers are willing to accept statically-assigned communi-
cation buffers (which may impose synchronization constraints at runtime), we
need a mechanism to allocate and assign storage in shared space dynamically.
Linda solves these problems, and (of course) adds its powerful tuple semantics.

The shared-memory kernels. On the Encore and the Sequent, the kernel
attaches the necessary shared-memory space and lays out tuple-block buffers.
It creates the control structures necessary to manage shared free space and
to maintain the queues and hash tables on which tuples are stored, together
with their associated locks. Linda operations cause a search of the appropriate
storage structure, using a locking scheme that has been tuned to allow maximal
simultaneous access without excessive lock-manipulation overhead. On out,
data is copied out of user space into tuple blocks, on in or rd the reverse.

In the abstract, we might avoid copying tuples into and out of shared space
by allocating all tuple data fields in a shared heap and passing pointers that
are transparently dereferenced. But such an approach is hard to support in the
C world, because of such difficulties as garbage-collecting the shared heap. To
get some idea of how much tuple copying costs, we wrote a version of the Linda
matrix multiplication program that “cheated” by storing the input matrix in
shared memory and passing pointers rather than matrix-columns in tuples. We
also wrote a version that was a true Linda version, because the matrices were in
Tuple Space, but allowed the workers to cache the rows and columns for later
use. Figure 2 compares the performance of the three versions. The differences
aren’t dramatic 2. '

The network kernels. Supporting Linda in the absence of physically
shared memory is a problem with no single obvious solution. Conjuring a
shared tuple space out of collection of disjoint local memories is not an easy
trick. Nonetheless, two kinds of attack suggest themselves. We can use a hash-

2A final interesting note pertaining to copying in shared memory multiprocessors comes
from a group that has run extensive experiments on the BBN Butterfly — a shared memory
machine with which we have no experience. “[A]lthough the Uniform System {a BBN-supplied
parallel programming environment] provides the illusion of shared memory, attempts to use
it as such do not work well. Uniform System programs that have been optimized invariably
block-copy their operands into local memory, do their computation locally, and block-copy out
their results... This being the case, it might be wise to optimize later-generation machines for
very high bandwidth transfers of large blocks of data rather than single-word reads and writes
as in the current Butterfly. We might end up with a computational model similar to that
of LINDA [...], with naming and locking subsumed by the operating system and the LINDA
in, read and out primitives implemented by very high speed block transfer hardware [0186,
p.10].”

12




based solution or a uniform-distribution solution.

The hash-based solution calls for tuples to be stored in a distributed hash
table, where different hash bins may in general be mapped to different nodes. In
a uniform distribution scheme, tuples are broadcast by their generating nodes to
all nodes within the generating node’s pre-determined: “out-set”, and requests-
for-tuples are broadcast to all nodes within an orthogonal “in-set”. Each node
is informed at system startup which other nodes make up its in-set and which
nodes constitute its out-set. For the scheme to work, each in-set must be guar-
anteed to include at least one member of every out-set. That way, a tuple and
a request for that tuple are bound to run into each other somewhere in the
network. (Uniform distribution is described in [Gel84].)

The hash scheme is more economical: it doesn’t require any broadcasting,
and it doesn’t require that data (that is, tuples or requests for tuples) be repli-
cated on multiple nodes. But uniform distribution may lead to more evenly dis-
tributed network traffic patterns, it may be extensible to larger networks and,
particularly when it is supported by hardware that makes broadcast cheap, it
can be a highly efficient way to support distributed tuple matching. We de-
scribe a hash kernel that runs on the Intel iPSC hypercube. We then discuss
the uniform-distribution scheme that runs on the S/Net, and two other uniform-
distribution kernels that are designed for the VAX LAN and for the hardware
Linda Machine.

Our Intel iPSC consists of 64 Intel-80286-based processor nodes linked by
dedicated Ethernet channels into a binary hypercube. We’ve had difficulties
with certain aspects of the architecture and Intel-supplied communication sys-
tem, and we think these should change irrespective of Linda. But, although
we’re in some ways dissatisfied with it, our present Cube kernel nonetheless
makes a strong basis for future work on next-generation Cubes.

The system centers on a tuple space implemented as a distributed hash
table. lec’s tuple analysis stage divides tuples into two categories, those that
include a guaranteed search key and those that don’t. (Of the ones that don’t,
some require no runtime matching at all, and the rest don’t have a field that is
guaranteed to be a search key in every case.) Guaranteed search-key tuples are
hashed on the key to some storage node; other tuples are hashed on their “class
number”, which is assigned during tuple analysis. The hash function covers the
entire network; all nodes act both as storage nodes and host nodes.

Matching on the Cube generally takes place on a node where neither the
in’ing nor the out’ing process is local. Both in and out, then, require the
packaging and transmission of a tuple.. (In the case of in or rd, this “tuple” is
simply the list of arguments to the in or rd, precisely as for out — we refer
to such a “negative tuple” as a template). On out, a tuple is dispatched to

13




the storage node dictated by the hash scheme. It may find a matching template
waiting for it; if so, it proceeds onward to the matching template’s home node. If
not, it is installed in a local table. Likewise for in and rd: arriving templates will
either match a waiting tuple or be installed in the local table to wait hopefully
for the right tuple to come along.

An out, then, requires a message-send. in and rd each require a message-
send and a message-receive, where message-send and -receive are the commu-
nication primitives provided by Intel. Since the hashing scheme is essentially
a method of randomizing tuple placement, these sends and receives are in gen-
eral non-local, and may cross the entire Cube. We are beginning research into
ways of reducing communication path lengths by intelligently deploying tuple
hash bins; lee’s tuple analysis is a strong basis for such intelligent (topology-
sensitive) hashing. (In a very interesting independent project, Lucco [Lu86] has
also shown that heuristics can be used to reconfigure a distributed hypercube
tuple space at runtime in response to measured tuple-traffic patterns.)

We referred to difficulties with Intel’s architecture: they involve both sys-
tem software and hardware. The Linda kernel relies on the low-level message-
exchange primitives supplied by Intel, and these have been far slower than they
need to be. Architecturally, the iPSC lacks communication co-processors or
front ends. The obvious consequence is that each message packet interrupts
each host along its route. The resulting overhead is an unnecessary drag on
performance that communication co-processors would have eliminated.

Although Cube Linda is slower than we’d like it to be, there are interesting
Linda programs that show good performance on the Cube. We discuss perfor-
mance issues in the next section.

Uniform-distribution network kernels. We described uniform distribu-
tion in the abstract; here are three pertinent instances of uniform-distribution
schemes. Out-set(n) means “the set of nodes to which tuples generated on node
n are broadcast. In-set(n) means “the set of nodes to which templates generated
on n are broadcast.”

1. For all n, out-set(n) = the entire network; in-set(n) = n.
2. For all n, out-set(n) = n; in-set(n) = the entire network.

3. Consider a network arranged in a square jzj grid. out-set(n) =
the j nodes in n’s row; in-set(n) = the j nodes in n’s column.

Note that in all three cases, each node’s in-set contains exactly one member of
each other node’s out-set.

The S/Net kernel follows the first scheme. This kernel has been described ex-
tensively elsewhere [CG85], so we omit further discussion here. The VAX-LAN

14




kernel uses the second uniform-distribution scheme — the inverse of the S/Net
scheme. This technique is better suited to networks that (like the Ethernet
and unlike the S/Net) do not support reliable broadcast. In this scheme, tuples
are stored on their node of origin. Templates are broadcast, but tuples, once
they’ve found a matching template, are shipped off to the template-generating
node using a reliable point-to-point protocol. Because broadcast is unreliable,
templates may not reach every node on a given broadcast — but the template
generating-node rebroadcasts its template every z ticks until a matching tuple
arrives. Template-holding nodes throw out templates that are more than z ticks
old. Note that, in general, it’s easier to manage a protocol in which the network
holds an uncertain number of templates than one in which it holds an uncertain
number of tuples.

Finally, the Linda Machine now under construction at AT&T Bell Labs uses
the third uniformly-distributed scheme. It’s configured as a grid of buses, with
" nodes at the bus intersections. Each node has ports to two buses. Tuples are
broadcast on one and templates on the other. A matching tuple-template pair
are guaranteed to meet somewhere in the network. This work is described in
[AhCGKS87].]

Performance. A primitive tuple exchange that takes roughly 190usec on
the Encore and 180usec on the Sequent (both times are for the NS32032 ver-
sion of these machines) requires about 1.4ms on the S/Net, and, in the fastest
measurable case, about 5.3ms on the Intel cube. (Of these 5.3ms, only 1.5ms is
actually Linda overhead; the rest is the iPSC’s communication time)

Given these significant differences, it’s interesting that it is not hard to
write Linda programs that show very similar performance profiles over all of
four machines.

Figure 3 gives absolute running times (not speedup: the number on the
ordinate gives execution time for increasingly parallel versions) for the multi-
plication of 300x300 matrices on all four machines. The algorithm we used is
essentially the one described in [CG85]: multiple identical worker processes are
responsible for reading (via rd) the rows and columns of input matrices stored
in tuple space, computing their inner products and outing the result back to
tuple space. Computation tasks are assigned to workers dynamically. Workers
check a floating “next-task” tuple, perform the task it indicates and update it
appropriately. A single task consists of computing five rows of the result matrix.

(Note, for concreteness, that the rows of a matrix named MAT1 can be stored
in tuples this way:

("MAT1", 1, first-row-of-MAT1)
("MAT1", 2, second-row-of-MAT1)

15




("MAT1", 3, third-row-of-MAT1)

and so on; tuple fields may be composite values like vectors or structs. To read
the ith row of MAT1, an appropriate statement is

rd(‘‘MAT1’’, i, ? newrow),

where newrow is a local variable of the appropriate vector type. The prepended
“?” means that newrow is used here as a formal parameter, to which the row in
question will be assigned.)

These four programs are not source-identical, but they are nearly so. They
differ insofar as (1) Ipp hasn’t been ported to the S/Net, so the S/Net pro-
grammer must invoke the appropriate kernel calls directly; (2) eval exists on
the Encore and Sequent, but on the others, programmers rely on the native
operating system for process forking.

What’s important in figure 3 is not, of course, the absolute running times
on the various machines, but the fact that the shape of the Linda curves is so
similar over the four cases. On all four machines, two Linda workers (a total
of three processes, as before) were sufficient to beat a sequential version of the
algorithm, and performance improved in essentially linear fashion from there.

Figure 4 shows a more limited comparison: it plots Encore, Sequent and
S/Net versions of an LU decomposition routine that is similar to the Linpack
test. Again, all three curves are similar in shape. The Encore’s performance
trails off beyond 9 workers or so: this is a small matrix (note that the scale of the
ordinate is about two orders of magnitude finer than in the previous example);
performance has been observed to be much better on larger problems.

Figure 5 shows a comparison of Encore, Sequent, and iPSC versions of a
different kind of routine, a simple parallel database search. The problem is as
follows: given a DNA sequence and a database of sequences with which to com-
pare it, find the sequence in the database that is closest to the original, where
“closest” is determined by a fairly complex string comparison algorithm that
attempts to capture geneticists’ understanding of relatedness across sequences.
The procedure we used is simple: worker processes are set up; the target se-
quence is outed and each worker rd’s it; the sequences found in the database
are outed, and workers repeatedly grab a sequence, compare it with the target
and repeat until the database is empty. Each worker remembers its best match
so far and, when the search is complete, outs this datum; a master process picks
up these final tuples and reports the result. Figure 5 shows performance on a
search involving a small comparison set of 256 synthetic sequences, but perfor-
mance is similar when we run comparisons against an actual sequence database
(the GENBANK database). To coordinate a search against a large database, the

16




master process uses a “low watermark” approach: (1) outs an initial batch of
sequence tuples (2) waits until most of the batch has been acknowledged by
result tuples, whereupon it outs another batch of tuples. The process continues
until all sequences in the database have been outed.

Figure 6 shows a final comparison: a Linda program developed by our col-
league Henri Bal of the Vrije Universiteit in Amsterdam was executed on the
Tadpole, a custom-designed shared-memory multi-processor built by Prof. An-
drew Tanenbaum’s group. We ran the same program (modulo a trivial alteration
to accomodate the lack of eval in Tadpole Linda) on the Encore Multimax.

The program solves the travelling salesman problem using the parallel branch-
and-bound approach described in [BTR87]. The problem state is stored in a
search tree: leaf nodes represent complete tours; interior nodes represent partial
tours. Interior nodes have one descendent for every possible continuation of the
partial path they represent. The tree is pruned at an intermediate node when
that node’s partial path can’t lead to a shorter tour than the shortest one known
so far.

In Bal’s Linda version, a master process explores the tree down to a certain
level, then parcels out to worker processes the exploration of the tree below
this level. Each worker repeatedly accepts an internal node and systematically
generates all relevant full routes starting with the nodes’s partial route. The
bound (the best solution so far) is stored in a tuple which workers consult
and update when they start a new task or discover an improved solution. (It
would have been better in the abstract for workers to consult this tuple each
time they extend a path by one hop, but the one-hope extension of a path is a
computationally trivial step, and consulting the bound-tuple each time it occurs
leads to excessively-frequent ining and outing, with consequent inefficiency.)

In the master-worker programs discussed above, tasks are kept in an un-
ordered bag. In Bal’s travelling salesman program, on the other hand, it’s
important that tasks be performed in a given order: heuristics are available
to optimize the chance that a good solution will be found early in the search.
Tasks are accordingly kept on the kind of distributed task queue discussed in
[CGL86]. The master process numbers each task tuple by including an index
field as one tuple element. Before withdrawing a new task, workers consult and
update a separate index tuple; if the new value of the index is n, they ask for
the nth task in the queue, by executing an

inp("task", n, ... ) statement.

17




6 Conclusions

The programs whose performance we’ve discussed were not chosen to span or
characterize the space of interesting parallel applications, and we don’t claim
that they do. Our examples do represent the kind of problem-solving approach
that seems natural in Linda (they involve replicated workers and distributed
data structures), and they solve problems that are easily grasped using algo-
rithms that are likewise simple to explain. Although they are simple, the exam-
ples are realistic: we resisted the impulse to run recursive quicksorts or parallel
fibonacci generators. But of course we are systems developers and not applica-
tions programmers, and our goal is to establish not that Linda is tried-and-true,
but that it is ready to leave the sheltered systems world and be subjected on
an experimental basis to the kind of demands that applications programmers
make. '

Linda is sometimes regarded as a relatively conservative approach to parallel
programming. This isn’t entirely true. As envisioned (though not yet realized),
complete Linda systems do away with the standard distinctions between the
program, the data and the file system; program and data live together in the
same tuple space, and programs resolve to data when they’re done — process tu-
ples become data tuples. Tuple spaces are objects with independent existences.
They may be stored in a file system; they may be reactivated or operated-on
any number of times. They may even overflow the boundaries of their multi-
computer of origin to take up residence on another machine, or on many other
machines simultaneously.

Linda ¢s conservative in its use of established base languages and in our
insistence that it run well on a variety of real machines. We regard it as no
longer legitimate to treat practical development tools for parallelism as a distant
goal. Programmers now deal with real multi-computers every day.

The results we’ve presented deal with small parallel machines only. This
represents our experience to date. We can’t prove, yet, that Linda will work
well on large multi-computers, but we suspect that it will, and are working on
kernels for larger machines now. The Linda Machine is designed to scale upward
to roughly a thousand nodes. For the forseeable future, a thousand powerful
nodes will be plenty for our purposes.

In discussing related work, programming languages like Concurrent Pascal
[Br75] and Modula [Wir77] are a good starting point. These systems were based
on strong cooperation between compiler and runtime kernel — but concurrent
systems programming, not parallelism, was the problem domain in both cases.
Birrell and Nelson’s work on an RPC kernel [BN84] bears some important sim-
ilarities to ours. In their system, interface-specification modules allow remote
calls to be typechecked, and remote procedures are invoked via stubs that are

18




generated automatically at link time. Close cooperation between the linker,
the stub-generating program and the runtime communication system brought
demonstrable gains in usability and efficiency. RPC is, of course, a distributed-
programming protocol; it wasn’t designed for parallel applications (and in our
view is unsuited to them: its synchronous character tends to suppress rather
than to encourage concurrency). But efficiency was nonetheless a major goal in
the RPC work, one that was evidently attained.

Many high-level parallel languages for parallel applications programming
been proposed, but not many have been implemented. Occam [M83] and
Ada [DoD)] are prominent implemented systems; Linda’s approach to language
designs is fundamentally different. Multilisp [Hal86] and Concurrent Prolog
[Shap86] represent a class of interesting languages that don’t yet exist in effi-
cient parallel implementations (so far as we know), but are under active study
with a view towards efficient implementation. The several languages that have
been developed for the Connection Machine [Hil85] represent an approach to
parallelism that is, again, basically different from Linda’s.

Research on portable parallel languages has been sparse. One exception in-
volves Fortran extensions designed for numerical applications; Jordan’s work on
the “Force” [Jor86] is a good example. His system involves Fortran extensions
implemented as macros, and it has been ported to several parallel machines,
including the Denelcor HEP and the Flex/32. Parallelism in this model centers
around parallel DO loops whose iterations may be performed simultaneously.
This model is powerful and useful over a wide range of numerical programs.
Linda is clearly more general and flexible — there are many kinds of paral-
lel structures that don’t fit neatly (or don’t fit at all) into parallel DO loops.
Jordan’s system, on the other hand, gives maximum convenience and optimal
performance within the domain for which it was designed.

Many parallel algorithms are known and more are in development. (We’ve
concentrated on numerical examples in this paper, but applications in simula-
tor building and graph algorithms are as interesting to us or moreso; parallel
database manipulation is another area we’ve begun to explore.) Many parallel
machines are available, and many more will be soon. But the fate of the whole
effort will ultimately be decided, we believe, by the extent to which working
programmers can put the algorithms and the machines together. Linda, we
continue to believe, brings togetherness a step closer.

References

[AhCGS86] S. Ahuja, N. Carriero and D. Gelernter, “Linda and Friends,” JEEE
Computer (Aug. 1986).

19




[AhCGKS87] S. Ahuja, N. Carriero, D. Gelernter and V. Krishnaswamy, “The
Linda Machine,” Yale Univ. Dept. Comp. Sci. tech. rep. (Feb., 1987).

[BN84] A.D. Birrell and B.J. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comp. Sys. (Feb. 1984):39-59.

[Br75] P.Brinch Hansen, “The programming language Concurent Pascal. IEEE
Trans. Sft. Eng., SE-1,2(1975):199-206.

[BRT87] H.E. Bal, R. van Renesse and A.S. Tanenbaum, “Implementing Dis-
tributed Algorithms Using Remote Procedure Calls,” in Proc. 1987 Na-
tional Computer Conference, Chicago (June 1987): 499-506.

[C8T7] N. Carriero, Implementing tuple space machines. Doctoral Diss., Yale
Univ., 1987.

[DoD] US. Dept. of Defense, Reference Manual for the Ada Programming Lan-
guage. ACM AdaTEC (July 1982).

[GB82] D. Gelernter and A. Bernstein, “Distributed communication via global
buffer,” in Proc. ACM Symp. Principles of Distributed Computing, (Aug.
1982):10-18.

[CG85] N. Carriero and D. Gelernter, “The S/Net’s Linda Kernel,” in Proc.
ACM. Symp. Operating System Principles, (Dec. 1985) and (ACM Trans.
Comp. Sys. (May 1986).

[CGL86] N. Carriero, D. Gelernter and J. Leichter, “Distributed data struc-
tures in Linda,” in Proc. ACM Symp. Principles of Prog. Languages,
Jan. 1986.

[Gel84] D. Gelernter, “Dynamic global name spaces on network computers,”
in Proc. Int. Conf. Parallel Processing, (Aug. 1984).

[Gel85] D. Gelernter, “Generative communication in Linda,” ACM Trans. Prog.
Lang. Sys. 1(1985):80-112.

[H85] D. Hillis, The Connection Machine. MIT Press (1985).

[Hal86] R. Halstead, “Multilisp: a language for concurrent symbolic computa-
tion.” ACM Trans. Prog. Lang. Sys. (Oct, 1986).

[Jor86] H.F. Jordan, “Structuring parallel algorithms in an MIMD, shared
memory environment,” Parallel Computing 3(1986):93-110.

[M83] M.D. May, “Occam.” ACM SIGPLAN Notices, 18-4(1983):69-79.

[MF86] D. Mundie and D. Fischer, “Parallel processing in Ada.” IEEE Com-
puter, (Aug. 1986): 20-25.

20




[Lu86] S. Lucco, “A heuristic Linda kernel for hypercube multiprocessors,” in
Proc. SIAM Conf. on Hypercube Multiprocessors, (Sept. 1986).

[O186] T.J. Olson, “Finding lines with the Hough Transform on the BBN But-
terfly parallel processor,” Univ. Rochester, Dept. Comp. Sci. Butterfly
Project Report 10, Sept. 1986.

[Shap86] E. Shapiro, “Concurrent Prolog.” IEEE Computer, (Aug. 1986):
44-59.

[Wir77] N. Wirth, “Modula: A language for modular multiprogramming.”
Softw. Pract. and Ezp, 7(1977):3-35.

21




D
o

35

30

25

(sec)

20

Time

15

10

(€]

o lllllllllllllllllllllllllllll]‘lllllllllllllllll

o

LU decomposition
190x190 matrix

O -- Linda verslon

O -—- C verslon

0 -- Sequentlal verslon

Number of WorKers

Figure 1: Comparision of Linda and non-Linda versions of LU decomposition
running on the Encore Multimax.

22




300

250

(sec)
- N
(@»)]
O

Time

100

S0

o

Matrix mult.
190x180 and 300x300 matrices

- ®
N O -- normal verslon
:_ 0 -- cached verslon
B X -- shared mem. verslon
¢
. 0O -- sequentlal verslon
— I e R R T T
- ® H ‘
B N
- 4\ 0
- Q
- Q
— 4 S v
R e .- — SRR o
= A < \ ¢ A > o -
A o /a0
N ARG g8 E—e—a g
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 186

Number of WorKers

Figure 2: Compa‘,risién of different versions of matrix multiply running on the

Encore Multimax.

17




2000

1500

(sec)

Time
o
o
(e ]

Clumped matrix multiply
300x300 matrices

— parallel
e N sequentlal
N X
" O -- Encore
0 -- Sequent
X -- Intel
o --'S/Net (/10)
e 0
________________________________ D
________________________ O
|

€
g
o B

6 7

Number of WorKers

Figure 3: Comparison of the clumped matrix multiply algorithm on four differ-
ent multiprocessors. The matrices are of dimension 300 x 300. The elements
are floats.

24

10 11 12 13 14 15 16 17 18




LU decompositlion
100 x 100 matrix

porollel

_________ sequential

(sec)

O -- Encore
0 -- Sequent
o -- S/Net (/10)

TIime

o f)
Y

o o .\ o
-/ N -/ N\

— O

|
10 11 12 13 14 15 16
Number of WorKers

Figure 4: Comparision of LU decomposition on three different multiprocessors.
The matrix is 100 x 100, and the elements are doubles.

25




o~

oy
N
-

s
+

DNA sequenclng
256 sequences of length 64

f

1200

"

1000

800

O -- Encore

0 -- Intel

(sec)

600

Time

400

200

IIllI‘IlllllllllllllllllllIIII!IIII

: —a
0 I I Y O S N N N B

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of WorKers

Figure 5: Comparison of DNA sequencing on two different multiprocessors.
The sequences were 64 bases long, and 256 sequences were compared against
the target. ' : :

26




N —

600 ¢
500 ‘ O -- Encore
K
-\ 0 == V.U. Tadpole
_‘\
400 |-
%
O
[
%]
= 300
[H)
5 q
— D
200
100
D
O S O Sy A ¢
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of WorKers

Figure 6: A comparision of Travelling Salesmen on two different multiprocessors.
The program is due to Henri Bal of the Vrije Universiteit in Amsterdam. Two
different benchmarks are shown; in each case there are 13 cities on the map.

27






